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1 Abstract

The father of quantum mechanics, Erwin Schrödinger, was one of the most important figures in the deve-
lopment of quantum theory. He is perhaps best known for his contribution of the wave equation, which
would later result in his winning of the Nobel Prize for Physics in 1933. The Schrödinger wave equation
describes the quantum mechanical behaviour of particles and explores how the Schrödinger wave functions
ψ(x) of a system change over time. This project is concerned about exploring the one-dimensional case of
the Schrödinger wave equation in a harmonic oscillator system. We will give the solutions, called eigen-
functions, of the equation that satisfy certain conditions. Furthermore, we will show that this happens only
for particular values called eigenvalues.

2 The Schrödinger Wave Equation Problem

In quantum mechanics, the steady-state Schrödinger wave equation corresponding to a one dimensional
problem is the ordinary differential equation below:

− ~2

2µ

d2ψ

dx2
+ V (x)ψ = Eψ (2.1)

where ~ is Planck’s constant divided by 2π, E is the total energy of the quantum mechanical system and
V (x) is the potential function for the system.

For example, the potential energy function for the distance between atoms in a diatomic molecule,
oscillating in the neighbourhood of a stable equilibrium position, may be approximated by the following
equation:

V (x) =
1

2
µω2x2 (2.2)

where ω is (loosely) called the classical frequency of the harmonic oscillator and µ is the reduced mass of
the system. Substituting this into our original ODE gives the Schrödinger equation for the linear harmonic
oscillator as shown below:

− ~2

2µ

d2ψ

dx2
+

1

2
µω2x2ψ = Eψ (2.3)

The function ρ(x) =
∣∣ψ(x)

∣∣2 is interpreted as a probability density function for the position of a particle

in the system. Thus, ρ(x) dx =
∣∣ψ(x)

∣∣2 dx is the probability that upon a measurement of the particle’s
position, it will be found in an interval of width dx about the point x. It follows that physically admissible
solutions ψ(x), known as Schrödinger wave functions, are required to satisfy the following:

ψ → 0 as |x| → ∞ (2.4)

∫ ∞
−∞

∣∣ψ(x)
∣∣2 dx = 1 (2.5)

For this project, show that the solutions of the Schrödinger equation (Eq. 1.3), satisfying the conditions
above, occur only for certain eigenvalues of E. The corresponding solutions, or Schrödinger wave functions,
are called eigenfunctions of the problem.
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3 The History of the Schrödinger Equation

Erwin Schrödinger published a paper on his wave equation in 1926, which became the foundation of the
theory of quantum mechanics later. The Schrödinger wave equation is used to describe waves where there
are significant quantum effects in some particular physical system [1]. It is a type of equation from the
broader category of wave equations, which describe how waves propagate in space such as, for example,
ocean water waves. Werner Heisenberg published a different theory explaining different types of occurrences
in atoms just before Schrödinger published his paper; Schrödinger showed that they were in fact equivalent
theories even though at first glance they seemed to be fairly unrelated [1]. Since the Schrödinger theory is
easier to grasp, this will be the focus of this research report. It should also be noted that Schrödinger won
the 1933 Nobel Prize in Physics for his research.

Physicists now know that particles can exhibit wave-like behaviours and that a particle’s position and
momentum cannot both be known exactly; the Schrödinger equation gives probability distributions but
cannot predict the exact result for either. A famous example showing that a particle exhibits wave behaviour
is the double-slit experiment. Electrons fired through a screen, one at a time, with two slits in it will then
hit a photosensitive detector screen behind it. Thinking of electrons as particles and not waves, we predict
that we will see roughly two bright columns on the detector screen where the particles are most likely to hit.
In fact, we see a spreading out pattern similar to the same experiment using water waves as a result of their
interference pattern. We find bright bands alternating with dark bands, showing the places where the water
waves amplify and where they cancel each other out.

We will be examining a particular system where the Schrödinger equation can be applied; this system
is called the simple harmonic oscillator. In particular, it is called the quantum harmonic oscillator system,
one of the most significant models in quantum mechanics. Its significance lies partly in the fact that exact
analytical solutions are known, which we will attempt to extract in the report via the power series solution
method. It should be noted that usually solutions are found using the Laplace transform or by way of the
Fourier transform.

