
Principles of Econometrics with R
Constantin Colonescu

2016-12-13

2

Contents

. 7

1 Introduction 9
1.1 The RStudio Screen . 10
1.2 How to Open a Data File . 12
1.3 Creating Graphs . 12
1.4 An R Cheat Sheet . 13

2 The Simple Linear Regression Model 15
2.1 The General Model . 15
2.2 Example: Food Expenditure versus Income 17
2.3 Estimating a Linear Regression . 17
2.4 Prediction with the Linear Regression Model 20
2.5 Repeated Samples to Assess Regression Coefficients 21
2.6 Estimated Variances and Covariance of Regression Coefficients . . . 22
2.7 Non-Linear Relationships . 22
2.8 Using Indicator Variables in a Regression 26
2.9 Monte Carlo Simulation . 27

3 Interval Estimation and Hypothesis Testing 31
3.1 The Estimated Distribution of Regression Coefficients 31
3.2 Confidence Interval in General . 32
3.3 Example: Confidence Intervals in the food Model 33
3.4 Confidence Intervals in Repeated Samples 34
3.5 Hypothesis Tests . 35
3.6 The p-Value . 39
3.7 Testing Linear Combinations of Parameters 41

4 Prediction, R-squared, and Modeling 45
4.1 Forecasting (Predicting a Particular Value) 45
4.2 Goodness-of-Fit . 49
4.3 Linear-Log Models . 51

3

4 CONTENTS

4.4 Residuals and Diagnostics . 53
4.5 Polynomial Models . 57
4.6 Log-Linear Models . 58
4.7 The Log-Log Model . 63

5 The Multiple Regression Model 67
5.1 The General Model . 67
5.2 Example: Big Andy’s Hamburger Sales 68
5.3 Interval Estimation in Multiple Regression 73
5.4 Hypothesis Testing in Multiple Regression 75
5.5 Polynomial Regression Models . 78
5.6 Interaction Terms in Linear Regression 80
5.7 Goodness-of-Fit in Multiple Regression 83

6 Further Inference in Multiple Regression 85
6.1 Joint Hypotheses and the F-statistic 85
6.2 Testing Simultaneous Hypotheses . 86
6.3 Omitted Variable Bias . 91
6.4 Irrelevant Variables . 93
6.5 Model Selection Criteria . 94
6.6 Collinearity . 97
6.7 Prediction and Forecasting . 98

7 Using Indicator Variables 101
7.1 Factor Variables . 101
7.2 Examples . 102
7.3 Comparing Two Regressions: the Chow Test 105
7.4 Indicator Variables in Log-Linear Models 106
7.5 The Linear Probability Model . 107
7.6 Treatment Effects . 109
7.7 The Difference-in-Differences Estimator 113
7.8 Using Panel Data . 116
7.9 R Practicum . 118

8 Heteroskedasticity 123
8.1 Spotting Heteroskedasticity in Scatter Plots 124
8.2 Heteroskedasticity Tests . 125
8.3 Heteroskedasticity-Consistent Standard Errors 129
8.4 GLS: Known Form of Variance . 131
8.5 Grouped Data . 133
8.6 GLS: Unknown Form of Variance . 135
8.7 Heteroskedasticity in the Linear Probability Model 137

CONTENTS 5

9 Time-Series: Stationary Variables 141
9.1 An Overview of Time Series Tools in R 142
9.2 Finite Distributed Lags . 142
9.3 Serial Correlation . 144
9.4 Estimation with Serially Correlated Errors 151
9.5 Nonlinear Least Squares Estimation 153
9.6 A More General Model . 155
9.7 Autoregressive Models . 156
9.8 Forecasting . 158
9.9 Multiplier Analysis . 162

10 Random Regressors 165
10.1 The Instrumental Variables (IV) Method 165
10.2 Specification Tests . 170

11 Simultaneous Equations Models 173

12 Time Series: Nonstationarity 181
12.1 AR(1), the First-Order Autoregressive Model 182
12.2 Spurious Regression . 185
12.3 Unit Root Tests for Stationarity . 188
12.4 Cointegration . 194
12.5 The Error Correction Model . 195

13 VEC and VAR Models 199
13.1 VAR and VEC Models . 199
13.2 Estimating a VEC Model . 200
13.3 Estimating a VAR Model . 203
13.4 Impulse Responses and Variance Decompositions 208

14 Time-Varying Volatility and ARCH Models 211
14.1 The ARCH Model . 212
14.2 The GARCH Model . 216

15 Panel Data Models 221
15.1 Organizing the Data as a Panel . 222
15.2 The Pooled Model . 222
15.3 The Fixed Effects Model . 224
15.4 The Random Effects Model . 227
15.5 Grunfeld’s Investment Example . 230

16 Qualitative and LDV Models 237
16.1 The Linear Probability Model . 237
16.2 The Probit Model . 238

6 CONTENTS

16.3 The Transportation Example . 238
16.4 The Logit Model for Binary Choice 240
16.5 Multinomial Logit . 243
16.6 The Conditional Logit Model . 245
16.7 Ordered Choice Models . 247
16.8 Models for Count Data . 248
16.9 The Tobit, or Censored Data Model 250
16.10The Heckit, or Sample Selection Model 252

References 255

.

7

8 CONTENTS

Chapter 1

Introduction

rm(list=ls()) # Caution: this clears the Environment

library(bookdown)
library(PoEdata)
library(knitr)
library(xtable)
library(stargazer)
library(rmarkdown)

Although this manual is self-contained, it can be used as a supplementary resource
for the “Principles of Econometrics” textbook by Carter Hill, William Griffiths and
Guay Lim, 4-th edition (Hill et al., 2011).

The following list gives some of the R packages that are used in this book more
frequently:

• devtools (Wickham and Chang, 2016)
• PoEdata (Colonescu, 2016)
• knitr (Xie, 2016b)
• bookdown (Xie, 2016a)
• xtable (Dahl, 2016)
• stargazer (Hlavac, 2015)
• rmarkdown (Allaire et al., 2016)

The function install_git from the package devtools installs packages such as
PoEdata from the GitHub web site. Here is the code that installs devtools and
bookdown:
install.packages("devtools")
devtools::install_github("ccolonescu/PoEdata")

9

10 CHAPTER 1. INTRODUCTION

The computing environment for using R (R Development Core Team, 2008) is RStu-
dio (RStudio Team, 2015). You need to install on your computer the following
resources:

• R (https://cloud.r-project.org/)
• RStudio (https://www.rstudio.com/products/rstudio/download/)
• PoEdata package (https://github.com/ccolonescu/PoEdata)

This brief introduction to R does not intend to be exhaustive, but to cover the
minimum material used in this book. Please refer to the R documentation and to
many other resuorces for additional information. For beginners, I would recommend
(Lander, 2013).

1.1 The RStudio Screen

A typical RStudio Screen is divided in four quadrants. The NW quadrant is for
writing your script and for viewing data.
knitr::include_graphics(

"01-intro_files/RStudio_screen_1.PNG")

1.1.1 The Script, or data view window

Here are a few tips for writing and executing script in the Script window:

• You may start your script with a comment showing a title and a brief descrip-
tion of what the script does. A “comment” line starts with the hash character
(#). Comments can be inserted anywhere in the script, even in line with code,
but what follows the hash character to the end of the line will be disregarded
by R.

• Code lines may be continued on the next line with no special character to
announce a line continuation. However, code will be continued on the next
line only if the previous line ends in a way that requires continuation, for
instance with a comma or unclosed brackets.

• When you want to run a certain line of code, place the cursor anywhere on
the line and press Ctrl+Enter; if you want to run a sequence of several code
lines, select the respective sequence and press Ctrl+Enter.

https://cloud.r-project.org/
https://www.rstudio.com/products/rstudio/download/
https://github.com/ccolonescu/PoEdata

1.1. THE RSTUDIO SCREEN 11

Figure 1.1: The four quadrants of an RStudio screen

12 CHAPTER 1. INTRODUCTION

1.1.2 The console, or output window

While it is always advisable to work in the script mode because it can be saved
and re-used for different data, sometimes we need to run commands that are out of
the script context. Such commands can be typed at the bottom of the console at
the sign >. Pressing Enter executes such a command, and the up and down arrows
allow re-activating and editing older lines of code that had been previously typed
into the console.

1.2 How to Open a Data File

To open a data file for the Principles of Econometrics textbook, (Hill et al.,
2011), first check if the devtools package is installed. If it is not, run the code
install.packages("devtools") in the console.
devtools::install_git(

"ccolonescu/PoEdata")
library(PoEdata) # Makes datasets ready to use

Now, we can load and inspect a particular dataset, for example “andy.” When the
dataset is available, it sould show in the Environment window (look up and right).
library(PoEdata)
data("andy") # makes the dataset "andy" ready to use
?andy # shows information about the dataset

Show head of dataset, with variables as column names:
head(andy)

Show a few rows in dataset:
some(andy)

1.3 Creating Graphs

The basic tools for graph creating are the following R functions

• plot(x, y, xlab="income in 100", ylab="food expenditure, in $",
type="p"), where x and y stand for the variable names to be plotted, xlab
and ylab are the labels you wish to see on the plot, and type refers to the style
of the plot; type can be one of the following: “p” (points), “l” for lines, and
“b” for both points and lines, “n” for no plot. The type value “n” creates an

1.4. AN R CHEAT SHEET 13

−2 −1 0 1 2

−
2

−
1

0
1

2

x

y
=

 x

0 20 40 60 80 100

0
2

4
6

8
10

x

y

Figure 1.2: Examples of using the function curve()

empty graph which seres other functions such as abline(), which is described
below.

• The function curve() plots a curve described by a mathematical function, say
f , over a specified interval . When the argument add = TRUE is present, the
fuction adds the curve to a previously plotted graph. Figure 1.2 is an example.

curve(x^1, from=-2, to=2, xlab="x", ylab="y = x")
Add another curve to the existing graph:
curve(x^2, add = TRUE)
#plot(1:100, type='n')
curve(sqrt(x), from=0, to=100, xlab="x", ylab="y")

• The function abline() adds a line defined by its intercept a and slope b to
the current graph. The arguments of the function are: besides a and b, the
arguments of the function are: h, the y-value for a horizontal line; v, the x-
value for a vertical line; coef, the name of a simple linear regression object,
which includes the intercept and slope of a regression line.

plot(1:10, type="n") # creates an empty graph
Add straight lines to graph:
abline(a=8, b=-0.5, h=3.5, v=4)
curve(x^2, from=0, to=20)
abline(v=10)

1.4 An R Cheat Sheet

Here is an overview of some R commands used in this book.

lm(y~x, data = datafile) regresses y on x using the data in datafile

nrow(datafile) returns the number of observations (raws) in datafile

14 CHAPTER 1. INTRODUCTION

2 4 6 8 10

2
4

6
8

10

Index

1:
10

0 5 10 15 20

0
10

0
20

0
30

0
40

0

x

x^
2

Figure 1.3: Examples of using the function ‘abline()‘

nobs(modelname) gives the number of observations used by a model. This may be
different from the number of observation in the data file because of missing values
or sub-sampling

set.seed(number) sets the seed for the random number generator to make results
reproducible. This is needed to construct random subsamples of data

rm(list=ls()) removes all objects in the current Environment except those that
have names starting with a dot (.)

pdfetch retrieves time series data from online sources such as the World Bank,
Eurostat, European Central Bank, and Yahoo Finance

WDI retrieves data from the World Development Indicators database

Quandl retrieves financial and economic data from www.quandl.com

Chapter 2

The Simple Linear Regression
Model

rm(list=ls()) # Caution: this clears the Environment

2.1 The General Model

A simple linear regression model assumes that a linear relationship exists between
the conditional expectation of a dependent variable, y, and an independent vari-
able, x. Sometimes I call the independent variable ‘response’ or ‘response variable’,
and the independent variables ‘regressors.’ The assumed relationship in a linear
regression model has the form

yi = β1 + β2xi + ei, (2.1)

where

• y is the dependent variable
• x is the independent variable
• e is an error term
• σ2 is the variance of the error term
• β1 is the intercept parameter or coefficient
• β2 is the slope parameter or coefficient
• i stands fot the i -th observation in the dataset, i = 1, 2, ..., N
• N is the number of observations in the dataset

15

16 CHAPTER 2. THE SIMPLE LINEAR REGRESSION MODEL

5 10 15

0
10

20
30

40
50

60

education

w
ag

e

Figure 2.1: Example of several observations for any given x

The predicted, or estimated value of y given x is given by Equation (2.2); in general,
the hat symbol indicates an estimated or a predicted value.

ŷ = b1 + b2x (2.2)

The simple linear regression model assumes that the values of x are previously chosen
(therefore, they are non-random), that the variance of the error term, σ2, is the same
for all values of x, and that there is no connection between one observation and
another (no correlation between the error terms of two observations). In addition,
it is assumed that the expected value of the error term for any value of x is zero.

The subscript i in Equation (2.1) indicates that the relationship applies to each of
the N observations. Thus, there must be specific values of y, x, and e for each ob-
servation. However, since x is not random, there are, typically, several observations
sharing the same x, as the scatter diagram in Figure 2.1 shows.
library(PoEdata)
data("cps_small")
plot(cps_small$educ, cps_small$wage,

xlab="education", ylab="wage")

2.2. EXAMPLE: FOOD EXPENDITURE VERSUS INCOME 17

2.2 Example: Food Expenditure versus Income

The data for this example is stored in the R package PoEdata (To check if the
package PoEdata is installed, look in the Packages list.)
library(PoEdata)
data(food)
head(food)

food_exp income
1 115.22 3.69
2 135.98 4.39
3 119.34 4.75
4 114.96 6.03
5 187.05 12.47
6 243.92 12.98

It is always a good idea to visually inspect the data in a scatter diagram, which
can be created using the function plot(). Figure 2.2 is a scatter diagram of food
expenditure on income, suggesting that there is a positive relationship between
income and food expenditure.
data("food", package="PoEdata")
plot(food$income, food$food_exp,

ylim=c(0, max(food$food_exp)),
xlim=c(0, max(food$income)),
xlab="weekly income in $100",
ylab="weekly food expenditure in $",
type = "p")

2.3 Estimating a Linear Regression

The R function for estimating a linear regression model is lm(y~x, data) which,
used just by itself does not show any output; It is useful to give the model a name,
such as mod1, then show the results using summary(mod1). If you are interested in
only some of the results of the regression, such as the estimated coefficients, you can
retrieve them using specific functions, such as the function coef(). For the food
expenditure data, the regression model will be

food_exp = β1 + β2income + e (2.3)

where the subscript i has been omitted for simplicity.

18 CHAPTER 2. THE SIMPLE LINEAR REGRESSION MODEL

0 5 10 15 20 25 30

0
10

0
20

0
30

0
40

0
50

0
60

0

weekly income in $100

w
ee

kl
y

fo
od

 e
xp

en
di

tu
re

 in
 $

Figure 2.2: A scatter diagram for the food expenditure model

library(PoEdata)
mod1 <- lm(food_exp ~ income, data = food)
b1 <- coef(mod1)[[1]]
b2 <- coef(mod1)[[2]]
smod1 <- summary(mod1)
smod1

##
Call:
lm(formula = food_exp ~ income, data = food)
##
Residuals:
Min 1Q Median 3Q Max
-223.03 -50.82 -6.32 67.88 212.04
##
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 83.42 43.41 1.92 0.062 .
income 10.21 2.09 4.88 0.000019 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##

2.3. ESTIMATING A LINEAR REGRESSION 19

5 10 15 20 25 30

10
0

20
0

30
0

40
0

50
0

60
0

weekly income in $100

w
ee

kl
y

fo
od

 e
xp

en
di

tu
re

 in
 $

Figure 2.3: Scatter diagram and regression line for the food expenditure model

Residual standard error: 89.5 on 38 degrees of freedom
Multiple R-squared: 0.385, Adjusted R-squared: 0.369
F-statistic: 23.8 on 1 and 38 DF, p-value: 0.0000195

The function coef() returns a list containing the estimated coefficients, where a
specific coefficient can be accessed by its position in the list. For example, the
estimated value of β1 is b1 <- coef(mod1)[[1]], which is equal to 83.416002, and
the estimated value of β2 is b2 <- coef(mod1)[[2]], which is equal to 10.209643.

The intercept parameter, β1, is usually of little importance in econometric models;
we are mostly interested in the slope parameter, β2. The estimated value of β2
suggests that the food expenditure for an average family increases by 10.209643 when
the family income increases by 1 unit, which in this case is $100. The R function
abline() adds the regfression line to the prevoiusly plotted scatter diagram, as
Figure 2.3 shows.
plot(food$income, food$food_exp,

xlab="weekly income in $100",
ylab="weekly food expenditure in $",
type = "p")

abline(b1,b2)

How can one retrieve various regression results? These results exist in two R objects
produced by the lm() function: the regression object, such as mod1 in the above

20 CHAPTER 2. THE SIMPLE LINEAR REGRESSION MODEL

code sequence, and the regression summary, which I denoted by smod1. The next
code shows how to list the names of all results in each object.
names(mod1)

[1] "coefficients" "residuals" "effects" "rank"
[5] "fitted.values" "assign" "qr" "df.residual"
[9] "xlevels" "call" "terms" "model"
names(smod1)

[1] "call" "terms" "residuals" "coefficients"
[5] "aliased" "sigma" "df" "r.squared"
[9] "adj.r.squared" "fstatistic" "cov.unscaled"

To retrieve a particular result you just refer to it with the name of the object,
followed by the $ sign and the name of the result you wish to retrieve. For instance,
if we want the vector of coefficients from mod1, we refer to it as mod1$coefficients
and smod1$coefficients:
mod1$coefficients

(Intercept) income
83.4160 10.2096
smod1$coefficients

Estimate Std. Error t value Pr(>|t|)
(Intercept) 83.4160 43.41016 1.92158 0.0621824155
income 10.2096 2.09326 4.87738 0.0000194586

As we have seen before, however, some of these results can be retrieved using specific
functions, such as coef(mod1), resid(mod1), fitted(mod1), and vcov(mod1).

2.4 Prediction with the Linear Regression Model

The estimated regression parameters, b1 and b2 allow us to predict the expected
food expenditure for any given income. All we need to do is to plug the estimated
parameter values and the given income into an equation like Equation (2.2). For
example, the expected value of food_exp for an income of $2000 is calculated in
Equation (2.4). (Remember to divide the income by 100, since the data for the
variable income is in hundreds of dollars.)

̂food_exp = 83.416002 + 10.209643 ∗ 20 = $287.608861 (2.4)

2.5. REPEATED SAMPLES TO ASSESS REGRESSION COEFFICIENTS 21

R, however, does this calculations for us with its function called predict(). Let
us extend slightly the example to more than one income for which we predict food
expenditure, say income = $2000, $2500, and $2700. The function predict() in
R requires that the new values of the independent variables be organized under a
particular form, called a data frame. Even when we only want to predict for one
income, we need the same data-frame structure. In R, a set of numbers is held
together using the structure c(). The following sequence shows this example.
library(PoEdata) (load the data package if you have not done so yet)
mod1 <- lm(food_exp~income, data=food)
newx <- data.frame(income = c(20, 25, 27))
yhat <- predict(mod1, newx)
names(yhat) <- c("income=$2000", "$2500", "$2700")
yhat # prints the result

income=$2000 $2500 $2700
287.609 338.657 359.076

2.5 Repeated Samples to Assess Regression Coefficients

The regression coefficients b1 and b2 are random variables, because they depend on
sample. Let us construct a number of random subsamples from the food data and
re-calculate b1 and b2. A random subsample can be constructed using the function
sample(), as the following example illustrates only for b2.
N <- nrow(food) # returns the number of observations in the dataset
C <- 50 # desired number of subsamples
S <- 38 # desired sample size

sumb2 <- 0
for (i in 1:C){ # a loop over the number of subsamples

set.seed(3*i) # a different seed for each subsample
subsample <- food[sample(1:N, size=S, replace=TRUE),]
mod2 <- lm(food_exp~income, data=subsample)
#sum b2 for all subsamples:
sumb2 <- sumb2 + coef(mod2)[[2]]

}
print(sumb2/C, digits = 3)

[1] 9.88

The result, b2 = 9.88, is the average of 50 estimates of b2.

22 CHAPTER 2. THE SIMPLE LINEAR REGRESSION MODEL

2.6 Estimated Variances and Covariance of Regression
Coefficients

Many applications require estimates of the variances and covariances of the regres-
sion coefficients. R stores them in the a matrix vcov():
(varb1 <- vcov(mod1)[1, 1])

[1] 1884.44
(varb2 <- vcov(mod1)[2, 2])

[1] 4.38175
(covb1b2 <- vcov(mod1)[1,2])

[1] -85.9032

2.7 Non-Linear Relationships

Sometimes the scatter plot diagram or some theoretical consideraions suggest a non-
linear relationship. The most popular non-linear relationships involve logarithms of
the dependent or independent variables and polinomial functions.

The quadratic model requires the square of the independent variable.

yi = β1 + β2x2
i + ei (2.5)

In R, independent variables involving mathematical operators can be included in a
regression equation with the function I(). The following example uses the dataset
br from the package PoEdata, which includes the sale prices and the attributes of
1080 houses in Baton Rouge, LA. price is the sale price in dollars, and sqft is the
surface area in square feet.
library(PoEdata)
data(br)
mod3 <- lm(price~I(sqft^2), data=br)
b1 <- coef(mod3)[[1]]
b2 <- coef(mod3)[[2]]
sqftx=c(2000, 4000, 6000) #given values for sqft
pricex=b1+b2*sqftx^2 #prices corresponding to given sqft
DpriceDsqft <- 2*b2*sqftx # marginal effect of sqft on price

2.7. NON-LINEAR RELATIONSHIPS 23

2000 4000 6000 8000

0
50

00
00

10
00

00
0

15
00

00
0

Total square feet

S
al

e
pr

ic
e,

 $

Figure 2.4: Fitting a quadratic model to the ‘br‘ dataset

elasticity=DpriceDsqft*sqftx/pricex
b1; b2; DpriceDsqft; elasticity #prints results

[1] 55776.6

[1] 0.0154213

[1] 61.6852 123.3704 185.0556

[1] 1.05030 1.63125 1.81741

We woud like now to draw a scatter diagram and see how the quadratic function
fits the data. The next chunk of code provides two alternatives for constructing
such a graph. The first simply draws the quadratic function on the scatter diagram,
using the R function curve(); the second uses the function lines, which requires
ordering the dataset in increasing values of sqft before the regression model is
evaluated, such that the resulting fitted values will also come out in the same order.
mod31 <- lm(price~I(sqft^2), data=br)
plot(br$sqft, br$price, xlab="Total square feet",

ylab="Sale price, $", col="grey")
#add the quadratic curve to the scatter plot:
curve(b1+b2*x^2, col="red", add=TRUE)

An alternative way to draw the fitted curve:

24 CHAPTER 2. THE SIMPLE LINEAR REGRESSION MODEL

Histogram of br$price

br$price

F
re

qu
en

cy

0 500000 1000000 1500000

0
10

0
30

0
50

0

Histogram of log(br$price)

log(br$price)

F
re

qu
en

cy

10 11 12 13 14

0
10

0
20

0
30

0
40

0
50

0

Figure 2.5: A comparison between the histograms of ‘price‘ and ‘log(price)‘

ordat <- br[order(br$sqft),] #sorts the dataset after `sqft`
mod31 <- lm(price~I(sqft^2), data=ordat)
plot(br$sqft, br$price,

main="Dataset ordered after 'sqft' ",
xlab="Total square feet",
ylab="Sale price, $", col="grey")

lines(fitted(mod31)~ordat$sqft, col="red")

The log-linear model regresses the log of the dependent variable on a linear expres-
sion of the independent variable (unless otherwise specified, the log notation stands
for natural logarithm, following a usual convention in economics):

log(yi) = β1 + β2xi + ei (2.6)

One of the reasons to use the log of an independent variable is to make its distri-
bution closer to the normal distribution. Let us draw the histograms of price and
log(price) to compare them (see Figure 2.5). It can be noticed that that the log
is closer to the normal distribution.
hist(br$price, col='grey')
hist(log(br$price), col='grey')

We are interested, as before, in the estimates of the coefficients and their interpreta-
tion, in the fitted values of price, and in the marginal effect of an increase in sqft
on price.
library(PoEdata)
data("br")
mod4 <- lm(log(price)~sqft, data=br)

The coefficients are b1 = 10.84 and b2 = 0.00041, showing that an increase in the

2.7. NON-LINEAR RELATIONSHIPS 25

surface area (sqft) of an apartment by one unit (1 sqft) increases the price of the
apartment by 0.041 percent. Thus, for a house price of $100,000, an increase of 100
sqft will increase the price by approximately 100 ∗ 0.041 percent, which is equal to
$4112.7. In general, the marginal effect of an increase in x on y in Equation (2.6) is

dy

dx
= β2y, (2.7)

and the elasticity is

ϵ = dy

dx

x

y
= β2x. (2.8)

The next lines of code show how to draw the fitted values curve of the loglinear
model and how to calculate the marginal effect and the elasticity for the median
price in the dataset. The fitted values are here calculated using the formula

ŷ = eb1+b2x(#loglinyhat) (2.9)

ordat <- br[order(br$sqft),] #order the dataset
mod4 <- lm(log(price)~sqft, data=ordat)
plot(br$sqft, br$price, col="grey")
lines(exp(fitted(mod4))~ordat$sqft,

col="blue", main="Log-linear Model")

pricex<- median(br$price)
sqftx <- (log(pricex)-coef(mod4)[[1]])/coef(mod4)[[2]]
(DyDx <- pricex*coef(mod4)[[2]])

[1] 53.465
(elasticity <- sqftx*coef(mod4)[[2]])

[1] 0.936693

R allows us to calculate the same quantities for several (sqft, price) pairs at a time,
as shown in the following sequence:
b1 <- coef(mod4)[[1]]
b2 <- coef(mod4)[[2]]
#pick a few values for sqft:
sqftx <- c(2000, 3000, 4000)
#estimate prices for those and add one more:
pricex <- c(100000, exp(b1+b2*sqftx))

26 CHAPTER 2. THE SIMPLE LINEAR REGRESSION MODEL

2000 4000 6000 8000

0
50

00
00

10
00

00
0

15
00

00
0

br$sqft

br
$p

ric
e

Figure 2.6: The fitted value curve in the log-linear model

#re-calculate sqft for all prices:
sqftx <- (log(pricex)-b1)/b2
#calculate and print elasticities:
(elasticities <- b2*sqftx)

[1] 0.674329 0.822538 1.233807 1.645075

2.8 Using Indicator Variables in a Regression

An indicator, or binary variable marks the presence or the absence of some attribute
of the observational unit, such as gender or race if the observational unit is an
individual, or location if the observational unit is a house. In the dataset utown,
the variable utown is 1 if a house is close to the university and 0 otherwise. Here is
a simple linear regression model that involves the variable utown:

pricei = β1 + β2utowni (2.10)

The coefficient of such a variable in a simple linear model is equal to the difference
between the average prices of the two categories; the intercept coefficient of the
model in Equation (2.10) is equal to the average price of the houses that are not
close to university. Let us first calculate the average prices for each category, wich
are denoted in the following sequence of code price0bar and price1bar:

2.9. MONTE CARLO SIMULATION 27

data(utown)
price0bar <- mean(utown$price[which(utown$utown==0)])
price1bar <- mean(utown$price[which(utown$utown==1)])

The results are: price = 277.24 close to university, and price = 215.73 for those not
close. I now show that the same results yield the coefficients of the regression model
in Equation (2.10):
mod5 <- lm(price~utown, data=utown)
b1 <- coef(mod5)[[1]]
b2 <- coef(mod5)[[2]]

The results are: price = b1 = 215.73 for non-university houses, and price = b1+b2 =
277.24 for university houses.

2.9 Monte Carlo Simulation

A Monte Carlo simulation generates random values for the dependent variable when
the regression coefficients and the distribution of the random term are given. The
following example seeks to determine the distribution of the independent variable
in the food expenditure model in Equation (2.3).
N <- 40
x1 <- 10
x2 <- 20
b1 <- 100
b2 <- 10
mu <- 0
sig2e <- 2500
sde <- sqrt(sig2e)
yhat1 <- b1+b2*x1
yhat2 <- b1+b2*x2
curve(dnorm(x, mean=yhat1, sd=sde), 0, 500, col="blue")
curve(dnorm(x, yhat2, sde), 0,500, add=TRUE, col="red")
abline(v=yhat1, col="blue", lty=2)
abline(v=yhat2, col="red", lty=2)
legend("topright", legend=c("f(y|x=10)",

"f(y|x=20)"), lty=1,
col=c("blue", "red"))

Next, we calculate the variance of b2 and plot the corresponding density function.

28 CHAPTER 2. THE SIMPLE LINEAR REGRESSION MODEL

0 100 200 300 400 500

0.
00

0
0.

00
2

0.
00

4
0.

00
6

0.
00

8

x

dn
or

m
(x

, m
ea

n
=

 y
ha

t1
, s

d
=

 s
de

)
f(y|x=10)
f(y|x=20)

Figure 2.7: The theoretical (true) probability distributions of food expenditure,
given two levels of income

var(b2) = σ2∑
(xi − x̄)

(2.11)

x <- c(rep(x1, N/2), rep(x2,N/2))
xbar <- mean(x)
sumx2 <- sum((x-xbar)^2)
varb2 <- sig2e/sumx2
sdb2 <- sqrt(varb2)
leftlim <- b2-3*sdb2
rightlim <- b2+3*sdb2
curve(dnorm(x, mean=b2, sd=sdb2), leftlim, rightlim)
abline(v=b2, lty=2)

Now, with the same values of b1, b2, and error standard deviation, we can generate a
set of values for y, regress y on x, and calculate an estimated values for the coefficient
b2 and its standard error.
set.seed(12345)
y <- b1+b2*x+rnorm(N, mean=0, sd=sde)
mod6 <- lm(y~x)
b1hat <- coef(mod6)[[1]]
b2hat <- coef(mod6)[[2]]
mod6summary <- summary(mod6) #the summary contains the standard errors

2.9. MONTE CARLO SIMULATION 29

6 8 10 12 14

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

x

dn
or

m
(x

, m
ea

n
=

 b
2,

 s
d

=
 s

db
2)

Figure 2.8: The theoretical (true) probability density function of b2

seb2hat <- coef(mod6summary)[2,2]

The results are b2 = 11.64 and se(b2) = 1.64. The strength of a Monte Carlo
simulation is, however, the possibility of repeating the estimation of the regression
parameters for a large number of automatically generated samples. Thus, we can
obtain a large number of values for a parameter, say b2, and then determine its
sampling characteristics. For instance, if the mean of these values is close to the
initially asumed value b2 = 10, we conclude that our estimator (the method of
estimating the parameter) is unbiased.

We are going to use this time the values of x in the food dataset, and generate y
using the linear model with b1 = 100 and b2 = 10.
data("food")
N <- 40
sde <- 50
x <- food$income
nrsim <- 1000
b1 <- 100
b2 <- 10
vb2 <- numeric(nrsim) #stores the estimates of b2
for (i in 1:nrsim){

set.seed(12345+10*i)
y <- b1+b2*x+rnorm(N, mean=0, sd=sde)

30 CHAPTER 2. THE SIMPLE LINEAR REGRESSION MODEL

6 8 10 12 14

0.
00

0.
10

0.
20

0.
30

density.default(x = vb2)

N = 1000 Bandwidth = 0.2606

D
en

si
ty

true
simulated

Histogram of vb2

vb2

D
en

si
ty

6 8 10 12 14

0.
0

0.
1

0.
2

0.
3

0.
4

Figure 2.9: The simulated and theoretical distributions of b2

mod7 <- lm(y~x)
vb2[i] <- coef(mod7)[[2]]

}
mb2 <- mean(vb2)
seb2 <- sd(vb2)

The mean and standard deviation of the estimated 40 values of b2 are, respectively,
9.974985 and 1.152632. Figure 2.9 shows the simulated distribution of b2 and the
theoretical one.
plot(density(vb2))
curve(dnorm(x, mb2, seb2), col="red", add=TRUE)
legend("topright", legend=c("true", "simulated"),

lty=1, col=c("red", "black"))
hist(vb2, prob=TRUE, ylim=c(0,.4))
curve(dnorm(x, mean=mb2, sd=seb2), col="red", add=TRUE)

rm(list=ls()) # Caution: this clears the Environment

Chapter 3

Interval Estimation and
Hypothesis Testing

library(xtable)
library(PoEdata)
library(knitr)

So far we estimated only a number for a regression parameter such as β2. This
estimate, however, gives no indication of its reliablity, since it is just a realization of
the random variable b2. An interval estimate, which is also known as a confidence
interval is an interval centerd on an estimated value, which includes the true param-
eter with a given probability, say 95%. A coefficient of the linear regression model
such as b2 is normally distributed with its mean equal to the population parameter
β2 and a variance that depends on the population variance σ2 and the sample size:

b2 ∼ N

(
β2,

σ2∑
(xi − x̄)2

)
, (3.1)

3.1 The Estimated Distribution of Regression Coeffi-
cients

Equation (3.1) gives the theoretical distribution of a linear regression coefficient, a
distribution that is not very useful since it requires the unknown population vari-
ance σ2. If we replace σ2 with an estimated variance σ̂2 given in Equation (3.2),
the standardized distribution of b2 becomes a t distribution with N − 2 degrees of
freedom.

31

32 CHAPTER 3. INTERVAL ESTIMATION AND HYPOTHESIS TESTING

σ̂2 =
∑

ê2
i

N − 2
(3.2)

Equation (3.3) shows the the t-ratio:

t = b2 − β2
se(b2)

(3.3)

3.2 Confidence Interval in General

An interval estimate of b2 based on the t-ratio is calculated in Equation (3.4), which
we can consider as “an interval that includes the true parameter β2 with a probability
of 100(1 − α)%.” In this context, α is called significance level, and the interval is
called, for example, a 95% confidence interval estimate for β2. The critical value of
the t-ratio, tc, depends on the chosen significance level and on the number of degrees
of freedom. In R, the function that returns critical values for the t distribution is
qt(1 − α

2 , df), where df is the number of degrees of freedom.

b2 ± tc × se(b2) (3.4)

A side note about using distributions in R. There are four types of functions
related to distributions, each type’s name beginning with one of the following four
letters: p for the cummulative distribution function, d for density, r for a draw of a
random number from the respective distribution, and q for quantile. This first letter
is followed by a few letters suggesting what distribution we refer to, such as norm, t,
f, and chisq. Now, if we put toghether the first letter and the distribution name,
we get functions such as the following, where x and q stand for quantiles, p stands
for probability, df is degree of freedom (of which F has two), n is the desired number
of draws, and lower.tail can be TRUE (default) if probabilities are P [X ≤ x] or
FALSE if probabilities are P [X > x]:

• For the uniform distribution:

– dunif(x, min = 0, max = 1)
– punif(q, min = 0, max = 1, lower.tail = TRUE)
– qunif(p, min = 0, max = 1, lower.tail = TRUE)
– runif(n, min = 0, max = 1)

• For the normal distribution:

– dnorm(x, mean = 0, sd = 1)
– pnorm(q, mean = 0, sd = 1, lower.tail = TRUE)

3.3. EXAMPLE: CONFIDENCE INTERVALS IN THE FOOD MODEL 33

– qnorm(p, mean = 0, sd = 1, lower.tail = TRUE)
– rnorm(n, mean = 0, sd = 1)

• For the t distribution:

– dt(x, df)
– pt(q, df, lower.tail = TRUE)
– qt(p, df, lower.tail = TRUE)
– rt(n, df)

• For the F distribution:

– df(x, df1, df2)
– pf(q, df1, df2, lower.tail = TRUE)
– qf(p, df1, df2, lower.tail = TRUE)
– rf(n, df1, df2)

• For the χ2 distribution:

– dchisq(x, df)
– pchisq(q, df, lower.tail = TRUE)
– qchisq(p, df, lower.tail = TRUE)
– rchisq(n, df)

3.3 Example: Confidence Intervals in the food Model

Let us calculate a 95% confidence interval for the coefficient on income in the food
expenditure model. Besides coalculating confidence intervals, the following lines of
code demonstratre how to retrieve information such as standard errors of coefficients
from the summary() output. The function summary summarizes the results of a linear
regression, some of which are not available directly from running the model itself.
library(PoEdata)
data("food")
alpha <- 0.05 # chosen significance level
mod1 <- lm(food_exp~income, data=food)
b2 <- coef(mod1)[[2]]
df <- df.residual(mod1) # degrees of freedom
smod1 <- summary(mod1)
seb2 <- coef(smod1)[2,2] # se(b2)
tc <- qt(1-alpha/2, df)
lowb <- b2-tc*seb2 # lower bound
upb <- b2+tc*seb2 # upper bound

34 CHAPTER 3. INTERVAL ESTIMATION AND HYPOTHESIS TESTING

The resulting confidence interval for the coefficient b2 in the food simple regression
model is (5.97, 14.45).

R has a special function, confint(model), that can calculate confidence intervals
taking as its argument the name of a regression model. The result of applying this
function is a K × 2 matrix with a confidence interval (two values: lower and upper
bound) on each row and a number of lines equal to the number of parametrs in the
model (equal to 2 in the simple linear regression model). Compare the values from
the next code to the ones from the previous to check that they are equal.
ci <- confint(mod1)
print(ci)

2.5 % 97.5 %
(Intercept) -4.46328 171.2953
income 5.97205 14.4472
lowb_b2 <- ci[2, 1] # lower bound
upb_b2 <- ci[2, 2] # upper bound.

3.4 Confidence Intervals in Repeated Samples

data("table2_2")
alpha <- 0.05
mod1 <- lm(y1~x, data=table2_2) # just to determine df
tc <- qt(1-alpha/2, df) # critical t

Initiate four vectors that will store the results:
lowb1 <- rep(0, 10) # 'repeat 0 ten times'
upb1 <- rep(0, 10) # (alternatively, 'numeric(10)')
lowb2 <- rep(0, 10)
upb2 <-rep(0, 10)

One loop for each set of income:
for(i in 2:11){ # The curly bracket begins the loop

dat <- data.frame(cbind(table2_2[,1], table2_2[,i]))
names(dat) <- c("x", "y")
mod1 <- lm(y~x, data=dat)
smod1 <- summary(mod1)
b1 <- coef(mod1)[[1]]
b2 <- coef(mod1)[[2]]
seb1 <- coef(smod1)[1,2]

3.5. HYPOTHESIS TESTS 35

Table 3.1: Confidence intervals for b1 and b2

lowb1 upb1 lowb2 upb2
49.542182 213.846 2.51843 10.4413
-9.831097 124.323 7.64838 14.1174
28.556681 179.264 4.50553 11.7727
-20.959444 113.968 8.64817 15.1545
0.931168 167.534 5.27120 13.3049
-66.044847 119.302 9.08188 18.0194
-0.629753 129.046 7.80618 14.0592
19.194721 140.129 6.84889 12.6804
38.315701 156.287 5.20631 10.8950
20.691744 171.232 4.13968 11.3988

seb2 <- coef(smod1)[2,2]
lowb1[i-1] <- b1-tc*seb1
upb1[i-1] <- b1+tc*seb1
lowb2[i-1] <- b2-tc*seb2
upb2[i-1] <- b2+tc*seb2

} # This curly bracket ends the loop

table <- data.frame(lowb1, upb1, lowb2, upb2)
kable(table,

caption="Confidence intervals for b_{1} and b_{2}",
align="c")

Table 3.1 shows the lower and upper bounds of the confidence intervals of β1 and
β2.

3.5 Hypothesis Tests

Hypothesis testing seeks to establish whether the data sample at hand provides
sufficient evidence to support a certain conjecture (hypothesis) about a population
parameter such as the intercept in a regresion model, the slope, or some combination
of them. The procedure requires three elements: the hypotheses (the null and
the alternative), a test statistic, which in the case of the simple linear regression
parameters is the t-ratio, and a significance level, α.

Suppose we believe that there is a significant relationship between a household’s
income and its expenditure on food, a conjecture which has led us to formulate the

36 CHAPTER 3. INTERVAL ESTIMATION AND HYPOTHESIS TESTING

Table 3.2: Regression output showing the coefficients

Estimate Std..Error t.value Pr...t..
(Intercept) 83.4160 43.41016 1.92158 0.062182
income 10.2096 2.09326 4.87738 0.000019

food expenditure model in the first place. Thus, we believe that β2, the (population)
parameter, is different from zero. Equation (3.5) shows the null and alternative
hypotheses for such a test.