4 Solutions of the Schrödinger Wave Equation

First, we start off with the one dimensional Schrödinger wave equation, which we note is the only case that
it is in the form of an ordinary differential equation and not a partial differential equation. This is due
to the increasing complexity when adding more space dimensions; the wave equation must adjust to this
accordingly.

− ~2

2µ

d2ψ

dx2
+ V (x)ψ = Eψ (4.1)

− ~2

2µ

d2ψ

dx2
+

1

2
µω2x2ψ = Eψ (4.2)

The latter equation is the Schrödinger wave equation for the linear harmonic oscillator, which will be the
main focus of this report. We shall try to find solutions to this equation and by first obtaining the standard
form of the Schrödinger wave equation:

− ~2

2µ

d2ψ

dx2
+

1

2
µω2x2ψ = Eψ (4.3)

− ~2

2µ

d2ψ

dx2
+

1

2
µω2x2ψ − Eψ = 0 (4.4)

d2ψ

dx2
+

1

2
µω2x2

(
− 2µ

~2

)
ψ − E

(
− 2µ

~2

)
ψ = 0 (4.5)

2



d2ψ

dx2
− µ2ω2x2

~2
ψ +

2µE

~2
ψ = 0 (4.6)

d2ψ

dx2
−
(
µ2ω2x2

~2
− 2µE

~2

)
ψ = 0 (4.7)

Now that we have the equation in standard form, we will perform a variety of operations to transform
the Schrödinger wave equation into a more useable form.

d2ψ

dx2
=

(
µ2ω2x2

~2
− 2µE

~2

)
ψ (4.8)

d2ψ

dx2
= −µω

~

(
2E

~ω
− µω

~
x2
)
ψ (4.9)

Let 2E
~ω = λ, allowing us to simplify our equation. After making the above substitution, we have the

following:

d2ψ

dx2
= −µω

~

(
λ− µω

~
x2
)
ψ (4.10)

We have conveniently factored out certain values to obtain the above equation; clearly, another substitu-
tion would be beneficial. We shall change our independent variable from x to ξ, since it is more convenient
to work with dimensionless variables, using the following method below. First, let us have the following,
choosing the new variable to allow for significant cancellations later:

ξ =

√
µω

~
x (4.11)

Now, we have that:

∂ψ

∂ξ
=
∂ψ

∂x
· ∂x
∂ξ

=

√
~
µω

∂ψ

∂x
(4.12)

Then, the second partial derivative is as follows:

∂2ψ

∂ξ2
=

∂

∂ξ

(√
~
µω

∂ψ

∂x

)
=

∂

∂x

(√
~
µω

∂ψ

∂x

)
∂x

∂ξ
=

√
~
µω

∂2ψ

∂x2
·

√
~
µω

=
~
µω

∂2ψ

∂x2
(4.13)

Therefore, we have:

∂2ψ

∂ξ2
=

~
µω

∂2ψ

∂x2
=⇒ ∂2ψ

∂x2
=
µω

~
∂2ψ

∂ξ2
(4.14)

After making the substitution for ξ and the derived second partial derivative, we obtain the following
equation:

µω

~
d2ψ

dξ2
= −µω

~
(
λ− ξ2

)
ψ (4.15)

d2ψ

dξ2
= −

(
λ− ξ2

)
ψ (4.16)

d2ψ

dξ2
+
(
λ− ξ2

)
ψ = 0 (4.17)
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We have reduced the original equation to an easier to handle, second order ordinary differential equation,
as shown above. Now, we need to find solutions to the ordinary differential equation; we will assume these
solutions are of the following form:

ψ(ξ) = e−
ξ2

2 y(ξ) (4.18)

Taking the derivative of this equation with respect to ξ, we obtain the following:

∂ψ

∂ξ
= −ξe−

ξ2

2 y(ξ) + e−
ξ2

2 y′(ξ) (4.19)

Since we want to obtain a second order differential equation, matching with the one we obtained from
the Schrödinger equation, we take the derivative with respect to ξ once again, shown below:

∂2ψ

∂ξ2
= −ξe−

ξ2

2

(
− ξy(ξ)

)
+ e−

ξ2

2

(
− ξy(ξ)

)′
+ y′(ξ)

(
− ξe−

ξ2

2

)
+ e−

ξ2

2 y′′(ξ) (4.20)

∂2ψ

∂ξ2
= ξ2y(ξ)e−

ξ2

2 + e−
ξ2

2

(
− y(ξ) + (−ξ)y′(ξ)