H0 : β2 = 0, HA : β2 ̸= 0 (3.5)

In general, if a null hypothesis H0 : βk = c is true, the t statistic (the t-ratio) is
given by Equation (3.6) and has a t distribution with N − 2 degrees of freedom.

t = bk − c

se(bk)
∼ t(N−2) (3.6)

Let us test the hypothesis in Equation (3.5), which makes c = 0 in Equation (3.6).
Let α = 0.05. Table 3.2 shows the regression output.
alpha <- 0.05
library(PoEdata); library(xtable); library(knitr)
data("food")
mod1 <- lm(food_exp~income, data=food)
smod1 <- summary(mod1)
table <- data.frame(xtable(mod1))
kable(table,

caption="Regression output showing the coefficients")

b2 <- coef(mod1)[["income"]] #coefficient on income
or:
b2 <- coef(mod1)[[2]] # the coefficient on income
seb2 <- sqrt(vcov(mod1)[2,2]) #standard error of b2
df <- df.residual(mod1) # degrees of freedom
t <- b2/seb2
tcr <- qt(1-alpha/2, df)

The results t = 4.88 and tcr = 2.02 show that t > tcr, and therefore t falls in the
rejection region (see Figure 3.1).

3.5. HYPOTHESIS TESTS 37

−4 −2 0 2 4

0.
0

0.
1

0.
2

0.
3

0.
4

t

−tcr
tcr
t

Figure 3.1: A two-tail hypothesis testing for b2 in the food example

Plot the density function and the values of t:
curve(dt(x, df), -2.5*seb2, 2.5*seb2, ylab=" ", xlab="t")
abline(v=c(-tcr, tcr, t), col=c("red", "red", "blue"),

lty=c(2,2,3))
legend("topleft", legend=c("-tcr", "tcr", "t"), col=

c("red", "red", "blue"), lty=c(2, 2, 3))

Suppose we are interested to determine if β2 is greater than 5.5. This conjecture
will go into the alternative hypothesis: H0 ≤ 5.5, HA > 5.5. The procedure is the
same as for the two-tail test, but now the whole rejection region is to the right of
the critical value tcr.
c <- 5.5
alpha <- 0.05
t <- (b2-c)/seb2
tcr <- qt(1-alpha, df) # note: alpha is not divided by 2
curve(dt(x, df), -2.5*seb2, 2.5*seb2, ylab=" ", xlab="t")
abline(v=c(tcr, t), col=c("red", "blue"), lty=c(2, 3))
legend("topleft", legend=c("tcr", "t"),

col=c("red", "blue"), lty=c(2, 3))

Figure 3.2 shows tcr = 1.685954, t = 2.249904. Since t falls again in the rejection
region, we can reject the null hypothesis H0 : β2 ≤ 0.

38 CHAPTER 3. INTERVAL ESTIMATION AND HYPOTHESIS TESTING

−4 −2 0 2 4

0.
0

0.
1

0.
2

0.
3

0.
4

t

tcr
t

Figure 3.2: Right-tail test: the rejection region is to the right of tcr

A left-tail test is not different from the right-tail one, but of course the rejection
region is to the left of tcr. For example, if we are interested to determine if β2 is less
than 15, we place this conjecture in the alternative hypothesis: H0 ≥ 15, HA <
15. The novelty here is how we use the qt() function to calculate tcr: instead of
qt(1-alpha, ...), we need to use qt(alpha, ...). Figure 3.3 illustrates this
example, where the rejection region is, remember, to the left of tcr.
c <- 15
alpha <- 0.05
t <- (b2-c)/seb2
tcr <- qt(alpha, df) # note: alpha is not divided by 2
curve(dt(x, df), -2.5*seb2, 2.5*seb2, ylab=" ", xlab="t")
abline(v=c(tcr, t), col=c("red", "blue"), lty=c(2, 3))
legend("topleft", legend=c("tcr", "t"),

col=c("red", "blue"), lty=c(2, 3))

R does automatically a test of significance, which is indeed testing the hypothesis
H0 : β2 = 0, HA : β2 ̸= 0. The regression output shows the values of the t-ratio
for all the regression coefficients.
library(PoEdata)
data("food")
mod1 <- lm(food_exp ~ income, data = food)
table <- data.frame(round(xtable(summary(mod1)), 3))

3.6. THE P-VALUE 39

−4 −2 0 2 4

0.
0

0.
1

0.
2

0.
3

0.
4

t

tcr
t

Figure 3.3: Left-tail test: the rejection region is to the left of tcr =

Table 3.3: Regression output for the ’food’ model

Estimate Std..Error t.value Pr...t..
(Intercept) 83.416 43.410 1.922 0.062
income 10.210 2.093 4.877 0.000

kable(table, caption = "Regression output for the 'food' model")

Table 3.3 shows the regression output where the t-statistics of the coefficients can
be observed.

3.6 The p-Value

In the context of a hypothesis test, the p-value is the area outside the calculated
t-statistic; it is the probability that the t-ratio takes a value that is more extreme
than the calculated one, under the assumption that the null hypothesis is true. We
reject the null hypothesis if the p-value is less than a chosen significance level. For
a right-tail test, the p-value is the area to the right of the calculated t; for a left-tail
test it is the area to the left of the calculated t; for a two-tail test the p-value is split
in two equal amounts: p/2 to the left and p/2 to the right. p-values are calculated in
R by the function pt(t, df), where t is the calculated t-ratio and df is the number
of degrees of freedom in the estimated model.

40 CHAPTER 3. INTERVAL ESTIMATION AND HYPOTHESIS TESTING

Table 3.4: Regression output showing p-values

Estimate Std..Error t.value Pr...t..
(Intercept) 83.4160 43.41016 1.92158 0.062182
income 10.2096 2.09326 4.87738 0.000019

Right-tail test, H0 : β2 ≤ c, HA : β2 > c.
Calculating the p-value for a right-tail test
c <- 5.5
t <- (b2-c)/seb2
p <- 1-pt(t, df) # pt() returns p-values;

The right-tail test shown in Figure 3.2 gives the p-value p = 0.01516.

Left-tail test, H0 : β2 ≥ c, HA : β2 < c.
Calculating the p-value for a left-tail test
c <- 15
t <- (b2-c)/seb2
p <- pt(t, df)

The left-tail test shown in Figure 3.3 gives the p-value p = 0.01388.

Two-tail test, H0 : β2 = c, HA : β2 ̸= c.
Calculating the p-value for a two-tail test
c <- 0
t <- (b2-c)/seb2
p <- 2*(1-pt(abs(t), df))

The two-tail test shown in Figure 3.4 gives the p-value p = 2 × 10−5, for a t-ratio
t = 4.88.
curve(dt(x, df), from=-2.5*seb2, to=2.5*seb2)
abline(v=c(-t, t), col=c("blue", "blue"), lty=c(2, 2))
legend("topright", legend=c("-t", "t"),

col=c("blue", "blue"), lty=c(2, 4))

R gives the p-values in the standard regression output, which we can retrieve using
the summary(model) function. Table 3.4 shows the output of the regression model,
where the p-values can be observed.
table <- data.frame(xtable(smod1))
knitr::kable(table, caption=

"Regression output showing p-values")

3.7. TESTING LINEAR COMBINATIONS OF PARAMETERS 41

−4 −2 0 2 4

0.
0

0.
1

0.
2

0.
3

0.
4

x

dt
(x

, d
f)

−t
t

Figure 3.4: The p-value in two-tail hypothesis testing

3.7 Testing Linear Combinations of Parameters

Sometimes we wish to estimate the expected value of the dependent variable, y, for
a given value of x. For example, according to our food model, what is the average
expenditure of a household having income of $2000? We need to estimate the linear
combination of the regression coefficients β1 and β2 given in Equation (3.7) (let’s
denote the linear combination by L).

L = E(food_exp|income = 20) = β1 + 20β2 (3.7)

Finding confidence intervals and testing hypotheses about the linear combination in
Equation (3.7) requires calculating a t-statistic similar to the one for the regression
coefficients we calculated before. However, estimating the standard error of the
linear combination is not as straightforward. In general, if X and Y are two random
variables and a and b two constants, the variance of the linear combination aX +bY
is

var(aX + bY) = a2var(X) + b2var(Y) + 2abcov(X, Y). (3.8)

Now, let us apply the formula in Equation (3.8) to the linear combination of β1 and
β2 given by Equation (3.7), we obtain Equation (3.9).

42 CHAPTER 3. INTERVAL ESTIMATION AND HYPOTHESIS TESTING

var(b1 + 20b2) = var(b1) + 202var(b2) + 2 × 20cov(b1b2) (3.9)

The following sequence of code determines an interval estimate for the expected
value of food expenditure in a household earning $2000 a week.
library(PoEdata)
data("food")
alpha <- 0.05
x <- 20 # income is in 100s, remember?
m1 <- lm(food_exp~income, data=food)
tcr <- qt(1-alpha/2, df) # rejection region right of tcr.
df <- df.residual(m1)
b1 <- m1$coef[1]
b2 <- m1$coef[2]
varb1 <- vcov(m1)[1, 1]
varb2 <- vcov(m1)[2, 2]
covb1b2 <- vcov(m1)[1, 2]
L <- b1+b2*x # estimated L
varL = varb1 + x^2 * varb2 + 2*x*covb1b2 # var(L)
seL <- sqrt(varL) # standard error of L
lowbL <- L-tcr*seL
upbL <- L+tcr*seL

The result is the confidence interval (258.91, 316.31). Next, we test hypotheses
about the linear combination L defined in Equation (3.7), looking at the three types
of hypotheses: two-tail, left-tail, and right-tail. Equations (3.10) − (3.12) show the
test setups for a hypothesized value of food expenditure c.

H0 : L = c, HA : L ̸= c (3.10)

H0 : L ≥ c, HA : L < c (3.11)

H0 : L ≤ c, HA : L > c (3.12)

One should use the function pt(t, df) carefully, because it gives wrong results
when testing hypotheses using the p-value metod and the calculated t is negative.
Therefore, the absolute value of t should be used. Figure 3.5 shows the p-values
calculated with the formula 1-pt(t, df). When t is positive and the test is two-
tail, doubling the p-value 1-pt(t, df) is correct; but when t is negative, the correct
p-value is 2*p(t, df).

3.7. TESTING LINEAR COMBINATIONS OF PARAMETERS 43

−4 −2 0 2 4

0.
0

0.
1

0.
2

0.
3

0.
4

X

D
en

si
ty

t

−4 −2 0 2 4

0.
0

0.
1

0.
2

0.
3

0.
4

X

D
en

si
ty

t

Figure 3.5: p−Values for positive and negative t as calculated using the formula
1 − pt(t, df)

.shadenorm(above=1.6, justabove=TRUE)
segments(1.6,0,1.6,0.2,col="blue", lty=3)
legend("topleft", legend="t", col="blue", lty=3)

.shadenorm(above=-1.6, justabove=TRUE)
segments(-1.6,0,-1.6,0.2,col="blue", lty=3)
legend("topleft", legend="t", col="blue", lty=3)

The next sequence uses the values already calculated before, a hypothesized level of
food expenditure c=$250, and an income of $2000; it tests the two-tail hypothesis in
Equation (3.10) first using the “critical t” method, then using the p-value method.
c <- 250
alpha <- 0.05
t <- (L-c)/seL # t < tcr --> Reject Ho.
tcr <- qt(1-alpha/2, df)

Or, we can calculate the p-value, as follows:
p_value <- 2*(1-pt(abs(t), df)) #p<alpha -> Reject Ho

The results are: t = 2.65, tcr = 2.02, and p = 0.0116. Since t > tcr, we reject the
null hypothesis. The same result is given by the p-value method, where the p-value
is twice the probability area determined by the calculated t.

44 CHAPTER 3. INTERVAL ESTIMATION AND HYPOTHESIS TESTING

Chapter 4

Prediction, R-squared, and
Modeling

rm(list=ls()) # Caution: this clears the Environment

A prediction is an estimate of the value of y for a given value of x, based on a
regression model of the form shown in Equation (4.1). Goodness-of-fit is a measure
of how well an estimated regression line approximates the data in a given sample.
One such measure is the correlation coefficient between the predicted values of y for
all x-s in the data file and the actual y-s. Goodness-of-fit, along with other diagnostic
tests help determining the most suitable functional form of our regression equation,
i.e., the most suitable mathematical relationship between y and x.

yi = β1 + β2xi + ei (4.1)

4.1 Forecasting (Predicting a Particular Value)

Assuming that the expected values of the error term in Equation (4.1) is zero, Equa-
tion (4.2) gives ŷi, the predicted value of the expectation of yi given xi, where b1
and b2 are the (least squares) estimates of the regression parameters β1 and β2.

ŷi = b1 + b2xi (4.2)

The predicted value ŷi is a random variable, since it depends on the sample; therefore,
we can calculate a confidence interval and test hypothesis about it, provided we can
determine its distribution and variance. The prediction has a normal distribution,

45

46 CHAPTER 4. PREDICTION, R-SQUARED, AND MODELING

being a linear combination of two normally distributed random variables b1 and b2,
and its variance is given by Equation (4.3). Please note that the variance in Equation
(4.3) is not the same as the one in Equation (3.9); the former is the variance of the
estimated expectation of y, while the latter is the variance of a particular occurrence
of y. Let us call the latter the variance of the forecast error. Not surprisingly, the
variance of the forecast error is greater than the variance of the predicted E(y|x).

As before, since we need to use an estimated variance, we use a t-distribution instead
of a normal one. Equation (4.3) applies to any given x, say x0, not only to those
x-s in the dataset.

v̂ar(fi) = σ̂ 2
[
1 + 1

N
+ (xi − x̄)2∑N

j=1 (xj − x̄)2

]
, (4.3)

which can be reduced to

v̂ar(fi) = σ̂ 2 + σ̂ 2

N
+ (xi − x̄)2 ̂var(b2) (4.4)

Let’s determine a standard error for the food equation for a household earning $2000
a week, i.e., at x = x0 = 20, using Equation (4.4); to do so, we need to retrieve
var(b2) and σ̂, the standard error of regression from the regression output.
library(PoEdata)
data("food")
alpha <- 0.05
x <- 20
xbar <- mean(food$income)
m1 <- lm(food_exp~income, data=food)
b1 <- coef(m1)[[1]]
b2 <- coef(m1)[[2]]
yhatx <- b1+b2*x
sm1 <- summary(m1)
df <- df.residual(m1)
tcr <- qt(1-alpha/2, df)
N <- nobs(m1) #number of observations, N
N <- NROW(food) #just another way of finding N
varb2 <- vcov(m1)[2, 2]
sighat2 <- sm1$sigma^2 # estimated variance
varf <- sighat2+sighat2/N+(x-xbar)^2*varb2 #forecast variance
sef <- sqrt(varf) #standard error of forecast
lb <- yhatx-tcr*sef
ub <- yhatx+tcr*sef

4.1. FORECASTING (PREDICTING A PARTICULAR VALUE) 47

The result is the confidence interval for the forecast (104.13, 471.09), which is, as
expected, larger than the confidence interval of the estimated expected value of y
based on Equation (3.9).

Let us calculate confidence intervals of the forecast for all the observations in the
sample and draw the upper and lower limits together with the regression line. Figure
4.1 shows the confidence interval band about the regression line.
sef <- sqrt(sighat2+sighat2/N+(food$income-xbar)^2*varb2)
yhatv <- fitted.values(m1)
lbv <- yhatv-tcr*sef
ubv <- yhatv+tcr*sef
xincome <- food$income
dplot <- data.frame(xincome, yhatv, lbv, ubv)
dplotord <- dplot[order(xincome),]
xmax <- max(dplotord$xincome)
xmin <- min(dplotord$xincome)
ymax <- max(dplotord$ubv)
ymin <- min(dplotord$lbv)
plot(dplotord$xincome, dplotord$yhatv,

xlim=c(xmin, xmax),
ylim=c(ymin, ymax),
xlab="income", ylab="food expenditure",
type="l")

lines(dplotord$ubv~dplotord$xincome, lty=2)
lines(dplotord$lbv~dplotord$xincome, lty=2)

A different way of finding point and interval estimates for the predicted E(y|x) and
forecasted y (please see the distinction I mentioned above) is to use the predict()
function in R. This function requires that the values of the independent variable
where the prediction (or forecast) is intended have a data frame structure. The next
example shows in parallel point and interval estimates of predicted and forecasted
food expenditures for income is $2000. As I have pointed out before, the point
estimate is the same for both prediction and forecast, but the interval estimates are
very different.
incomex=data.frame(income=20)
predict(m1, newdata=incomex, interval="confidence",level=0.95)

fit lwr upr
1 287.609 258.907 316.311
predict(m1, newdata=incomex, interval="prediction",level=0.95)

fit lwr upr

48 CHAPTER 4. PREDICTION, R-SQUARED, AND MODELING

5 10 15 20 25 30

−
10

0
10

0
30

0
50

0

income

fo
od

 e
xp

en
di

tu
re

Figure 4.1: Forecast confidence intervals for the food simple regression

1 287.609 104.132 471.085

Let us now use the predict() function to replicate Figure 4.1. The result is Figure
4.2, which shows, besides the interval estimation band, the points in the dataset. (I
will create new values for income just for the purpose of plotting.)
xmin <- min(food$income)
xmax <- max(food$income)
income <- seq(from=xmin, to=xmax)
ypredict <- predict(m1, newdata=data.frame(income),

interval="confidence")
yforecast <- predict(m1, newdata=data.frame(income),

interval="predict")
matplot(income, cbind(ypredict[,1], ypredict[,2], ypredict[,3],

yforecast[,2], yforecast[,3]),
type ="l", lty=c(1, 2, 2, 3, 3),
col=c("black", "red", "red", "blue", "blue"),
ylab="food expenditure", xlab="income")

points(food$income, food$food_exp)
legend("topleft",

legend=c("E[y|x]", "lwr_pred", "upr_pred",
"lwr_forcst","upr_forcst"),

lty=c(1, 2, 2, 3, 3),
col=c("black", "red", "red", "blue", "blue")

4.2. GOODNESS-OF-FIT 49

5 10 15 20 25 30

−
10

0
10

0
30

0
50

0

income

fo
od

 e
xp

en
di

tu
re

E[y|x]
lwr_pred
upr_pred
lwr_forcst
upr_forcst

Figure 4.2: Predicted and forecasted bands for the food dataset

)

Figure 4.2 presents the predicted and forecasted bands on the same graph, to show
that they have the same point estimates (the black, solid line) and that the forecasted
band is much larger than the predicted one. Put another way, you may think
about the distinction between the two types of intervals that we called prediction
and forecast as follows: the prediction interval is not supposed to include, say, 95
percent of the points, but to include the regression line, E(y|x), with a probability
of 95 percent; the forecasted interval, on the other hand, should include any true
point with a 95 percent probability.

4.2 Goodness-of-Fit

The total variation of y about its sample mean, SST , can be decomposed in variation
about the regression line, SSE, and variation of the regression line about the mean
of y, SSR, as Equation (4.5) shows.

SST = SSR + SSE (4.5)

The coefficient of determination, R2, is defined as the proportion of the variance
in y that is explained by the regression, SSR, in the total variation in y, SST .

50 CHAPTER 4. PREDICTION, R-SQUARED, AND MODELING

Dividing both sides of the Equation (4.5) by SST and re-arranging terms gives a
formula to calculate R2, as shown in Equation (4.6).

R2 = SSR

SST
= 1 − SSE

SST
(4.6)

R2 takes values between 0 and 1, with higher values showing a closer fit of the
regression line to the data. In R, the value of R2 can be retrieved from the summary
of the regression model under the name r.squared; for instance, in our food example,
R2 = 0.385. R2 is also printed as part of the summary of a regression model, as
the following code sequence shows. (The parentheses around a command tells R to
print the result.)
(rsq <- sm1$r.squared) #or

[1] 0.385002
sm1 #prints the summary of regression model m1

##
Call:
lm(formula = food_exp ~ income, data = food)
##
Residuals:
Min 1Q Median 3Q Max
-223.03 -50.82 -6.32 67.88 212.04
##
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 83.42 43.41 1.92 0.062 .
income 10.21 2.09 4.88 0.000019 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
Residual standard error: 89.5 on 38 degrees of freedom
Multiple R-squared: 0.385, Adjusted R-squared: 0.369
F-statistic: 23.8 on 1 and 38 DF, p-value: 0.0000195

If you need the sum of squared errors, SSE, or the sum of squares due to regression,
SSR, use the anova function, which has the structure shown in Table 4.1.
anov <- anova(m1)
dfr <- data.frame(anov)
kable(dfr,

caption="Output generated by the `anova` function")

4.3. LINEAR-LOG MODELS 51

Table 4.1: Output generated by the ‘anova‘ function

Df Sum.Sq Mean.Sq F.value Pr..F.
income 1 190627 190626.98 23.7888 0.000019
Residuals 38 304505 8013.29 NA NA

Table 4.1 indicates that SSE = anov[2,2] = 3.045052 × 105, SSR = anov[1,2]
= 1.90627 × 105, and SST = anov[1,2]+anov[2,2] = 4.951322 × 105. In our
simple regression model, the sum of squares due to regression only includes the
variable income. In multiple regression models, which are models with more than
one independent variable, the sum of squares due to regression is equal to the sum
of squares due to all independent variables. The anova results in Table 4.1 include
other useful information: the number of degrees of freedom, anov[2,1] and the
estimated variance σ̂ 2 =anov[2,3].

4.3 Linear-Log Models

Non-linear functional forms of regression models are useful when the relationship
between two variables seems to be more complex than the linear one. One can decide
to use a non-linear functional form based on a mathematical model, reasoning, or
simply inspecting a scatter plot of the data. In the food expenditure model, for
example, it is reasonable to believe that the amount spent on food increases faster
at lower incomes than at higher incomes. In other words, it increases at a decreasing
rate, which makes the regression curve flatten out at higher incomes.

What function could one use to model such a relationship? The logarithmic function
fits this profile and, as it turns out, it is relatively easy to interpret, which makes it
very popular in econometric models. The general form of a linear-log econometric
model is provided in Equation (4.7).

yi = β1 + β2log(xi) + ei (4.7)

The marginal effect of a change in x on y is the slope of the regression curve and
is given by Equation (4.8); unlike in the linear form, it depends on x and it is,
therefore, only valid for small changes in x.

dy

dx
= β2

x
(4.8)

Related to the linear-log model, another measure of interest in economics is the
semi-elasticity of y with respect to x, which is given by Equation (4.9). Semi-

52 CHAPTER 4. PREDICTION, R-SQUARED, AND MODELING

Table 4.2: Linear-log model output for the *food* example

Estimate Std..Error t.value Pr...t..
(Intercept) -97.1864 84.2374 -1.15372 0.25582
log(income) 132.1658 28.8046 4.58836 0.00005

elasticity suggests that a change in x of 1% changes y by β2/100 units of y. Since
semi-elasticity also changes when x changes, it should only be determined for small
changes in x.

dy = β2
100

(%∆x) (4.9)

Another quantity that might be of interest is the elasticity of y with respect to x,
which is given by Equation (4.10) and indicates that a one percent increase in x
produces a (β2/y) percent change in y.

%∆y = β2
y

(%∆x) (4.10)

Let us estimate a linear-log model for the food dataset, draw the regression curve,
and calculate the marginal effects for some given values of the dependent variable.
mod2 <- lm(food_exp~log(income), data=food)
tbl <- data.frame(xtable(mod2))
kable(tbl, digits=5,

caption="Linear-log model output for the *food* example")

b1 <- coef(mod2)[[1]]
b2 <- coef(mod2)[[2]]
pmod2 <- predict(mod2, newdata=data.frame(income),

interval="confidence")
plot(food$income, food$food_exp, xlab="income",

ylab="food expenditure")
lines(pmod2[,1]~income, lty=1, col="black")
lines(pmod2[,2]~income, lty=2, col="red")
lines(pmod2[,3]~income, lty=2, col="red")

x <- 10 #for a household earning #1000 per week
y <- b1+b2*log(x)
DyDx <- b2/x #marginal effect
DyPDx <- b2/100 #semi-elasticity
PDyPDx <- b2/y #elasticity

4.4. RESIDUALS AND DIAGNOSTICS 53

5 10 15 20 25 30

10
0

20
0

30
0

40
0

50
0

60
0

income

fo
od

 e
xp

en
di

tu
re

Figure 4.3: Linear-log representation for the food data

The results for an income of $1000 are as follows: dy/dx = 13.217, which indicates
that an increase in income of $100 (i.e., one unit of x) increases expenditure by $
13.217; for a 1% increase in income, that is, an increase of $10, expenditure increases
by $ 1.322; and, finally, for a 1% increase in income expenditure incrases by 0.638%.

4.4 Residuals and Diagnostics

Regression results are reliable only to the extent to which the underlying assump-
tions are met. Plotting the residuals and calculating certain test statistics help
deciding whether assumptions such as homoskedasticity, serial correlation, and nor-
mality of the errors are not violated. In R, the residuals are stored in the vector
residuals of the regression output.
ehat <- mod2$residuals
plot(food$income, ehat, xlab="income", ylab="residuals")

Figure 4.4 shows the residuals of the of the linear-log equation of the food expenditure
example. One can notice that the spread of the residuals seems to be higher at higher
incomes, which may indicate that the heteroskedasticity assumption is violated.

Let us draw a residual plot generated with a simulated model that satisfies the
regression assumptions. The data generating process is given by Equation (4.11),
where x is a number between 0 and 10, randomly drawn from a uniform distribution,

54 CHAPTER 4. PREDICTION, R-SQUARED, AND MODELING

5 10 15 20 25 30

−
20

0
−

10
0

0
10

0
20

0

income

re
si

du
al

s

Figure 4.4: Residual plot for the food linear-log model

and the error term is randomly drawn from a standard normal distribution. Figure
4.5 illustrates this simulated example.

yi = 1 + xi + ei, i = 1, ..., N (4.11)

set.seed(12345) #sets the seed for the random number generator
x <- runif(300, 0, 10)
e <- rnorm(300, 0, 1)
y <- 1+x+e
mod3 <- lm(y~x)
ehat <- resid(mod3)
plot(x,ehat, xlab="x", ylab="residuals")

The next example illustrates how the residuals look like when a linear functional
form is used when the true relationship is, in fact, quadratic. The data generat-
ing equation is given in Equation (4.12), where x is the same uniformly distributed
between −2.5 and 2.5), and e ∼ N(0, 4). Figure 4.6 shows the residuals from estimat-
ing an incorrectly specified, linear econometric model when the correct specification
should be quadratic.

yi = 15 − 4x2
i + ei, i = 1, ..., N (4.12)

4.4. RESIDUALS AND DIAGNOSTICS 55

0 2 4 6 8 10

−
2

−
1

0
1

2

x

re
si

du
al

s

Figure 4.5: Residuals generated by a simulated regression model that satisfies the
regression assumptions

set.seed(12345)
x <- runif(1000, -2.5, 2.5)
e <- rnorm(1000, 0, 4)
y <- 15-4*x^2+e
mod3 <- lm(y~x)
ehat <- resid(mod3)
ymi <- min(ehat)
yma <- max(ehat)
plot(x, ehat, ylim=c(ymi, yma),

xlab="x", ylab="residuals",col="grey")

Another assumption that we would like to test is the normality of the residuals, which
assures reliable hypothesis testing and confidence intervals even in small samples.
This assumption can be assessed by inspecting a histogram of the residuals, as well
as performing a Jarque-Bera test, for which the null hypothesis is “Series is normally
distributed”. Thus, a small p-value rejects the null hypothesis, which means the
series fails the normality test. The Jarque-Bera test requires installing and loading
the package tseries in R. Figure 4.7 shows a histogram and a superimposed normal
distribution for the linear food expenditure model.
library(tseries)
mod1 <- lm(food_exp~income, data=food)

56 CHAPTER 4. PREDICTION, R-SQUARED, AND MODELING

−2 −1 0 1 2

−
20

−
10

0
10

20

x

re
si

du
al

s

Figure 4.6: Simulated quadratic residuals from an incorrectly specified econometric
model

ehat <- resid(m1)
ebar <- mean(ehat)
sde <- sd(ehat)
hist(ehat, col="grey", freq=FALSE, main="",

ylab="density", xlab="ehat")
curve(dnorm(x, ebar, sde), col=2, add=TRUE,

ylab="density", xlab="ehat")

jarque.bera.test(ehat) #(in package 'tseries')

##
Jarque Bera Test
##
data: ehat
X-squared = 0.06334, df = 2, p-value = 0.969

While the histogram in Figure 4.7 may not strongly support one conclusion or an-
other about the normlity of ehat, the Jarque-Bera test is unambiguous: there is no
evidence against the normality hypothesis.

4.5. POLYNOMIAL MODELS 57

ehat

de
ns

ity

−200 −100 0 100 200

0.
00

0
0.

00
2

0.
00

4

Figure 4.7: Histogram of residuals from the food linear model

4.5 Polynomial Models

Regression models may include quadratic or cubic terms to better describe the
nature of the dadta. The following is an example of quadratic and cubic model
for the wa_wheat dataset, which gives annual wheat yield in tonnes per hectare in
Greenough Shire in Western Australia over a period of 48 years. The linear model
is given in Equation (4.13), where the subscript t indicates the observation period.

yieldt = β1 + β2timet + et (4.13)

library(PoEdata)
data("wa_wheat")
mod1 <- lm(greenough~time, data=wa_wheat)
ehat <- resid(mod1)
plot(wa_wheat$time, ehat, xlab="time", ylab="residuals")

Figure 4.8 shows a pattern in the residuals generated by the linear model, which
may inspire us to think of a more appropriate functional form, such as the one in
Equation (4.14).

yieldt = β1 + β2time3
t + et (4.14)

58 CHAPTER 4. PREDICTION, R-SQUARED, AND MODELING

0 10 20 30 40

−
0.

4
0.

0
0.

2
0.

4
0.

6

time

re
si

du
al

s

Figure 4.8: Residuals from the linear wheatyield model

Please note in the following code sequence the use of the function I(), which is
needed in R when an independent variable is transformed by mathematical operators.
You do not need the operator I() when an independent variable is transformed
through a function such as log(x). In our example, the transformation requiring
the use of I() is raising time to the power of 3. Of course, you can create a new
variable, x3=xˆ3 if you wish to avoid the use of I() in a regression equation.
mod2 <- lm(wa_wheat$greenough~I(time^3), data=wa_wheat)
ehat <- resid(mod2)
plot(wa_wheat$time, ehat, xlab="time", ylab="residuals")

Figure 4.9 displays a much better image of the residuals than Figure 4.8, since the
residuals are more evenly spread about the zero line.

4.6 Log-Linear Models

Transforming the dependent variable with the log() function is useful when the
variable has a skewed distribution, which is in general the case with amounts that
cannot be negative. The log() transformation often makes the distribution closer to
normal. The general log-linear model is given in Equation (4.15).

log(yi) = β1 + β2xi + ei (4.15)

4.6. LOG-LINEAR MODELS 59

0 10 20 30 40

−
0.

4
−

0.
2

0.
0

0.
2

time

re
si

du
al

s

Figure 4.9: Residuals from the cubic wheatyield model

The following formulas are easily derived from the log-linear Equation (4.15). The
semi-elasticity has here a different interpretation than the one in the linear-log model:
here, an increase in x by one unit (of x) produces a change of 100b2 percent in y. For
small changes in x, the amount 100b2 in the log-linear model can also be interpreted
as the growth rate in y (corresponding to a unit increase in x). For instance, if x is
time, then 100b2 is the growth rate in y per unit of time.

• Prediction: ŷn = exp(b1 + b2x), or ŷc = exp(b1 + b2x + σ̂2

2), with the “natural”
predictor ŷn to be used in small samples and the “corrected” predictor, ŷc, in
large samples

• Marginal effect (slope): dy
dx = b2y

• Semi-elasticity: %∆y = 100b2∆x

Let us do these calculations first for the yield equation using the wa_wheat dataset.
mod4 <- lm(log(greenough)~time, data=wa_wheat)
smod4 <- summary(mod4)
tbl <- data.frame(xtable(smod4))
kable(tbl, caption="Log-linear model for the *yield* equation")

Table 4.3 gives b2 = 0.017844, which indicates that the rate of growth in wheat
production has increased at an average rate of approximately 1.78 percent per year.

The wage log-linear equation provides another example of calculating a growth rate,
but this time the independent variable is not time, but education. The predictions

60 CHAPTER 4. PREDICTION, R-SQUARED, AND MODELING

Table 4.3: Log-linear model for the *yield* equation

Estimate Std..Error t.value Pr...t..
(Intercept) -0.343366 0.058404 -5.87914 0
time 0.017844 0.002075 8.59911 0

Table 4.4: Log-linear ’wage’ regression output

Estimate Std..Error t.value Pr...t..
(Intercept) 1.609444 0.086423 18.6229 0
educ 0.090408 0.006146 14.7110 0

and the slope are calculated for educ = 12 years.
data("cps4_small", package="PoEdata")
xeduc <- 12
mod5 <- lm(log(wage)~educ, data=cps4_small)
smod5 <- summary(mod5)
tabl <- data.frame(xtable(smod5))
kable(tabl, caption="Log-linear 'wage' regression output")

b1 <- coef(smod5)[[1]]
b2 <- coef(smod5)[[2]]
sighat2 <- smod5$sigma^2
g <- 100*b2 #growth rate
yhatn <- exp(b1+b2*xeduc) #"natural" predictiction
yhatc <- exp(b1+b2*xeduc+sighat2/2) #corrected prediction
DyDx <- b2*yhatn #marginal effect

Here are the results of these calculations: “natural” prediction ŷn = 14.796; cor-
rected prediction, ŷc = 16.996; growth rate g = 9.041; and marginal effect dy

dx = 1.34.
The growth rate indicates that an increase in education by one unit (see the data
description using ?cps4_small) increases hourly wage by 9.041 percent.

Figure 4.10 presents the “natural” and the “corrected” regression lines for the wage
equation, together with the actual data points.
education=seq(0,22,2)
yn <- exp(b1+b2*education)
yc <- exp(b1+b2*education+sighat2/2)
plot(cps4_small$educ, cps4_small$wage,

xlab="education", ylab="wage", col="grey")
lines(yn~education, lty=2, col="black")

4.6. LOG-LINEAR MODELS 61

0 5 10 15 20

0
20

40
60

education

w
ag

e
yc
yn

Figure 4.10: The ’normal’ and ’corrected’ regression lines in the log-linear wage
equation

lines(yc~education, lty=1, col="blue")
legend("topleft", legend=c("yc","yn"),

lty=c(1,2), col=c("blue","black"))

The regular R2 cannot be used to compare two regression models having different
dependent variables such as a linear-log and a log-linear models; when such a com-
parison is needed, one can use the general R2, which is R2

g = [corr(y, ŷ]2. Let us
calculate the generalized R2 for the quadratic and the log-linear wage models.
mod4 <- lm(wage~I(educ^2), data=cps4_small)
yhat4 <- predict(mod4)
mod5 <- lm(log(wage)~educ, data=cps4_small)
smod5 <- summary(mod5)
b1 <- coef(smod5)[[1]]
b2 <- coef(smod5)[[2]]
sighat2 <- smod5$sigma^2
yhat5 <- exp(b1+b2*cps4_small$educ+sighat2/2)
rg4 <- cor(cps4_small$wage, yhat4)^2
rg5 <- cor(cps4_small$wage,yhat5)^2

The quadratic model yields R2
g = 0.188, and the log-linear model yields R2

g = 0.186;
since the former is higher, we conclude that the quadratic model is a better fit to

62 CHAPTER 4. PREDICTION, R-SQUARED, AND MODELING

the data than the log-linear one. (However, other tests of how the two models meet
the assumptions of linear refgression may reach a different conclusion; R2 is only
one of the model selection criteria.)

To determne a forecast interval estimate in the log-linear model, we first construct
the interval in logs using the natural predictor ŷn, then take antilogs of the interval
limits. The forecasting error is the same as before, given in Equation (4.4). The
following calculations use an education level equal to 12 and α = 0.05.
The *wage* log-linear model
Prediction interval for educ = 12
alpha <- 0.05
xeduc <- 12
xedbar <- mean(cps4_small$educ)
mod5 <- lm(log(wage)~educ, data=cps4_small)
b1 <- coef(mod5)[[1]]
b2 <- coef(mod5)[[2]]
df5 <- mod5$df.residual
N <- nobs(mod5)
tcr <- qt(1-alpha/2, df=df5)
smod5 <- summary(mod5)
varb2 <- vcov(mod5)[2,2]
sighat2 <- smod5$sigma^2
varf <- sighat2+sighat2/N+(xeduc-xedbar)^2*varb2
sef <- sqrt(varf)
lnyhat <- b1+b2*xeduc
lowb <- exp(lnyhat-tcr*sef)
upb <- exp(lnyhat+tcr*sef)

The result is the confidence interval (5.26, 41.62). Figure 4.11 shows a 95% confi-
dence band for the log-linear wage model.
Drawing a confidence band for the log-linear
wage equation

xmin <- min(cps4_small$educ)
xmax <- max(cps4_small$educ)+2
education <- seq(xmin, xmax, 2)
lnyhat <- b1+b2*education
yhat <- exp(lnyhat)
varf <- sighat2+sighat2/N+(education-xedbar)^2*varb2
sef <- sqrt(varf)
lowb <- exp(lnyhat-tcr*sef)
upb <- exp(lnyhat+tcr*sef)

4.7. THE LOG-LOG MODEL 63

0 5 10 15 20

0
20

40
60

80
10

0

education

w
ag

e
yhat
lowb
upb

Figure 4.11: Confidence band for the log-linear wage equation

plot(cps4_small$educ, cps4_small$wage, col="grey",
xlab="education", ylab="wage", ylim=c(0,100))

lines(yhat~education, lty=1, col="black")
lines(lowb~education, lty=2, col="blue")
lines(upb~education, lty=2, col="blue")
legend("topleft", legend=c("yhat", "lowb", "upb"),

lty=c(1, 2, 2), col=c("black", "blue", "blue"))

4.7 The Log-Log Model

The log-log model has the desirable property that the coefficient of the independent
variable is equal to the (constant) elasticity of y with respect to x. Therefore, this
model is often used to estimate supply and demand equations. Its standard form is
given in Equation (4.16), where y, x, and e are N × 1 vectors.

log(y) = β1 + β2log(x) + e (4.16)

Calculating log-log demand for chicken
data("newbroiler", package="PoEdata")
mod6 <- lm(log(q)~log(p), data=newbroiler)

64 CHAPTER 4. PREDICTION, R-SQUARED, AND MODELING

Table 4.5: The log-log poultry regression equation

Estimate Std..Error t.value Pr...t..
(Intercept) 3.71694 0.022359 166.2362 0
log(p) -1.12136 0.048756 -22.9992 0

b1 <- coef(mod6)[[1]]
b2 <- coef(mod6)[[2]]
smod6 <- summary(mod6)
tbl <- data.frame(xtable(smod6))
kable(tbl, caption="The log-log poultry regression equation")

Table 4.5 gives the log-log regression output. The coefficient on p indicates that an
increase in price by 1% changes the quantity demanded by −1.121%.
Drawing the fitted values of the log-log equation
ngrid <- 20 # number of drawing points
xmin <- min(newbroiler$p)
xmax <- max(newbroiler$p)
step <- (xmax-xmin)/ngrid # grid dimension
xp <- seq(xmin, xmax, step)
sighat2 <- smod6$sigma^2
yhatc <- exp(b1+b2*log(newbroiler$p)+sighat2/2)
yc <- exp(b1+b2*log(xp)+sighat2/2) #corrected q
plot(newbroiler$p, newbroiler$q, ylim=c(10,60),

xlab="price", ylab="quantity")
lines(yc~xp, lty=1, col="black")

The generalized R-squared:
rgsq <- cor(newbroiler$q, yhatc)^2

The generalized R2, wich uses the corrected fitted values, is equal to 0.8818.

4.7. THE LOG-LOG MODEL 65

1.0 1.5 2.0 2.5

10
20

30
40

50
60

price

qu
an

tit
y

Figure 4.12: Log-log demand for chicken

66 CHAPTER 4. PREDICTION, R-SQUARED, AND MODELING

Chapter 5

The Multiple Regression Model

rm(list=ls())
library(PoEdata)
library(knitr)
library(xtable)
library(effects)
library(car)
library(AER)
library(broom)

This chapter uses a few new packages: effects (Fox et al., 2016), car (Fox and
Weisberg, 2016), and AER, (Kleiber and Zeileis, 2015).