)
− ξy′(ξ)e−

ξ2

2 + e−
ξ2

2 y′′(ξ) (4.21)

∂2ψ

∂ξ2
= ξ2y(ξ)e−

ξ2

2 − e−
ξ2

2 y(ξ)− 2ξy′(ξ)e−
ξ2

2 + e−
ξ2

2 y′′(ξ) (4.22)

Therefore, we have the following:

∂ψ

∂ξ
= −ξe−

ξ2

2 y(ξ) + e−
ξ2

2 y′(ξ) (4.23)

and

∂2ψ

∂ξ2
= ξ2y(ξ)e−

ξ2

2 − e−
ξ2

2 y(ξ)− 2ξy′(ξ)e−
ξ2

2 + e−
ξ2

2 y′′(ξ) (4.24)

We will now substitute these into our second order ordinary differential equation:

d2ψ

dξ2
+
(
λ− ξ2

)
ψ = 0 (4.25)

ξ2y(ξ)e−
ξ2

2 − e−
ξ2

2 y(ξ)− 2ξy′(ξ)e−
ξ2

2 + e−
ξ2

2 y′′(ξ) +
(
λ− ξ2

)
e−

ξ2

2 y(ξ) = 0 (4.26)

e−
ξ2

2

(
ξ2y(ξ)− y(ξ)− 2ξy′(ξ) + y′′(ξ) +

(
λ− ξ2

)
y(ξ)

)
= 0 (4.27)

We shall now divide by e−
ξ2

2 and expand:

ξ2y(ξ)− y(ξ)− 2ξy′(ξ) + y′′(ξ) + λy(ξ)− ξ2y(ξ) = 0 (4.28)

y′′(ξ)− 2ξy′(ξ) +
(
λ− 1

)
y(ξ) = 0 (4.29)

There are several methods for solving the Hermite equation, though according to the literature the most
common way of tackling it is to find series solutions. First, we have the following:

y(ξ) =

∞∑
n=0

anξ
n (4.30)
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Since we need the derivatives of y(ξ), we will take the derivative and second derivative with respect to
the power series solution above, as follows:

y′(ξ) =

∞∑
n=1

nanξ
n−1 (4.31)

y′′(ξ) =

∞∑
n=2

n(n− 1)anξ
n−2 (4.32)

Now, we want all the indices of the sums to be the same, specifically we want all of them to start at
n = 0. We shift the indices of y′(ξ) and y′′(ξ) to obtain the following:

y′(ξ) =

∞∑
n=0

(n+ 1)an+1ξ
n (4.33)

y′′(ξ) =

∞∑
n=0

(n+ 2)(n+ 1)an+2ξ
n (4.34)

We shall substitute our power series and its derivatives into our Hermite equation:

∞∑
n=0

(n+ 2)(n+ 1)an+2ξ
n − 2ξ

∞∑
n=0

(n+ 1)an+1ξ
n + (λ− 1)

∞∑
n=0

anξ
n = 0 (4.35)

∞∑
n=0

(n+ 2)(n+ 1)an+2ξ
n − 2

∞∑
n=0

(n+ 1)an+1ξ
n+1 + (λ− 1)

∞∑
n=0

anξ
n = 0 (4.36)

Our middle series term has ξn+1, therefore, we will shift the index once more:

2

∞∑
n=0

(n+ 1)an+1ξ
n+1 =⇒ 2

∞∑
n=1

nanξ
n (4.37)

Notice that we can start this series at n = 0 since the whole series will be equal to zero; this makes it
perfect when changed in our substitution above.

∞∑
n=0

(n+ 2)(n+ 1)an+2ξ
n − 2

∞∑
n=0

nanξ
n + (λ− 1)

∞∑
n=0

anξ
n = 0 (4.38)

∞∑
n=0

(n+ 2)(n+ 1)an+2ξ
n − 2nanξ

n + (λ− 1)anξ
n = 0 (4.39)

∞∑
n=0

(
(n+ 2)(n+ 1)an+2 − 2nan + (λ− 1)an

)
ξn = 0 (4.40)

∞∑
n=0

(
(n+ 2)(n+ 1)an+2 −

(
2n+ 1− λ

)
an
)
ξn = 0 (4.41)

Since the whole series is equal to zero, this means that the coefficients are equal to zero:

(n+ 2)(n+ 1)an+2 −
(
2n+ 1− λ

)
an (4.42)

Hence, we obtain the following recurrence relation:

an+2 =
(2n+ 1− λ)

(n+ 2)(n+ 1)
an (4.43)
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We would need to be given the values of a0 and a1 which correspond to y(0) and y′(0); respectively. Note
that y(0) corresponds to the particle’s displacement and y′(0) corresponds to the particle’s velocity. This
power series would become an infinite polynomial as n becomes arbitrarily large and would be a divergent
series. We can see it is divergent by comparing it to the series of eu

2

, whose coefficients behave exactly like
those in our own series, as we will see below.

ez
2

=

∞∑
k=0

(z2)k

k!
=

∞∑
k=0

z2k

k!
(4.44)

Let n = 2k, then we have:

ez
2

=

∞∑
k=0

z2k

k!
=

∞∑
n=0,2,4,...

zn(
n
2

)
!

(4.45)

Check the coefficients of this series as follows, when n→∞:

cn+2

cn
=

(
n
2

)
!(

n+2
2

)
!

=
1

n
2 + 1

=
2

n
(
1 + 2

n

) ≈ 2

n
=⇒ cn+2 ≈

2

n
cn; n ∈ {0, 1, 2, . . . } (4.46)

Therefore, we can see from the recursion relation of our original series that as n→∞, we have:

an+2 =
(2n+ 1− λ)

(n+ 2)(n+ 1)
an =⇒ an+2 ≈

2

n
an; n ∈ {0, 1, 2, . . . } (4.47)

We do not want to obtain an infinite polynomial and therefore want the series to terminate beyond a
given n. First, recall that λ = 2E

~ω . Then if for some specific total energy E we can get λ to be an odd integer
such that 2n+ 1− λ in the numerator of our recursion relation is zero, we can terminate the series since all
coefficients after will be zero as well.

2n+ 1− λ = 0 =⇒ λ = 2n+ 1 =⇒ 2E

~ω
= 2n+ 1 =⇒ En = ~ω

(
n+

1

2

)
; n ∈ {0, 1, 2, . . . } (4.48)

Therefore, we have the total energy at the nth energy level, where n = 0 is the ground state and n ≥ 1
are excited states [1]. It is an important note that the energies are very specific values at each energy level;
in other words, they are quantized [1]. Physicists call the power series solutions obtained above Hermite
polynomials denoted y(ξ) = Hn(ξ) [1]. Therefore, our coefficient an will be the last nonzero term before the
series terminates, since an+2 = 0, and so we can write our solution in the form of a finite polynomial:

Hn(ξ) = y(ξ) = anξ
n + an−2ξ

n−2 + · · · ; n ∈ {0, 1, 2, . . . } (4.49)

and this Hermite polynomial is the solution to the equation:

y′′(ξ)− 2ξy′(ξ) +
(
λ− 1

)
y(ξ) = 0 (4.50)

Of course, this solution depends on whether we are using the recursion relation starting with a0 giving
the even solution or a1 giving the odd solution.

Hence, we have that our solutions to the second order differential equation:

d2ψ

dξ2
+
(
λ− ξ2

)
ψ = 0 (4.51)

are as follows:

ψ(ξ) = e−
ξ2

2 y(ξ) =⇒ ψn(ξ) = Ane
− ξ

2

2 Hn(ξ); n ∈ {0, 1, 2, . . . } (4.52)

where An are normalization constants and the Hn(ξ) are the Hermite polynomials, which we will not
explicitly write out here.
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We need to back substitute to find our solution to our original Schrödinger wave equation in terms of
ψ(x), as shown below:

ψn(x) = cne
−
√

µω
~

2
x2

2 Hn

(√
µω

~
x

)
; n ∈ {0, 1, 2, . . . } (4.53)

ψn(x) = cne
−µω2~ x2

Hn

(√
µω

~
x

)
; n ∈ {0, 1, 2, . . . } (4.54)

These are called the wave functions, or eigenfunctions, of the harmonic oscillator system and they satisfy
the conditions:

ψ → 0 as |x| → ∞ (4.55)

∫ ∞
−∞

∣∣ψ(x)
∣∣2 dx = 1 (4.56)

for the specific total energy levels that we found, shown below:

En = ~ω
(
n+

1

2

)
; n ∈ {0, 1, 2, . . . } (4.57)
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