5.1 The General Model

A multiple regression model is very similar to the simple regression model, but in-
cludes more independent variables. Thus, the interpretation of a slope parameter
has to take into account possible changes in other independent variables: a slope
parameter, say βk, gives the change in the dependent variable, y, when the indepen-
dent variable xk increases by one unit while all the other independent variables
remain constant. Equation (5.1) gives the general form of a multiple regression
model, where y, xk, and e are N × 1 vectors, N is the number of observations in
the sample, and k = 1, ..., K indicates the k-th independent variable. The notation
used in Equation (5.1) implies that the first independent variable, x1, is an N × 1
vector of 1s.

y = β1 + β2x2 + ... + βKxK + e (5.1)

67

68 CHAPTER 5. THE MULTIPLE REGRESSION MODEL

Table 5.1: Summary statistics for dataset andy

column n mean sd median min max
sales 75 77.3747 6.488537 76.50 62.40 91.20
price 75 5.6872 0.518432 5.69 4.83 6.49
advert 75 1.8440 0.831677 1.80 0.50 3.10

The model assumptions remain the same, with the additional requirement that no
independent variable is a linear combination of the others.

5.2 Example: Big Andy’s Hamburger Sales

The andy dataset includes variables sales, which is monthly revenue to the company
in $1000s, price, which is a price index of all products sold by Big Andy’s, and
advert, the advertising expenditure in a given month, in $1000s. Summary statistics
for the andy dataset is shown in Table 5.1. The basic andy model is presented in
Equation (5.2).

sales = β1 + β2price + β3advert + e (5.2)

Summary statistics
data(andy)
s=tidy(andy)[,c(1:5,8,9)]
kable(s,caption="Summary statistics for dataset $andy$")

The basic *andy* model
data("andy",package="PoEdata")
mod1 <- lm(sales~price+advert, data=andy)
smod1 <- data.frame(xtable(summary(mod1)))
kable(smod1,
caption="The basic multiple regression model",
col.names=c("coefficient", "Std. Error", "t-value", "p-value"),
align="c", digits=3)

Table 5.2 shows that, for any given (but fixed) value of advertising expenditure, an
increase in price by $1 decreases sales by $7908. On the other hand, for any given
price, sales increase by $1863 when advertising expenditures increase by $1000.
effprice <- effect("price", mod1)
plot(effprice)

5.2. EXAMPLE: BIG ANDY’S HAMBURGER SALES 69

Table 5.2: The basic multiple regression model

coefficient Std. Error t-value p-value
(Intercept) 118.914 6.352 18.722 0.000
price -7.908 1.096 -7.215 0.000
advert 1.863 0.683 2.726 0.008

price effect plot

price

sa
le

s

74

76

78

80

82

84

5.0 5.2 5.4 5.6 5.8 6.0

Figure 5.1: The partial effect of price in the basic andy regression

70 CHAPTER 5. THE MULTIPLE REGRESSION MODEL

summary(effprice)

##
price effect
price
5 5.5 6
82.8089 78.8550 74.9011
##
Lower 95 Percent Confidence Limits
price
5 5.5 6
80.9330 77.6582 73.5850
##
Upper 95 Percent Confidence Limits
price
5 5.5 6
84.6849 80.0518 76.2172

Figure 5.1 shows the predicted levels of the dependent variable sales and its 95%
confidence band for the sample values of the variable price. In more complex func-
tional forms, the R function effect() plots the partial effect of a variable for given
levels of the other independent variables in the model. The simplest possible call
of this function requires, as arguments, the name of the term for which we wish
the partial effect (in our example price), and the object (model) in question. If
not otherwise specified, the confidence intervals (band) are determined for a 95%
confidence level and the other variables at their means. A simple use of the effects
package is presented in Figure 5.2, which plots the partial effects of all variables in
the basic andy model. (Function effect() plots only one graph for one variable,
while allEffects() plots all variables in the model.)
alleffandy <- allEffects(mod1)
plot(alleffandy)

Another example of using the function effect()
mod2 <- lm(sales~price+advert+I(advert^2), data=andy)
summary(mod2)

##
Call:
lm(formula = sales ~ price + advert + I(advert^2), data = andy)
##
Residuals:
Min 1Q Median 3Q Max

5.2. EXAMPLE: BIG ANDY’S HAMBURGER SALES 71

price effect plot

price

sa
le

s

74

76

78

80

82

84

5.0 5.2 5.4 5.6 5.8 6.0

advert effect plot

advert
sa

le
s

74

76

78

80

0.5 1.0 1.5 2.0 2.5 3.0

Figure 5.2: Using the function ’allEffects()’ in the basic andy model

-12.255 -3.143 -0.012 2.851 11.805
##
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 109.719 6.799 16.14 < 2e-16 ***
price -7.640 1.046 -7.30 3.2e-10 ***
advert 12.151 3.556 3.42 0.0011 **
I(advert^2) -2.768 0.941 -2.94 0.0044 **

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
Residual standard error: 4.65 on 71 degrees of freedom
Multiple R-squared: 0.508, Adjusted R-squared: 0.487
F-statistic: 24.5 on 3 and 71 DF, p-value: 5.6e-11
plot(effect("I(advert^2)", mod2))

Figure 5.3 is an example of using the effect() function to plot the partial effect of a
quadratic independent variable. I chose to insert the I(advertˆ2) term to indicate
that the variable of interest needs to be specified exactly as it appears in the model.

All the methods available in R for simple linear regression models are available
for multiple models as well. Thus, to extract the information generated by the
lm() function, we use the similar code as before. As we have already learned, the

72 CHAPTER 5. THE MULTIPLE REGRESSION MODEL

advert effect plot

advert

sa
le

s

70

72

74

76

78

80

0.5 1.0 1.5 2.0 2.5 3.0

Figure 5.3: An example of using the function ’effect’ in a quadratic model

command ?mod1 gives a list with all the information stored in the mod1 object. The
next code sequence illustrates how to access various regression output items for the
basic andy equation.
mod1 <- lm(sales~price+advert, data=andy)
smod1 <- summary(mod1)
df <- mod1$df.residual
N <- nobs(mod1)
b1 <- coef(mod1)[[1]] #or
b2 <- coef(mod1)[["price"]]
b3 <- coef(mod1)[["advert"]]
sighat2 <- smod1$sigma^2
anov <- anova(mod1)
SSE <- anov[3,2]
SST <- sum(anov[,2]) #sum of column 2 in anova
SSR <- SST-SSE
kable(data.frame(vcov(mod1)), align='c', digits=3,

caption="The coefficient covariance matrix",
col.names=c("(Intercept)", "price", "advert"))

The covariance matrix, or the variance-covariance matrix shown in Table 5.3 con-
tains all the estimated variances and covariances of the regression coefficients. These
are useful when testing hypotheses about individual coefficients or combinations of

5.3. INTERVAL ESTIMATION IN MULTIPLE REGRESSION 73

Table 5.3: The coefficient covariance matrix

(Intercept) price advert
(Intercept) 40.343 -6.795 -0.748
price -6.795 1.201 -0.020
advert -0.748 -0.020 0.467

those.

5.3 Interval Estimation in Multiple Regression

Interval estimation is similar with the one we have studied in the simple regression
model, except the number of degrees of freedom is now N − K, where K is the
number of regression coefficients to be estimated. In the andy example, df = 72
and the variances and covariances of the estimates are given in the following code
sequence.
varb1 <- vcov(mod1)[1,1]
varb2 <- vcov(mod1)[2,2]
varb3 <- vcov(mod1)[3,3]
covb1b2 <- vcov(mod1)[1,2]
covb1b3 <- vcov(mod1)[1,3]
covb2b3 <- vcov(mod1)[2,3]
seb2 <- sqrt(varb2) #standard error of b2
seb3 <- sqrt(varb3)

With the calculated standard error of b2, se(b2) = 1.096, we can now determine a
95% confidence interval, as shown in the following code lines. The code also shows
using the R function confint(model, parm, level) to check our results.
alpha <- 0.05
tcr <- qt(1-alpha/2, df)
lowb2 <- b2-tcr*seb2
upb2 <- b2+tcr*seb2
lowb3 <- b3-tcr*seb3
upb3 <- b3+tcr*seb3
confints <- confint(mod1, parm=c("price", "advert"), level=0.95)
kable(data.frame(confints),

caption="Confidence intervals for 'price' and 'advert'",
align="c", col.names=c("lowb", "upb"), digits=4)

Finding an interval estimate for a linear combination of the parameters is often

74 CHAPTER 5. THE MULTIPLE REGRESSION MODEL

Table 5.4: Confidence intervals for ’price’ and ’advert’

lowb upb
price -10.0927 -5.7230
advert 0.5007 3.2245

needed. Suppose one is interested in determining an interval estimate for sales
when the price decreases by 40 cents and the advertising expenditure increases by
$800 (see Equation (5.3)) in the andy basic equation.

λ = 0β1 − 0.4β2 + 0.8β3 (5.3)

alpha <- 0.1
tcr <- qt(1-alpha/2, df)
a1 <- 0
a2 <- -0.4
a3 <- 0.8
L <- a1*b1+a2*b2+a3*b3
varL <- a1^2*varb1+a2^2*varb2+a3^2*varb3+

2*a1*a2*covb1b2+2*a1*a3*covb1b3+2*a2*a3*covb2b3
seL <- sqrt(varL)
lowbL <- L-tcr*seL
upbL <- L+tcr*seL

The calculated confidence interval is (3.471, 5.836). Let us calculate the variance of a
linear combination of regression parameters in a more general way to take advantage
of R’s excellent capabilities of working with complex data structures such as lists,
vectors, and matrices. This code sequence introduces a few new elements, such as
matrix transposition and multiplication, as well as turning a list into a vector. The
matrix multiplication operator in R is %*% and the transposition operator is t().
a <- c(0, -0.4, 0.8) # vector
b <- as.numeric(coef(mod1))# vector of coefficients
L <- L <- sum(a*b) # sum of elementwise products
V <- vcov(mod1) # the variance-covariance matrix
A <- as.vector(a) # (indeed not necessary)
varL <- as.numeric(t(A) %*% V %*% A)

5.4. HYPOTHESIS TESTING IN MULTIPLE REGRESSION 75

5.4 Hypothesis Testing in Multiple Regression

The process of testing hypotheses about a single parameter is similar to the one we’ve
seen in simple regression, the only difference consisting in the number of degrees of
freedom. As an example, let us test the significance of β2 of the basic andy equation.
The hypotheses are given in Equation (5.4).

H0 : β2 = 0, HA : β2 ̸= 0 (5.4)

alpha <- 0.05
df <- mod1$df.residual
tcr <- qt(1-alpha/2, df)
b2 <- coef(mod1)[["price"]]
seb2 <- sqrt(vcov(mod1)[2,2])
t <- b2/seb2

The calculated t is equal to −7.215, which is less than −tcr = −1.993, indicating
that the null hypothesis is rejected and that β2 is significantly different from zero.
As usual, we can perform the same test using the p-value instead of tcr.
t <- b2/seb2
pval <- 2*(1-pt(abs(t), df)) #two-tail test

The calculated p-value is 4.423999×10−10. Since this is less than α we reject, again,
the null hypothesis H0 : β2 = 0. Let us do the same for β3:
alpha <- 0.05
df <- mod1$df.residual
tcr <- qt(1-alpha/2, df)
b3 <- coef(mod1)[[3]]
seb3 <- sqrt(vcov(mod1)[3,3])
tval <- b3/seb3

Calculated t = 2.726, and tcr = 1.993. Since t > tcr we reject the null hypothesis
and conclude that there is a statistically significant relationship between advert and
sales. The same result can be obtained using the p-value method:
pval <- 2*(1-pt(abs(tval), df))

Result: p-value = 0.008038 < α. R shows the two-tail t and p values for coefficients
in regression output (see Table 5.2).

A one-tail hypothesis testing can give us information about price elasitcity of demand
in the basic andy equation in Table 5.2. Let us test the hypothesis described in

76 CHAPTER 5. THE MULTIPLE REGRESSION MODEL

Equation (5.5) at a 5% significance level. The calculated value of t is the same, but
tcr corresponds now not to α

2 but to α.

H0 : β2 ≥ 0, HA : β2 < 0 (5.5)

alpha <- 0.05
tval <- b2/seb2
tcr <- -qt(1-alpha, df) #left-tail test
pval <- pt(tval, df)

The results t = −7.215, tcr = −1.666 show that the calculated t falls in the (left-tail)
rejection region. The p-value, which is equal to 2.211999×10−10, is less than α, also
rejects the null hypothesis.

Here is how the p-values should be calculated, depending on the type of test:

• Two-tail test (HA : β2 ̸= 0), p-value <- 2*(1-pt(abs(t), df))
• Left-tail test (HA : β2 < 0), p-value <- pt(t, df)
• Right-tail test (HA : β2 > 0), p-value <- 1-pt(t, df)

Another example of a one-tail hypothesis testing is to test whether an increase of
$1 in advertising expenditure increases revenue by more than $1. In the hypothesis
testing language, we need to test the hypothesis presented in Equation (5.6).

H0 : β3 ≤ 1, HA : β3 > 1 (5.6)

tval <- (b3-1)/seb3
pval <- 1-pt(tval,df)

The calculated p-value is 0.105408, which is greater than α, showing that we cannot
reject the null hypothesis H0 : β3 ≤ 1 at α = 0.05. In other words, increasing
advertising expenditure by $1 may or may not increase sales by more than $1.

Testing hypotheses for linear combinations of coefficients resambles the interval es-
timation procedure. Suppose we wish to determine if lowering the price by 20 cents
increases sales more than would an increase in advertising expenditure by $500. The
hypothesis to test this conjecture is given in Equation (5.7).

H0 : 0β1 − 0.2β2 − 0.5β3 ≤ 0, HA : 0β1 − 0.2β2 − 0.5β3 > 0 (5.7)

Let us practice the matrix form of testing this hypotesis. R functions having names
that start with as. coerce a certain structure into another, such as a named list
into a vector (names are removed and only numbers remain).

5.4. HYPOTHESIS TESTING IN MULTIPLE REGRESSION 77

A <- as.vector(c(0, -0.2, -0.5))
V <- vcov(mod1)
L <- as.numeric(t(A) %*% coef(mod1))
seL <- as.numeric(sqrt(t(A) %*% V %*% A))
tval <- L/seL
pval <- 1-pt(tval, df) # the result (p-value)

The answer is p-value= 0.054619, which barely fails to reject the null hypothesis.
Thus, the conjecture that a decrease in price by 20 cents is more effective than an
increase in advertising by $800 is not supported by the data.

For two-tail linear hypotheses, R has a built-in function, linearHypothesis(model,
hypothesis), in the package car. This function tests hypotheses based not on t-
statistics as we have done so far, but based on an F -statistic. However, the p-value
criterion to reject or not the null hypothesis is the same: reject if p-value is less than
α. Let us use this function to test the two-tail hypothesis similar to the one given
in Equation (5.7). (Note that the linearHypothesis() function can test not only
one hypothesis, but a set of simultaneous hypotheses.)
hypothesis <- "-0.2*price = 0.5*advert"
test <- linearHypothesis (mod1, hypothesis)
Fstat <- test$F[2]
pval <- 1-pf(Fstat, 1, df)

The calculated p-value is 0.109238, which shows that the null hypothesis cannot be
rejected. There are a few new elements, besides the use of the linearHypothesis
function in this code sequence. First, the linearHypothesis() function creates an
R object that contains several items, one of which is the F -statistic we are looking
for. This object is shown in Table 5.5 and it is named test in our code. The code
element test$F[2] extracts the F -statistic from the linearHypothesis() object.

Second, please note that the F -statistic has two ‘degrees of freedom’ parameters, not
only one as the t-statistic does. The first degree of freedom is equal to the number
of simultaneous hypotheses to be tested (in our case only one); the second is the
number of degrees of freedom in the model, df = N − K.

Last, the function that calculates the p-value is pf(Fval, df1, df2), where Fval
is the calculated value of the F -statistic, and df1 and df2 are the two degrees of
freedom parameters of the F -statistic.

78 CHAPTER 5. THE MULTIPLE REGRESSION MODEL

Table 5.5: The ‘linearHypothesis()‘ object

Res.Df RSS Df Sum of Sq F Pr(>F)
73 1781.73 NA NA NA NA
72 1718.94 1 62.7874 2.62993 0.109238

Table 5.6: The quadratic version of the andy model

Estimate Std. Error t p-Value
(Intercept) 109.719 6.799 16.137 0.000
price -7.640 1.046 -7.304 0.000
advert 12.151 3.556 3.417 0.001
I(advert^2) -2.768 0.941 -2.943 0.004

kable(test, caption="The `linearHypothesis()` object")

5.5 Polynomial Regression Models

A polynomial multivariate regression model may include several independent vari-
ables at various powers. In such models, the partial (or marginal) effect of a regressor
xk on the response y is determined by the partial derivative ∂y

∂xk
. Let us consider

again the basic andy model with the added advert quadratic term as presented in
Equation (5.8).

salesi = β1 + β2pricei + β3adverti + β4advert2
i + ei (5.8)

As we have noticed before, the quadratic term is introduced into the model using
the function I() to indicate the presence of a mathematical operator. Table 5.6
presents a summary of the regression output from the model described in Equation
(5.8).
mod2 <- lm(sales~price+advert+I(advert^2),data=andy)
smod2 <- summary(mod2)
tabl <- data.frame(xtable(smod2))
names(tabl) <- c("Estimate",

"Std. Error", "t", "p-Value")
kable(tabl, digits=3, align='c',

caption="The quadratic version of the $andy$ model")

5.5. POLYNOMIAL REGRESSION MODELS 79

Let us calculate the marginal effect of advert on sales for two levels of advert; the
relevant partial derivative is the one in Equation (5.9).

∂sales

∂advert
= β3 + 2β4advert (5.9)

advlevels <- c(0.5, 2)
b3 <- coef(mod2)[[3]]
b4 <- coef(mod2)[[4]]
DsDa <- b3+b4*advlevels

The calculated marginal effects for the two levels of advertising expenditure are,
respectively, 10.767254 and 6.615309, which shows, as expected, diminishing returns
to advertising at any given price.

Often, marginal effects or other quantities are non-linear functions of the parameters
of a regression model. The delta method allows calculating the variance of such
quantities using a Taylor series approximation. This method is, howver, valid only
in a vicinity of a point, as any mathematical object involving derivatives.

Suppose we wish to test a hypothesis such as the one in Equation (5.10), where c is
a constant.

H0 : g(β1, β2) = c (5.10)

The delta method consists in estimating the variance of the function g(β1, β2) around
some given data point, using the formula in Equation (5.11), where gi stands for ∂g

∂βi

calculated at the point β = b.

var(g) = g2
1var(b1) + g2

2var(b2) + 2g1g2cov(b1, b2) (5.11)

Let us apply this method to find a confidence interval for the optimal level of adver-
tising in the andy quadratic equation, g, which is given by Equation (5.12).

ĝ = 1 − b3
2b4

(5.12)

Equation (5.13) shows the derivatives of function g.

ĝ3 = − 1
2b4

, ĝ4 = −1 − b3
2b2

4
. (5.13)

80 CHAPTER 5. THE MULTIPLE REGRESSION MODEL

alpha <- 0.05
df <- mod2$df.residual
tcr <- qt(1-alpha/2, df)
g <- (1-b3)/(2*b4)
g3 <- -1/(2*b4)
g4 <- -(1-b3)/(2*b4^2)
varb3 <- vcov(mod2)[3,3]
varb4 <- vcov(mod2)[4,4]
covb3b4 <- vcov(mod2)[3,4]
varg <- g3^2*varb3+g4^2*varb4+2*g3*g4*covb3b4
seg <- sqrt(varg)
lowbg <- g-tcr*seg
upbg <- g+tcr*seg

The point estimate of the optimal advertising level is 2.014, with its confidence
interval (1.758, 2.271).

5.6 Interaction Terms in Linear Regression

Interaction terms in a regression model combine two or more variables and model
interdependences among the variables. In such models, the slope of one variable
may depend on another variable. Partial effects are calculated as partial deriva-
tives, similar to the polynomial equations we have already studied, considering the
interaction term a a product of the variables involved.

The data file pizza4 includes 40 observations on an individual’s age and his or her
spending on pizza. It is natural to believe that there is some connection between
a person’s age and her pizza purchases, but also that this effect may depend on
the person’s income. Equation (5.14) combines age and income in an interaction
term, while Equation (5.15) shows the marginal effect of age on the expected pizza
purchases.

pizza = β1 + β2age + β3income + β4(age × income) + e (5.14)

∂̂pizza

∂age
= b2 + b4income (5.15)

Let us calculate the marginal effect of age on pizza for two levels of income, $25 000
and $90 000. There are two ways to introduce interaction terms in R; first, with a :
(colon) symbol, when only the interaction term is created; second, with the * (star)

5.6. INTERACTION TERMS IN LINEAR REGRESSION 81

symbol when all the terms involving the variables in the interaction term should be
present in the regression. For instance, the code x ∗ z creates three terms: x, z, and
x : z (this last one is x ‘interacted’ with z, which is a peculiarity of the R system).
data("pizza4",package="PoEdata")
mod3 <- lm(pizza~age*income, data=pizza4)
summary(mod3)

##
Call:
lm(formula = pizza ~ age * income, data = pizza4)
##
Residuals:
Min 1Q Median 3Q Max
-200.9 -83.8 20.7 85.0 254.2
##
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 161.4654 120.6634 1.34 0.189
age -2.9774 3.3521 -0.89 0.380
income 6.9799 2.8228 2.47 0.018 *
age:income -0.1232 0.0667 -1.85 0.073 .

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
Residual standard error: 127 on 36 degrees of freedom
Multiple R-squared: 0.387, Adjusted R-squared: 0.336
F-statistic: 7.59 on 3 and 36 DF, p-value: 0.000468
inc <- c(25, 90)
b2 <- coef(mod3)[[2]]
b4 <- coef(mod3)[[4]]
(DpDa <- b2+b4*inc)

[1] -6.05841 -14.06896

The marginal effect of age is a reduction in pizza expenditure by $6.058407 for an
income of $25 000 and by $14.068965 for an income of $90 000.

Equation (5.16) is another example of a model involving an interaction term: the
wage equation. The equation involves, besides the interaction term, logs of the
response (dependent) variable is in logs and a quadratic term.

log(wage) = β1 + β2educ + β3exper + β4(educ × exper) + β5exper2 + e (5.16)

82 CHAPTER 5. THE MULTIPLE REGRESSION MODEL

Table 5.7: Wage equation with interaction and quadratic terms

Estimate Std..Error t.value Pr...t..
(Intercept) 0.529677 0.226741 2.33604 0.019687
educ 0.127195 0.014719 8.64167 0.000000
exper 0.062981 0.009536 6.60447 0.000000
I(exper^2) -0.000714 0.000088 -8.10911 0.000000
educ:exper -0.001322 0.000495 -2.67222 0.007658

The marginal effect of an extra year of experience is determined, again, by the
partial derivative of log(wage) with respect to exper, as Equation (5.17) shows.
Here, however, the marginal effect is easier expressed in percentage change, rather
than in units of wage.

%∆wage ∼= 100 (β3 + β4educ + 2β5exper)∆exper (5.17)

Please note that the marginal effect of exper depends on both education and ex-
perience. Let us calculate this marginal effect for the average values of educ and
exper.
data(cps4_small)
meduc <- mean(cps4_small$educ)
mexper <- mean(cps4_small$exper)
mod4 <- lm(log(wage)~educ*exper+I(exper^2), data=cps4_small)
smod4 <- data.frame(xtable(summary(mod4)))
b3 <- coef(mod4)[[3]]
b4 <- coef(mod4)[[4]]
b5 <- coef(mod4)[[5]]
pDwDex <- 100*(b3+b4*meduc+2*b5*mexper)

The result of this calculation is %∆wage = −1.698, which has, apparently, the
wrong sign. What could be the cause? Let us look at a summary of the regression
output and identify the terms (see Table 5.7).
kable(smod4, caption="Wage equation with interaction and quadratic terms")

The output table shows that the order of the terms in the regression equation is
not the same as in Equation (5.16), which is the effect of using the compact term
educ ∗ exper in the R code. This places the proper interaction term, educ : exper
in the last position of all terms containing any of the variables involved in the
combined term educ ∗ exper. There are a few ways to solve this issue. One is
to write the equation code in full, without the shortcut educ ∗ exper; another is

5.7. GOODNESS-OF-FIT IN MULTIPLE REGRESSION 83

Table 5.8: Anova table for the basic *andy* model

Df Sum.Sq Mean.Sq F.value Pr..F.
price 1 1219.091 1219.0910 51.06310 0.000000
advert 1 177.448 177.4479 7.43262 0.008038
Residuals 72 1718.943 23.8742 NA NA

to use the names of the terms when retrieving the coefficients, such as b4 <-
coef(mod1)[["I(experˆ2)"]]; another to change the position of the terms in Equa-
tion (5.16) according to Table 5.7 and re-calculate the derivative in Equation (5.17).
I am going to use the names of the variables, as they appear in Table 5.7, but I also
change the names of the parameters to avoid confusion.
bexper <- coef(mod4)[["exper"]]
bint <- coef(mod4)[["educ:exper"]]
bsqr <- coef(mod4)[["I(exper^2)"]]
pDwDex <- 100*(bexper+bint*meduc+2*bsqr*mexper)

The new result indicates that the expected wage increases by 0.68829 percent when
experience increases by one year, which, at least, has the “right” sign.

5.7 Goodness-of-Fit in Multiple Regression

The coefficient of determination, R2, has the same formula (Equation (5.18))and
interpretation as in the case of the simple regression model.

R2 = SSR

SST
= 1 − SSE

SST
(5.18)

As we have already seen, the R function anova() provides a decomposition of the
total sum of squares, showing by how much each predictor contributes to the reduc-
tion in the residual sum of squares. Let us look at the basic andy model described
in Equation (5.2).
mod1 <- lm(sales~price+advert, data=andy)
smod1 <- summary(mod1)
Rsq <- smod1$r.squared
anov <- anova(mod1)
dfr <- data.frame(anov)
kable(dfr, caption="Anova table for the basic *andy* model")

84 CHAPTER 5. THE MULTIPLE REGRESSION MODEL

Table 5.8 shows that price has the largest contribution to the reduction of variablity
in the residuals; since total sum of squares is SST = 3115.482 (equal to the sum
of column Sum.Sq in Table 5.8), the portion explained by price is 1219.091, the
one explained by advert is 177.448, and the portion still remaining in the residuals
is SSE = 1718.943. The portion of variability explained by regression is equal
to the sum of the first two items in the Sum.Sq column of the anova table, those
corresponding to price and advert: SSR = 1396.539.

RStudio displays the values of all named variables in the Environment window (the
NE panel of your screen). Please check, for instance, that R2 (named Rsq in the
previous code sequence) is equal to 0.448.

Chapter 6

Further Inference in Multiple
Regression

rm(list=ls())
library(PoEdata) #for PoE datasets
library(knitr) #for referenced tables with kable()
library(xtable) #makes data frame for kable
library(effects)
library(car)
library(AER)
library(broom) #for tidy lm output and function glance()
library(stats)

New package: broom (Robinson, 2016).

6.1 Joint Hypotheses and the F-statistic

A joint hypothesis is a set of relationships among regression parameters, relation-
ships that need to be simultaneously true according to the null hypothesis. Joint
hypotheses can be tested using the F -statistic that we have already met. Its formula
is given by Equation (6.1). The F -statistic has an F distribution with the degrees
of freedom J and N − K.

F = (SSER − SSEU) / J

SSEU / (N − K)
∼ F(J, N−K) (6.1)

In Equation (6.1) the subscript U stands for “unrestricted,” that is, the initial

85

86 CHAPTER 6. FURTHER INFERENCE IN MULTIPLE REGRESSION

regression equation; the “restricted” equation is a new equation, obtained from
the initial one, with the relationships in the null hypothesis assumed to hold. For
example, if the initial equation is Equation (6.2) and the null hypothesis is Equation
(6.3), then the restricted equation is Equation (6.4).

y = β1 + β2x2 + β3x3 + β4x4 + e (6.2)

H0 : β2 = 0 AND β3 = 0; HA : β2 ̸= 0 OR β3 ̸= 0 (6.3)

y = β1 + β4x4 + e (6.4)

The symbol J in the F formula (Equation (6.1)) is the first (numerator) degrees of
freedom of the F statistic and is equal to the number of simultaneous restrictions
in the null hypothesis (Equation (6.3)); the second (the denominator) degrees of
freedom of the F -statistic is N − K, which is the usual degrees of freedom of the
unrestricted regression model (Equation (6.2)). The practical procedure to test a
joint hypothesis like the one in Equation (6.3) is to estimate the two regressions
(unrestricted and restricted) and to calculate the F -statistic.

6.2 Testing Simultaneous Hypotheses

Let’s look, again, at the quadratic form of the andy equation (Equation (6.5)).

sales = β1 + β2price + β3advert + β4advert2 + e (6.5)

Equation (6.5) has two terms that involve the regressor advert, of which at least one
needs to be significant for a relationship between advert and sales to be established.
To test if such a relationship exists, we can formulate the following test:

H0 : β3 = 0 AND β4 = 0; HA : β3 ̸= 0 OR β4 ̸= 0(#jointhypandysq6) (6.6)

I have already mentioned that R can do an F test quite easily (remember the
function linearHypothesis?), but for learning purposes let us calculate the F -
statistic in steps. The next code sequence uses information in the anova-type object,
which, remember, can be visualized simply by typing the name of the object in the
RStudio’s Console window.

6.2. TESTING SIMULTANEOUS HYPOTHESES 87

alpha <- 0.05
data("andy", package="PoEdata")
N <- NROW(andy) #Number of observations in dataset
K <- 4 #Four Betas in the unrestricted model
J <- 2 #Because Ho has two restrictions
fcr <- qf(1-alpha, J, N-K)
mod1 <- lm(sales~price+advert+I(advert^2), data=andy)
anov <- anova(mod1)
anov # prints 'anova' table for the unrestricted model

Analysis of Variance Table
##
Response: sales
Df Sum Sq Mean Sq F value Pr(>F)
price 1 1219.1 1219.1 56.495 1.32e-10 ***
advert 1 177.4 177.4 8.223 0.00544 **
I(advert^2) 1 186.9 186.9 8.659 0.00439 **
Residuals 71 1532.1 21.6

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
SSEu <- anov[4, 2]
mod2 <- lm(sales~price, data=andy) # restricted
anov <- anova(mod2)
anov # prints the 'anova' table for the restrictred model

Analysis of Variance Table
##
Response: sales
Df Sum Sq Mean Sq F value Pr(>F)
price 1 1219 1219 46.93 1.97e-09 ***
Residuals 73 1896 26

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
SSEr <- anov[2,2]
fval <- ((SSEr-SSEu)/J) / (SSEu/(N-K))
pval <- 1-pf(fval, J, N-K)

The calculated F -statistic is fval = 8.441 and the critical value corresponding to a
significance level α = 0.05 is 3.126, which rejects the null hypothesis that both β3
and β4 are zero. The p-value of the test is p = 0.0005.

Using the linearHypothesis() function should produce the same result:

88 CHAPTER 6. FURTHER INFERENCE IN MULTIPLE REGRESSION

Hnull <- c("advert=0", "I(advert^2)=0")
linearHypothesis(mod1,Hnull)

Linear hypothesis test
##
Hypothesis:
advert = 0
I(advert^2) = 0
##
Model 1: restricted model
Model 2: sales ~ price + advert + I(advert^2)
##
Res.Df RSS Df Sum of Sq F Pr(>F)
1 73 1896
2 71 1532 2 364.3 8.441 0.000514 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The table generated by the linearHypothesis() function shows the same values of
the F -statistic and p-value that we have calculated before, as well as the residual sum
of squares for the restricted and unrestricted models. Please note how I formulate the
joint hypothesis as a vector of character values in which the names of the variables
perfectly match those in the unrestricted model.

Testing the overall significance of a model amounts to testing the joint hypothesis
that all the slope coefficients are zero. R does automatically this test and the
resulting F -statistic and p-value are reported in the regression output.
summary(mod1)

##
Call:
lm(formula = sales ~ price + advert + I(advert^2), data = andy)
##
Residuals:
Min 1Q Median 3Q Max
-12.255 -3.143 -0.012 2.851 11.805
##
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 109.719 6.799 16.14 < 2e-16 ***
price -7.640 1.046 -7.30 3.2e-10 ***
advert 12.151 3.556 3.42 0.0011 **
I(advert^2) -2.768 0.941 -2.94 0.0044 **

6.2. TESTING SIMULTANEOUS HYPOTHESES 89

Table 6.1: Tidy ’summary(mod1)’ output

term estimate std.error statistic p.value
(Intercept) 109.71904 6.799045 16.13742 0.000000
price -7.64000 1.045939 -7.30444 0.000000
advert 12.15124 3.556164 3.41695 0.001052
I(advert^2) -2.76796 0.940624 -2.94269 0.004393

Table 6.2: ’Tidy(mod1)’ output

term estimate std.error statistic p.value
(Intercept) 109.71904 6.799045 16.13742 0.000000
price -7.64000 1.045939 -7.30444 0.000000
advert 12.15124 3.556164 3.41695 0.001052
I(advert^2) -2.76796 0.940624 -2.94269 0.004393

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
Residual standard error: 4.65 on 71 degrees of freedom
Multiple R-squared: 0.508, Adjusted R-squared: 0.487
F-statistic: 24.5 on 3 and 71 DF, p-value: 5.6e-11

The F -statistic can be retrieved from summary(mod1) or by using the function
glance(modelname) in package broom, as shown in the following code lines. The
function tidy, also from package broom organizes regression output (mainly the co-
efficients and their statistics) in a neat table. Both glance and tidy create output
in the form of data.frame, which makes it suitable for use by other functions such as
kable and ggplot2. Please also note that tidy(mod1) and tidy(summary(mod1))
produce the same result, as shown in Tables 6.1 and 6.2. As always, we can use
the function names to obtain a list of the quantities available in the output of the
glance function.
smod1 <- summary(mod1)
kable(tidy(smod1), caption="Tidy 'summary(mod1)' output")

fval <- smod1$fstatistic

library(broom)
kable(tidy(mod1), caption="'Tidy(mod1)' output")

90 CHAPTER 6. FURTHER INFERENCE IN MULTIPLE REGRESSION

Table 6.3: Function ’glance(mod1)’ output

Rsq AdjRsq sig F pF K logL AIC BIC dev df.res
0.51 0.49 4.65 24.46 0 4 -219.55 449.11 460.7 1532.08 71

glance(mod1)$statistic #Retrieves the F-statistic

[1] 24.4593
names(glance(mod1)) #Shows what is available in 'glance'

[1] "r.squared" "adj.r.squared" "sigma" "statistic"
[5] "p.value" "df" "logLik" "AIC"
[9] "BIC" "deviance" "df.residual"
kable(glance(mod1),
caption="Function 'glance(mod1)' output", digits=2,
col.names=(c("Rsq","AdjRsq","sig","F",
"pF","K","logL","AIC","BIC","dev","df.res")))

Table 6.3 shows a summary of the quadratic andy model (mod1), where I have
changed the names of various items so that the table fits the width of the page.
When retrieving these variables, make sure you use the original names as indicated
by the names(glance(mod1)) command.

When testing a two-tail single (not joint) null hypothesis, the t and F tests are
equivalent. However, one-tail tests, single or joint cannot be easily performed by an
F test.

Let us solve one more exercise involving a joint hypothesis with linear combinations
of regression coefficients. Suppose we want to test the simultaneous hypotheses that
the monthly advertising expenditure advert0 = $1900 in the quadratic andy model
(Equation (6.5)) satisfies the profit-maximizing condition β3 + 2β4advert0 = 1 , and
that, when price = $6 and advert = $1900 sales revenue is $80 000.
hyp <- c("advert+3.8*I(advert^2)=1",
"(Intercept)+6*price+1.9*advert+3.61*I(advert^2)=80")
lhout <- tidy(linearHypothesis(mod1,hyp))
kable(lhout,
caption="Joint hypotheses with the 'linearHypothesis' function")

Table 6.4 includes the F -statistic of the test, F = 5.741229 and its p-value p =
0.004885. Please be aware that the function tidy changes the names in the out-
put of linearHypothesis. A useful exercise is to compare the raw output of

6.3. OMITTED VARIABLE BIAS 91

Table 6.4: Joint hypotheses with the ’linearHypothesis’ function

res.df rss df sumsq statistic p.value
73 1779.86 NA NA NA NA
71 1532.08 2 247.776 5.74123 0.004885

linearHypothesis with the output generated by tidy(linearHypothesis(mod1)).
There are several other possibilities to compare two regression models, such as a re-
stricted and unrestricted ones in R, such as the anova() function or Wald tests.
These are going to be mentioned in later chapters.

6.3 Omitted Variable Bias

Consider the general model with two regressors in Equation (6.7), a model that I
will call the true model.

y = β1 + β2x2 + β3x3 + e (6.7)

Suppose we are only interested in estimating β2, but there is no data available for
x3, or for other reasons x3 is omitted from the model in Equation (6.7). What is the
error in the estimate of β2 introduced by omitting x3? Equation (6.8) shows what
is left of the true model after omitting x3.

y = β1 + β2x2 + u (6.8)

Let b∗
2 be the estimate of β2 when x3 is omitted. Equation (6.9) gives the bias

in this simple, two-regressor case. The formula shows that bias depends on the
direct relationship between the omitted regressor and response through β3, as well
as the correlation between the omitted and the included regressors. When β3 and
cov(x2, x3) are both positive or both negative the bias is positive (the incorrect
model overestimates the true β2), and when they are of opposite signs the bias is
negative (β2 is underestimated)

bias(b∗
2) = E(b2)∗ − β2 = β3

̂cov(x2, x3)
var(x2)

(6.9)

The example in this section uses the dataset edu_inc, and two models: one where the
response variable family income (faminc) is explained by the regressors husband’s
education (he) and wife’s education (we), and another model, where the we regressor

92 CHAPTER 6. FURTHER INFERENCE IN MULTIPLE REGRESSION

Table 6.5: The correct model

term estimate std.error statistic p.value
(Intercept) -5533.63 11229.533 -0.492775 0.622426
he 3131.51 802.908 3.900209 0.000112
we 4522.64 1066.327 4.241328 0.000027

Table 6.6: The incorrect model (’we’ omitted)

term estimate std.error statistic p.value
(Intercept) 26191.27 8541.108 3.06650 0.002304
he 5155.48 658.457 7.82964 0.000000

is omitted. The purpose is to compare the estimates coming from the two models
and see if there is a significant difference between them.
data("edu_inc", package="PoEdata")
mod1 <- lm(faminc~he+we, data=edu_inc)
mod2 <- lm(faminc~he, data=edu_inc)
kable(tidy(mod1), caption="The correct model")

kable(tidy(mod2),
caption="The incorrect model ('we' omitted)")

The marginal effect of husband’s education is much lower in the incorrect model.
Let us apply the logic of Equation (6.9) to the edu_inc model. The direct effect of
the omitted regressor (we) on response (faminc) is likely to be positive in theory
(higher education generates higher income); the correlation between husband’s and
wife’s education is also likely to be positive if we believe that people generally marry
persons within their entourage. Thus, we should expect that omitting the regressor
we should produce an overestimated marginal effect of he. Our data happen to
confirm this supposition, though there is some chance that they might not.

Understanding the problem of omitted variable is very important because it can
justify the choice of a particular model. If one is not interested in the effect of
variable x3 on y and can convince that x3 is uncorrelated with x2, one can argue
with criticism about omitting the important regressor x3.

6.4. IRRELEVANT VARIABLES 93

Table 6.7: Correct ’faminc’ model

term estimate std.error statistic p.value
(Intercept) -7755.33 11162.935 -0.694739 0.487599
he 3211.53 796.703 4.031022 0.000066
we 4776.91 1061.164 4.501574 0.000009
kl6 -14310.92 5003.928 -2.859937 0.004447

Table 6.8: Incorrect ’faminc’ with irrelevant variables

term estimate std.error statistic p.value
(Intercept) -7558.613 11195.41 -0.675153 0.499948
he 3339.792 1250.04 2.671750 0.007838
we 5868.677 2278.07 2.576165 0.010329
kl6 -14200.184 5043.72 -2.815419 0.005100
xtra_x5 888.843 2242.49 0.396364 0.692037
xtra_x6 -1067.186 1981.69 -0.538524 0.590499

6.4 Irrelevant Variables

We have seen the effect of omitting a relevant regressor (the effect is biased estimates
and lower variances of the included regressors). But what happens if irrelevant
variables are incorrectly included? Not surprisingly, this increases the variances
(lowers the precision) of the other variables in the model. The next example uses the
same (edu_inc) dataset as above, but includes two artificially generated variables,
xtra_x5 and xtra_x6 that are correlated with he and we but, obviously, have no
role in determining y. Let us compare two models, of which one includes these
irrelevant variables.
mod3 <- lm(faminc~he+we+kl6, data=edu_inc)
mod4 <- lm(faminc~he+we+kl6+xtra_x5+xtra_x6, data=edu_inc)
kable(tidy(mod3), caption="Correct 'faminc' model")

kable(tidy(mod4),
caption="Incorrect 'faminc' with irrelevant variables")

A comparison of the two models shown in Tables 6.7 and 6.8 indicates that the
inclusion of the two irrelevant variables has increased the marginal effects, standard
errors, and the p-values of he and we. Thus, including irrelevant variables may
incorrectly diminish the significance of the “true” regressors.

94 CHAPTER 6. FURTHER INFERENCE IN MULTIPLE REGRESSION

6.5 Model Selection Criteria

The main tools of building a model should be economic theory, sound reasoning
based on economic principles, and making sure that the model satisfies the Gauss-
Markov assumptions. One should also consider the possibility of omitted variable
bias and the exclusion of irrelevant variables that may increase variablility in the
estimates. After all these aspects have been considered and a model established,
there are a few quantities that help comparing different models. These are R2,
adjusted R2 (R̄2), the Akaike information criterion (AIC), and the Schwarz (or
Bayesian information) criterion (SC or BIC).

We have already seen how to calculate the coefficient of determination, R2 and how
it measures the distance between the regression line and the observation points. A
major disadvantage of R2 is that it increases every time a new regressor is included
in the model, whether the regressor is relevant or not. The idea of counterbalancing
this property of R2 has lead to a new measure, adjusted R2, denoted by R̄2, given
by Equation (6.10).

R̄2 = 1 − SSE / (N − K)
SST / (N − 1)

(6.10)

Adjusted R2, while addressing the problem with R2, introduces other problems.
In general, no single goodness of fit measure is perfect. The Akaike information
criterion (AIC) and the Schwarz criterion use the same idea of penalizing the in-
troduction of extra regressors. Their formulas are given in Equations (6.11) and
(6.12).

AIC = ln

(
SSE

N

)
+ 2K

N
(6.11)

SC = ln

(
SSE

N

)
+ K ln(N)

N
(6.12)

Among several models, the best fit is the one that maximizes R2 or R̄2. On the
contrary, the best model must minimize AIC or BIC. Some computer packages,
R included, calculate AIC and BIC differentlly than Equations (6.11) and (6.12)
indicate. However, the ranking of the various models is the same.

The following code sequence needs some explanation. Function as.numeric extracts
only the numbers from an object such as glance(mod1), which also contains row and
column names. The purpose is to put together a table with information comming
from several models. Function rbind gathers several rows in a matrix, which then is
made into a data.frame and given the name tab. The part of code [,c(1,2,8,9)]

6.5. MODEL SELECTION CRITERIA 95

Table 6.9: Model comparison, ’faminc’

Rsq AdjRsq AIC BIC
he 0.1258 0.1237 10316.7 10328.8
he, we 0.1613 0.1574 10300.9 10317.1
he, we, kl6 0.1772 0.1714 10294.7 10315.0
he, we, kl6, xtra_x5, xtra_x6 0.1778 0.1681 10298.4 10326.8

at the end of rbind instructs R to pick all rows, but only columns 1, 2, 8, and 9
from the glance table. Function row.names assigns or changes the row names in a
data frame; finally, kable, which we have already encountered several times, prints
the table, assigns column names, and gives a caption to the table. While there are
many ways to create a table in R, I use kable from package knitr because it allows
me to cross-reference tables within this book. kable only works with data frames.
mod1 <- lm(faminc~he, data=edu_inc)
mod2 <- lm(faminc~he+we, data=edu_inc)
mod3 <- lm(faminc~he+we+kl6, data=edu_inc)
mod4 <- lm(faminc~he+we+kl6+xtra_x5+xtra_x6, data=edu_inc)
r1 <- as.numeric(glance(mod1))
r2 <- as.numeric(glance(mod2))
r3 <- as.numeric(glance(mod3))
r4 <- as.numeric(glance(mod4))
tab <- data.frame(rbind(r1, r2, r3, r4))[,c(1,2,8,9)]
row.names(tab) <- c("he","he, we","he, we, kl6",

"he, we, kl6, xtra_x5, xtra_x6")
kable(tab,
caption="Model comparison, 'faminc' ", digits=4,
col.names=c("Rsq","AdjRsq","AIC","BIC"))

Tabla 6.9 shows the four model selection criteria for four different models based on
the edu_inc dataset, with the first column showing the variables included in each
model. It is noticeable that three of the criteria indicate the third model as the best
fit, while one, namely R2 prefers the model that includes the irrelevant variables
xtra_x5 and xtra_x6.

As a side note, a quick way of extracting the information criteria from an lm()
object is illustrated in the following code fragment.
library(stats)
smod1 <- summary(mod1)
Rsq <- smod1$r.squared
AdjRsq <- smod1$adj.r.squared

96 CHAPTER 6. FURTHER INFERENCE IN MULTIPLE REGRESSION

aic <- AIC(mod1)
bic <- BIC(mod1)
c(Rsq, AdjRsq, aic, bic)

[1] 0.125801 0.123749 10316.651535 10328.828905

Another potentially useful tool for building an appropriate model is the Ramsey
specification test, RESET. This method automatically adds higher-order polynomial
terms to your model and tests the joint hypothesis that their coefficients are all zero.
Thus, the null hypothesis of the test is H0: “No higher-order polynomial terms are
necessary”; if we reject the null hypothesis we need to consider including such terms.

The R function that performs a RESET test is resettest, which requires the fol-
lowing argumets: formula, the formula of the model to be tested or the name of
an already calculated lm object; power, a set of integers indicating the powers of
the polynomial terms to be included; type, which could be one of “fitted”, “regres-
sor”, or “princomp”, indicating whether the aditional terms should be powers of the
regressors, fitted values, or the first principal component of the regressor matrix;
and, finally, data, which specifies the dataset to be used if a formula has been pro-
vided and not a model object. The following code applies the test to the complete
faminc model, first using only quadratic terms of the fitted values, then using both
quadratic and cubic terms.
mod3 <- lm(faminc~he+we+kl6, data=edu_inc)
resettest(mod3, power=2, type="fitted")

##
RESET test
##
data: mod3
RESET = 5.984, df1 = 1, df2 = 423, p-value = 0.0148
resettest(mod3, power=2:3, type="fitted")

##
RESET test
##
data: mod3
RESET = 3.123, df1 = 2, df2 = 422, p-value = 0.0451

The number labeled as RESET in the output is the F -statistic of the test under the
null hypothesis followed by the two types of degrees of freedom of the F distribution
and the p-value. In our case both p-values are slightly lower than 0.05, indicating
that the model marginally fails the specification test and some higher order terms
may be necessary.

6.6. COLLINEARITY 97

Table 6.10: A simple linear ’mpg’ model

term estimate std.error statistic p.value
(Intercept) 42.91551 0.834867 51.4040 0
cyl -3.55808 0.145676 -24.4247 0

Table 6.11: Multivariate ’mpg’ model

term estimate std.error statistic p.value
(Intercept) 44.370962 1.480685 29.966509 0.000000
cyl -0.267797 0.413067 -0.648313 0.517166
eng -0.012674 0.008250 -1.536225 0.125298
wgt -0.005708 0.000714 -7.995143 0.000000

6.6 Collinearity

There is collinearity among regressors when two or more regressors move closely
with each other or display little variability. A consequence of collinearity is large
variance in the estimated parameters, which increases the chances of not finding
them significantly different from zero. The estimates are, however, unbiased since
(imperfect) collinearity does not technically violate the Gauss-Markov assumptions.
Collinearity tends to show insignificant coefficients even when measures of goodness-
of-fit such as R2 or overall significance (the F -statistic) may be quite large.

Let us consider the example of the dataset cars, where mpg is miles per gallon, cyl
is number of cylinders, eng is engine displacement in cubic inches, and wgt is the
weight of the vehicle in pounds.
data("cars", package="PoEdata")
mod1 <- lm(mpg~cyl, data=cars)
kable(tidy(mod1), caption="A simple linear 'mpg' model")

This naive model suggests a strong effect of the number of cylinders on fuel economy,
but if we introduce more terms in the equation this result changes substantially.
mod2 <- lm(mpg~cyl+eng+wgt, data=cars)
kable(tidy(mod2), caption="Multivariate 'mpg' model")

In the model summarized in Table 6.11 the number of cylinders becomes insignificant
alltogether, a sharp change with respect to the previous specification. This high
sensitivity of the estimates when other variables are introduced is also a sign of
collinearity. Indeed, it is reasonable to believe that the characteristics of the vehicles
vary together: heavier vehicles have more cylinders and bigger engines.

98 CHAPTER 6. FURTHER INFERENCE IN MULTIPLE REGRESSION

Table 6.12: Variance inflation factors for the ’mpg’ regression model

regressor VIF
cyl 10.51551
eng 15.78646
wgt 7.78872

A test that may be useful in detecting collinearity is to calculate the variance infla-
tion factor, V IF , for each regressor. The rule of thumb is that a regressor produces
collinearity if its V IF is greater than 10. Equation (6.13) shows the formula for the
variance inflation factor, where R2

k is the R2 from regressing the variable xk on all
the remaining regressors.

V IFk = 1
1 − R2

k

(6.13)

mod2 <- lm(mpg~cyl+eng+wgt, data=cars)
tab <- tidy(vif(mod2))
kable(tab,
caption="Variance inflation factors for the 'mpg' regression model",

col.names=c("regressor","VIF"))

The results in Table 6.12 show that the regressors cyl and eng fail the collinearity
test, having V IF s greater than 10.

6.7 Prediction and Forecasting

We have previously discussed the semantic difference between prediction and fore-
casting, with prediction meaning the estimation of an expected value of the response
and forecasting meaning an estimate of a particular value of the response. We men-
tioned that, for the same vector of regressors, prediction has a narrower confidence
interval than forecasting because forecasting includes, besides the uncertainty of the
expected value of the response, the variablility of a particular observation about its
mean. I essentially repeat the same procedure here for the quadratic andy model,
which regresses sales on price, advert, and advert2. The key R function to cal-
culate both predictions and forecasts is the function predict, with the following
arguments: model, which is the name of a model object; newdata, which contains
the new data points where prediction is desired; if newdata is missing, predictions
are calculated for all observations in the dataset; interval, which can be “none”,
“confidence”, or “prediction”, and tells R whether we want only a point estimate of

6.7. PREDICTION AND FORECASTING 99

Table 6.13: Forecasting in the quadratic ’andy’ model

fit lwr upr
76.974 67.5326 86.4155

the response, a prediction with its confidence interval, or a forecast with its confi-
dence interval; level, which is the confidence level we want; if missing, level is
95%; other arguments (see ?predict() for more details).
predpoint <- data.frame(price=6, advert=1.9)
mod3 <- lm(sales~price+advert+I(advert^2), data=andy)
kable(tidy(predict(mod3, newdata=predpoint,

interval="prediction")),
caption="Forecasting in the quadratic 'andy' model")

Table 6.13 displays the point estimate and forecast interval estimate for the data
point price = $6 and advert = 1.9, which, remember, stands for advertising expen-
diture of $1900.

100 CHAPTER 6. FURTHER INFERENCE IN MULTIPLE REGRESSION

Chapter 7

Using Indicator Variables

rm(list=ls())
library(bookdown)
library(PoEdata)#for PoE datasets
library(knitr) #for referenced tables with kable()
library(xtable) #makes data frame for kable
library(effects)
library(car)
library(AER)
library(broom) #for tidy lm output and function glance()
library(stats)
library(lmtest)#for coeftest() and other test functions
library(stargazer) #nice and informative tables

This chapter introduces the package lmtest (Hothorn et al., 2015).

7.1 Factor Variables

Indicator variables show the presence of a certain non-quantifiable attribute, such as
whether an individual is male or female, or whether a house has a swimming pool. In
R, an indicator variable is called factor, category, or ennumerated type and there is
no distinction between binary (such as yes-no, or male-female) or multiple-category
factors.

Factors can be either numerical or character variables, ordered or not. R auto-
matically creates dummy variables for each category within a factor variable and
excludes a (baseline) category from a model. The choice of the baseline category,

101

102 CHAPTER 7. USING INDICATOR VARIABLES

Table 7.1: Summary for ’utown’ dataset

price sqft age utown pool fplace
Min. :134 Min. :20.0 Min. : 0.00 0:481 0:796 0:482
1st Qu.:216 1st Qu.:22.8 1st Qu.: 3.00 1:519 1:204 1:518
Median :246 Median :25.4 Median : 6.00 NA NA NA
Mean :248 Mean :25.2 Mean : 9.39 NA NA NA
3rd Qu.:278 3rd Qu.:27.8 3rd Qu.:13.00 NA NA NA
Max. :345 Max. :30.0 Max. :60.00 NA NA NA

as well as which categories should be included can be changed using the function
contrasts().

The following code fragment loads the utown data, declares the indicator variables
utown, pool, and fplace as factors, and displays a summary statistics table (Table
7.1). Please notice that the factor variables are represented in the summary table
as count data, i.e., how many observations are in each category.
library(stargazer); library(ggplot2)
data("utown", package="PoEdata")
utown$utown <- as.factor(utown$utown)
utown$pool <- as.factor(utown$pool)
utown$fplace <- as.factor(utown$fplace)
kable(summary.data.frame(utown),

caption="Summary for 'utown' dataset")

This example uses the utown dataset, where prices are in thousands, sqft is the liv-
ing area is hundreds of square feet, and utown marks houses located near university.

7.2 Examples

mod4 <- lm(price~utown*sqft+age+pool+fplace, data=utown)
kable(tidy(mod4), caption="The 'house prices' model")

bsqft <- 1000*coef(mod4)[["sqft"]]
bsqft1 <- 1000*(coef(mod4)[["sqft"]]+coef(mod4)[["utown1:sqft"]])

Notice how the model in the above code sequence has been specified: the term
utown*sqft created three terms: utown, sqft, and the interaction term utown:sqft.
Table 7.2 shows the estimated coefficients and their statistics; please notice how the
factor variables have been market at the end of their names with 1 to show which

7.2. EXAMPLES 103

Table 7.2: The ’house prices’ model

term estimate std.error statistic p.value
(Intercept) 24.499985 6.191721 3.95689 0.000081
utown1 27.452952 8.422582 3.25945 0.001154
sqft 7.612177 0.245176 31.04775 0.000000
age -0.190086 0.051205 -3.71229 0.000217
pool1 4.377163 1.196692 3.65772 0.000268
fplace1 1.649176 0.971957 1.69676 0.090056
utown1:sqft 1.299405 0.332048 3.91331 0.000097

category they represent. For instance, utown1 is the equivalent of a dummy variable
equal to 1 when utown is equal to 1. When a factor has n categories the regression
output will show n − 1 dummies marked to identify each category.

According to the results in Table 7.2, an extra hundred square feet increases the price
by bsqft=$7612.18 if the house is not near university and by bsqft1 = $8911.58
if the house is near university. This example shows how interaction terms allow
distinguishing the marginal effect of a continuous variable (sqft) for one category
(utown=1) from the marginal effect of the same continuous variable within another
category (utown=0).

In general, the marginal effect of a regressor on the response is, as we have seen
before, the partial derivative of the response with respect to that regressor. For
example, the marginal effect of sqft in the house prices model is as shown in
Equation (7.1).

∂p̂rice

∂sqft
= b[sqft] + utown × b[utown : sqft] (7.1)

Let us look at another example, the wage equation using the dataset cps4_small.
data("cps4_small", package="PoEdata")
names(cps4_small)

[1] "wage" "educ" "exper" "hrswk" "married" "female" "metro"
[8] "midwest" "south" "west" "black" "asian"

This dataset already includes dummy variables for gender, race, and region, so that
we do not need R’s capability of building these dummies for us. Although usually
it is useful to declare the categorical variables as factors, I will not do so this time.
Let us consider the model in Equation (7.2).

104 CHAPTER 7. USING INDICATOR VARIABLES

Table 7.3: A wage-discrimination model

term estimate std.error statistic p.value
(Intercept) -5.28116 1.900468 -2.77887 0.005557
educ 2.07039 0.134878 15.35009 0.000000
black -4.16908 1.774714 -2.34916 0.019011
female -4.78461 0.773414 -6.18635 0.000000
black:female 3.84429 2.327653 1.65158 0.098937

wage = β1 + β2educ + δ1black + δ2female + γ(black × female) (7.2)

mod5 <- lm(wage~educ+black*female, data=cps4_small)
delta1 <- coef(mod5)[["black"]]
delta2 <- coef(mod5)[["female"]]
gamma <- coef(mod5)[["black:female"]]
blfm <- delta1+delta2+gamma
kable(tidy(mod5), caption="A wage-discrimination model")

What are the expected wages for different categories, according to Equation (7.2)
and Table 7.3?

• white male: β1 + β2educ (the baseline category)
• black male: β1 + β2educ + δ1
• white female: β1 + β2educ + δ2
• black female: β1 + β2educ + δ1 + δ2 + γ

These formulas help evaluating the differences in wage expectations between different
categories. For instance, given the same education, the difference between black
female and white male is δ1 + δ2 + γ = −5.11, which means that the average black
female is paid less by $5.11 than the average white man.

To test the hypothesis that neither race nor gender affects wage is to test the joint
hypothesis H0 : δ1 = 0, δ2 = 0, γ = 0 against the alterntive that at least one of
these coefficients is different from zero. We have learned already how to perform an
F -test the hard way and how to retrieve the quantities needed for the F -statistic
(SSER, SSEU , J , and N − K). Let us this time use R’s linearHypothesis
function.
hyp <- c("black=0", "female=0", "black:female=0")
tab <- tidy(linearHypothesis(mod5, hyp))
kable(tab,
caption="Testing a joint hypothesis for the 'wage' equation")

7.3. COMPARING TWO REGRESSIONS: THE CHOW TEST 105

Table 7.4: Testing a joint hypothesis for the ’wage’ equation

res.df rss df sumsq statistic p.value
998 135771 NA NA NA NA
995 130195 3 5576.47 14.2059 0

The results in Table 7.4 indicates that the null hypothesis of no discrimination can
be rejected.

7.3 Comparing Two Regressions: the Chow Test

By interacting a binary indicator variable with all the terms in a regression and
testing that the new terms are insignificant we can determine if a certain category
is significantly different than the other categories. Starting with the wage regression
in Equation (7.2), let us include the indicator variable “south”.
dnosouth <- cps4_small[which(cps4_small$south==0),]#no south
dsouth <- cps4_small[which(cps4_small$south==1),] #south
mod5ns <- lm(wage~educ+black*female, data=dnosouth)
mod5s <- lm(wage~educ+black*female, data=dsouth)
mod6 <- lm(wage~educ+black*female+south/(educ+black*female),

data=cps4_small)
stargazer(mod6, mod5ns, mod5s, header=FALSE,

type=.stargazertype,
title="Model comparison, 'wage' equation",
keep.stat="n",digits=2, single.row=TRUE,
intercept.bottom=FALSE)

The table titled “Model comparison, ‘wage’ equation” presents the results of three
equations: equation (1) is the full wage model with all terms interacted with variable
south; equation (2) is the basic ‘wage’ model shown in Equation (7.2) with the
sample restricted to non-south regions, and, finally, equation (3) is the same as (2)
but with the sample restricted only to the south region. (This table is constructed
with the function stargazer from the package by the same name (Hlavac, 2015).)

However, in R it is not necessary to split the data manually as I did in the above
code sequence; instead, we just write two equations like mod5 and mod6 and ask R to
do a Chow test to see if the two equations are statistically identical. The Chow test
is performed in R by the function anova, with the results presented in Table 7.6,
where the F statistic is equal to 0.320278 and the corresponding p-value of 0.900945.

106 CHAPTER 7. USING INDICATOR VARIABLES

Table 7.5: Model comparison, ’wage’ equation

Dependent variable:
wage

(1) (2) (3)
Constant −6.61∗∗∗ (2.34) −6.61∗∗∗ (2.30) −2.66 (3.42)
educ 2.17∗∗∗ (0.17) 2.17∗∗∗ (0.16) 1.86∗∗∗ (0.24)
black −5.09∗ (2.64) −5.09∗ (2.60) −3.38 (2.58)
female −5.01∗∗∗ (0.90) −5.01∗∗∗ (0.89) −4.10∗∗∗ (1.58)
south 3.94 (4.05)
black:female 5.31 (3.50) 5.31 (3.45) 2.37 (3.38)
educ:south −0.31 (0.29)
black:south 1.70 (3.63)
female:south 0.90 (1.77)
black:female:south −2.94 (4.79)
Observations 1,000 704 296

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 7.6: Chow test for the ’wage’ equation

Res.Df RSS Df Sum of Sq F Pr(>F)
995 130195 NA NA NA NA
990 129984 5 210.258 0.320278 0.900945

kable(anova(mod5, mod6),
caption="Chow test for the 'wage' equation")

Table 7.6 indicates that the null hypothesis that the equations are equivalent cannot
be rejected. In other words, our test provides no evidence that wages in the south
region are statistically different from the rest of the regions.

7.4 Indicator Variables in Log-Linear Models

An indicator regressor is essentially no different from a continuous one and its in-
terpretation is very similar to the one we have studied in the context of log-linear
models. In a model like log(y) = β1 +β2x+δD, where D is an indicator variable, the
percentage difference between the two categories represented by D can be calculated

7.5. THE LINEAR PROBABILITY MODEL 107

in two ways, both using the coefficient δ:

• approximate: %∆y ∼= 100δ
• exact: %∆y = 100(eδ − 1)

Let us calculate these two effets in a log-linear wage equation based on the dataset
cps4_small.
data("cps4_small", package="PoEdata")
mod1 <- lm(log(wage)~educ+female, data=cps4_small)
approx <- 100*coef(mod1)[["female"]]
exact <- 100*(exp(coef(mod1)[["female"]])-1)

The results indicate a percentage difference in expected wage between females and
males as follows: %∆wage = −24.32% (approximate), or %∆wage = −21.59%
(exact).

7.5 The Linear Probability Model

Linear probability models are regression models in which the response, rather than
a regressor is a binary indicator variable. However, since the regressors can be either
continuous or factor variables, the fitted values will be continuous. Equation (7.3),
where y ∈ {0, 1} shows a general linear probability model.

y = β1 + β2x2 + ... + βkxk + e (7.3)

How can a continous fitted variable be interpreted when the actual response is
binary? As it turns out, the fitted value represents the probability that the response
takes the value 1, ŷ = Pr(y = 1). There are two major problems with this model.
First, the model is heteroskedastic, with the variance being larger in the middle
range of the fitted values; second, the fitted variable being continuous, it can take
values, unlike a probability function, outside the interval [0, 1].

The next example, based on the dataset coke estimates the probability that a cus-
tomer chooses coke when coke or pepsi are displayed. Besides the two indicator
variables disp_coke and disp_pepsi, the model includes the price ratio between
coke and pepsi.
Linear probability example
data("coke", package="PoEdata")
mod2 <- lm(coke~pratio+disp_coke+disp_pepsi, data=coke)
kable(tidy(mod2),
caption="Linear probability model, the 'coke' example")

108 CHAPTER 7. USING INDICATOR VARIABLES

Table 7.7: Linear probability model, the ’coke’ example

term estimate std.error statistic p.value
(Intercept) 0.890215 0.065485 13.59421 0.000000
pratio -0.400861 0.061349 -6.53407 0.000000
disp_coke 0.077174 0.034392 2.24397 0.025026
disp_pepsi -0.165664 0.035600 -4.65352 0.000004

0.5 1.0 1.5 2.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

price ratio

P
r[

co
ke

]

00
10
11
01

Figure 7.1: Linear probability: the ’coke’ example

Graph for the linear probability model
b00 <- coef(mod2)[[1]]
b10 <- b00+coef(mod2)[["disp_coke"]]
b11 <- b10+coef(mod2)[["disp_pepsi"]]
b01 <-b11-coef(mod2)[["disp_coke"]]
b2 <- coef(mod2)[["pratio"]]
plot(coke$pratio, coke$coke,

ylab="Pr[coke]", xlab="price ratio")
abline(b00, b2, lty=2, col=2)
abline(b10,b2, lty=3, col=3)
abline(b11,b2, lty=4, col=4)
abline(b01,b2, lty=5, col=5)
legend("topright", c("00","10","11","01"),

lty=c(2,3,4,5), col=c(2,3,4,5))

7.6. TREATMENT EFFECTS 109

Figure 7.1 plots the probalility of choosing coke with respect to the price ratio for
the four possible combinations of the indicator variables disp_coke and disp_pepsi.
In addition, the graph shows the observation points, all located at a height of either
0 or 1. In the legend, the first digit is 0 if coke is not displayed and 1 otherwise;
the second digit does the same for pepsi. Thus, the highest probability of choosing
coke for any given pratio happens when coke is displayed and pepsi is not (the line
marked 10).

7.6 Treatment Effects

Treatment effects models aim at measuring the differences between a treatment group
and a control group. The difference estimator is the simplest such a model and
consists in constructing an indicator variable to distinguish between the two groups.
Consider, for example, Equation (7.4), where di = 1 if observation i belongs to the
treatment group and di = 0 otherwise.

yi = β1 + β2di + ei (7.4)

Thus, the expected value of the response is β1 for the control group and β1 + β2
for the treatment group. Put otherwise, the coefficient on the dummy variable
represents the difference between the treatment and the control group. Moreover, it
turns out that b2, the estimator of β2 is equal to the difference between the sample
averages of the two groups:

b2 = ȳ1 − ȳ0(#diffavg7) (7.5)

The dataset star contains information on students from kindergarten to the third
grade and was built to identify the determinants of student performance. Let us
use this dataset for an example of a difference estimator, as well as an example of
selecting just part of the variables and observations in a dataset.

The next piece of code presents a few new elements, that are used to select only a
set of all the variables in the dataset, then to split the dataset in two parts: one
for small classes, and one for regular classes. Lets look at these elements in the
order in which they appear in the code. The function attach(datasetname) allows
subsequent use of variable names without specifying from which database they come.
While in general doing this is not advisable, I used it to simplify the next lines of
code, which lists the variables I want to extract and assigns them to variable vars.
As soon as I am done with splitting my dataset, I detach() the dataset to avoid
subsequent confusion.

110 CHAPTER 7. USING INDICATOR VARIABLES

The line starregular is the one that actually retrieves the wanted variables and
observations from the dataset. In essence, it picks from the dataset star the lines
for which small==0 (see, no need for star$small as long as star is still attached).
The same about the variable starsmall. Another novelty in the following code
fragment is the use of the R function stargazer() to vizualize a summary table
instead of the usual function summary; stargazer shows a more familiar version of
the summary statistics table.
Project STAR, an application of the simple difference estimator
data("star", package="PoEdata")
attach(star)
vars <- c("totalscore","small","tchexper","boy",

"freelunch","white_asian","tchwhite","tchmasters",
"schurban","schrural")

starregular <- star[which(small==0),vars]
starsmall <- star[which(small==1),vars]
detach(star)
stargazer(starregular, type=.stargazertype, header=FALSE,
title="Dataset 'star' for regular classes")

Table 7.8: Dataset ’star’ for regular classes

Statistic N Mean St. Dev. Min Max
totalscore 4,048 918.201 72.214 635 1,253
small 4,048 0.000 0.000 0 0
tchexper 4,028 9.441 5.779 0 27
boy 4,048 0.513 0.500 0 1
freelunch 4,048 0.486 0.500 0 1
white_asian 4,048 0.673 0.469 0 1
tchwhite 4,048 0.824 0.381 0 1
tchmasters 4,048 0.366 0.482 0 1
schurban 4,048 0.316 0.465 0 1
schrural 4,048 0.475 0.499 0 1

stargazer(starsmall, type=.stargazertype, header=FALSE,
title="Dataset 'star' for small classes")

The two tables titled “Dataset’star’…” display summary statistics for a number of
variables in dataset ‘star’. The difference in the means of totalscore is equal to
13.740553, which should be equal to the coefficient of the dummy variable small in
Equation (7.6). (Note: the results for this dataset seem to be slightly different from
PoE4 because the datasets used are of different sizes.)

7.6. TREATMENT EFFECTS 111

Table 7.9: Dataset ’star’ for small classes

Statistic N Mean St. Dev. Min Max
totalscore 1,738 931.942 76.359 747 1,253
small 1,738 1.000 0.000 1 1
tchexper 1,738 8.995 5.732 0 27
boy 1,738 0.515 0.500 0 1
freelunch 1,738 0.472 0.499 0 1
white_asian 1,738 0.685 0.465 0 1
tchwhite 1,738 0.862 0.344 0 1
tchmasters 1,738 0.318 0.466 0 1
schurban 1,738 0.306 0.461 0 1
schrural 1,738 0.463 0.499 0 1

totalscore = β1 + β2small + e (7.6)

mod3 <- lm(totalscore~small, data=star)
b2 <- coef(mod3)[["small"]]

The difference estimated based on Equation (7.6) is b2 = 13.740553, which coincides
with the difference in means we calculated above.

If the students were randomly assigned to small or regular classes and the number
of observations is large there is no need for additional regressors (there is no omitted
variable bias if other regressors are not correlated with the variable small). In some
instances, however, including other regressors may improve the difference estima-
tor. Here is a model that includes a ‘teacher experience’ variable and some school
characteristics (the students were randomized within schools, but schools were not
randomized).
school <- as.factor(star$schid)#creates dummies for schools
mod4 <- lm(totalscore~small+tchexper, data=star)
mod5 <- lm(totalscore~small+tchexper+school, data=star)
b2n <- coef(mod4)[["small"]]
b2s <- coef(mod5)[["small"]]
anova(mod4, mod5)

Analysis of Variance Table
##
Model 1: totalscore ~ small + tchexper
Model 2: totalscore ~ small + tchexper + school
Res.Df RSS Df Sum of Sq F Pr(>F)

112 CHAPTER 7. USING INDICATOR VARIABLES

Table 7.10: Checking random assignment in the ’star’ dataset

term estimate std.error statistic p.value
(Intercept) 0.325167 0.018835 17.264354 0.000000
boy -0.000254 0.012098 -0.021014 0.983235
white_asian 0.012360 0.014489 0.853110 0.393634
tchexper -0.002979 0.001055 -2.825242 0.004741
freelunch -0.008800 0.013526 -0.650570 0.515350

1 5763 30777461
2 5685 24072033 78 6705428 20.3 <2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

By the introduction of school fixed effects the difference estimate have increased
from 14.306725 to 15.320602. The anova() function, which tests the equivalence of
the two regressions yields a very low p-value indicating that the difference between
the two models is significant.

I have mentioned already, in the context of collinearity that a way to check if there
is a relationship between an independent variable and the others is to regress that
variable on the others and check the overall significance of the regression. The
same method allows checking if the assignments to the treated and control groups
are random. If we regress small on the other regressors and the assignment was
random we should find no significant relationship.
mod6 <- lm(small~boy+white_asian+tchexper+freelunch, data=star)
kable(tidy(mod6),

caption="Checking random assignment in the 'star' dataset")

fstat <- glance(mod6)$statistic
pf <- glance(mod6)$p.value

The F -statistic of the model in Table 7.10 is F = 2.322664 and its corresponding
p-value 0.054362, which shows that the model is overall insignificant at the 5% level
or lower. The coefficients of the independent variables are insignificant or extremely
small (the coefficient on tchexper is statistically significant, but its marginal effect
is a change in the probability that small = 1 of about 0.3 percent). Again, these
results provide fair evidence that the students’ assignment to small or regular classes
was random.

7.7. THE DIFFERENCE-IN-DIFFERENCES ESTIMATOR 113

7.7 The Difference-in-Differences Estimator

In many economic problems, which do not benefit from the luxury of random sam-
ples, the selection into one of the two groups is by choice, thus introducing a selec-
tion bias. The difference estimator is biased to the extent to which selection bias
is present, therefore it is inadequate when selection bias may be present. The more
complex difference-in-differences estimator is more appropriate in such cases.
While the simple difference estimator assumes that before the treatment all units
are identical or, at least, that the assignment to the treatment and control group
is random, the difference-in-differences estimator takes into account any initial het-
erogeneity between the two groups.

The two ‘differences’ in the diference-in-differences estimator are: (i) the difference
in the means of the treatment and control groups in the response variable after the
treatment, and (ii) the difference in the means of the treatment and control groups
in the response variable before the treatment. The ‘difference’ is between after and
before.

Let us denote four averages of the response, as follows:

• ȳT, A Treatment, After
• ȳC, A Control, After
• ȳT, B Treatment, Before
• ȳC, B Control, Before

The difference-in-differences estimator δ̂ is defined as in Equation (7.7).

δ̂ = (ȳT, A − ȳC, A) − (ȳT, B − ȳC, B) (7.7)

Instead of manually calculating the four means and their difference-in-differences,
it is possible to estimate the difference-in-differences estimator and its statistical
properties by running a regression that includes indicator variables for treatment
and after and their interaction term. The advantage of a regression over simply
using Equation (7.7) is that the regression allows taking into account other factors
that might influence the treatment effect. The simplest difference-in-differences
regression model is presented in Equation (7.8), where yit is the response for unit i
in period t. In the typical difference-in-differences model there are only two periods,
before and after.

yit = β1 + β2T + β3A + δT × A + eit (7.8)

With a litle algebra it can be seen that the coefficinet δ on the interaction term in
Equation (7.8) is exactly the difference-in-differences estimator defined in Equation

114 CHAPTER 7. USING INDICATOR VARIABLES

(7.7). The following example calculates this estimator for the dataset njmin3, where
the response is fte, the full-time equivalent employment, d is the after dummy,
with d = 1 for the after period and d = 0 for the before period, and nj is the
dummy that marks the treatment group (nji = 1 if unit i is in New Jersey where
the minimum wage law has been changed, and nji = 0 if unit i in Pennsylvania,
where the minimum wage law has not changed). In other words, units (fast-food
restaurants) located in New Jersey form the treatment group, and units located in
Pennsylvania form the control group.
data("njmin3", package="PoEdata")
mod1 <- lm(fte~nj*d, data=njmin3)
mod2 <- lm(fte~nj*d+

kfc+roys+wendys+co_owned, data=njmin3)
mod3 <- lm(fte~nj*d+

kfc+roys+wendys+co_owned+
southj+centralj+pa1, data=njmin3)

stargazer(mod1,mod2,mod3,
type=.stargazertype,
title="Difference in Differences example",
header=FALSE, keep.stat="n",digits=2

single.row=TRUE, intercept.bottom=FALSE
)

t-ratio for delta, the D-in-D estimator:
tdelta <- summary(mod1)$coefficients[4,3]

The coefficient on the term nj : d in the Table titled “Difference-in-Differences
example” is δ, our difference-in-differences estimator. If we want to test the null
hypothesis H0 : δ ≥ 0, the rejection region is at the left tail; since the calculated t,
which is equal to 1.630888 is positive, we cannot reject the null hypothesis. In other
words, there is no evidence that an increased minimum wage reduces employment
at fast-food restaurants.

Figure 7.2 displays the change of fte from the period before (d = 0) to the period
after the change in minimum wage (d = 1) for both the treatment and the control
groups. The line labeled “counterfactual” shows how the treatment group would
have changed in the absence of the treatment, assuming its change would mirror the
change in the control group. The graph is plotted using Equation (7.8).
b1 <- coef(mod1)[[1]]
b2 <- coef(mod1)[["nj"]]
b3 <- coef(mod1)[["d"]]
delta <- coef(mod1)[["nj:d"]]
C <- b1+b2+b3+delta

7.7. THE DIFFERENCE-IN-DIFFERENCES ESTIMATOR 115

Table 7.11: Difference in Differences example

Dependent variable:
fte

(1) (2) (3)
nj −2.89∗∗ −2.38∗∗ −0.91

(1.19) (1.08) (1.27)

d −2.17 −2.22 −2.21
(1.52) (1.37) (1.35)

kfc −10.45∗∗∗ −10.06∗∗∗

(0.85) (0.84)

roys −1.62∗ −1.69∗∗

(0.86) (0.86)

wendys −1.06 −1.06
(0.93) (0.92)

co_owned −1.17 −0.72
(0.72) (0.72)

southj −3.70∗∗∗

(0.78)

centralj 0.01
(0.90)

pa1 0.92
(1.38)

nj:d 2.75 2.85∗ 2.81∗

(1.69) (1.52) (1.50)

Constant 23.33∗∗∗ 25.95∗∗∗ 25.32∗∗∗

(1.07) (1.04) (1.21)

Observations 794 794 794

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

116 CHAPTER 7. USING INDICATOR VARIABLES

18
19

20
21

22
23

24

period

fte
control
treated
counterfactual

0 1

Figure 7.2: Difference-in-Differences for ’njmin3’

E <- b1+b3
B <- b1+b2
A <- b1
D <- E+(B-A)
This creates an empty plot:
plot(1, type="n", xlab="period", ylab="fte", xaxt="n",

xlim=c(-0.01, 1.01), ylim=c(18, 24))
segments(x0=0, y0=A, x1=1, y1=E, lty=1, col=2)#control
segments(x0=0, y0=B, x1=1, y1=C, lty=3, col=3)#treated
segments(x0=0, y0=B, x1=1, y1=D, #counterfactual

lty=4, col=4)
legend("topright", legend=c("control", "treated",

"counterfactual"), lty=c(1,3,4), col=c(2,3,4))
axis(side=1, at=c(0,1), labels=NULL)

7.8 Using Panel Data

The difference-in-differences method does not require that the same units be ob-
served both periods, since it works with averages before, and after. If we observe
a number of units within the same time period, we construct a cross-section; if
we construct different cross-sections in different periods we obtain a data structure

7.8. USING PANEL DATA 117

Table 7.12: Difference in differences with panel data

term estimate std.error statistic p.value
(Intercept) -2.28333 0.731258 -3.12247 0.001861
nj 2.75000 0.815186 3.37346 0.000780

named repeated cross-sections. Sometimes, however, we have information about the
same units over several periods. A data structure in which the same (cross-sectional)
units are observed over two or more periods is called a panel data and contains
more information than a repeated cross-section. Let us re-consider the simplest
njmin3 equation (Equation (7.9)), with the unit and time subscripts reflecting the
panel data structure of the dataset. The time-invariant term ci has been added to
reflect unobserved, individual-specific attributes.

fteit = β1 + β2nji + β3dt + δ(nji × dt) + ci + eit (7.9)

In the dataset njmin3, some restaurants, belonging to either group have been ob-
served both periods. If we restrict the dataset to only those restaurants we obtain
a short (two period) panel data. Let us re-calculate the difference-in-differences es-
timator using this panel data. To do so, we notice that, if we write Equation (7.9)
twice, once for each period and subtract the before from the after equation we ob-
tain Equation (7.10), where the response, dfte, is the after- minus- before difference
in employment and the only regressor that remains is the treatment dummy, nj,
whose coefficient is δ, the very difference- in- differences estimator we are trying to
estimate.

dftei = α + δnji + ui (7.10)

mod3 <- lm(demp~nj, data=njmin3)
kable(tidy(summary(mod3)),

caption="Difference in differences with panel data")

(smod3 <- summary(mod3))

##
Call:
lm(formula = demp ~ nj, data = njmin3)
##
Residuals:
Min 1Q Median 3Q Max
-39.22 -3.97 0.53 4.53 33.53

118 CHAPTER 7. USING INDICATOR VARIABLES

##
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -2.283 0.731 -3.12 0.00186 **
nj 2.750 0.815 3.37 0.00078 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
Residual standard error: 8.96 on 766 degrees of freedom
(52 observations deleted due to missingness)
Multiple R-squared: 0.0146, Adjusted R-squared: 0.0134
F-statistic: 11.4 on 1 and 766 DF, p-value: 0.00078

R2 = 0.014639, F = 11.380248, p = 0.00078

Table 7.12 shows a value of the estimated difference-in-differences coefficient very
close to the one we estimated before. Its t-statistic is still positive, indicating that
the null hypothesis H0: “an increse in minimum wage increases employment” cannot
be rejected.

7.9 R Practicum

7.9.1 Extracting Various Information

Here is a reminder on how to extract various results after fitting a linear model. The
function names(lm.object) returns a list of the names of different items contained
in the object. Suppose we run an lm() model and name it mod5. Then, mod5$name
returns the item identified by the name. Like about everything in R, there are many
ways to extract values from an lm() object. I will present three objects that contain
about everything we will need. These are the lm() object itself, summary(lm()),
and the function glance(lm()) in package broom. The next code shows the name
lists for all three objects and a few examples of extracting various statistics.
library(broom)
mod5 <- mod5 <- lm(wage~educ+black*female, data=cps4_small)
smod5 <- summary(mod5)
gmod5 <- glance(mod5) #from package 'broom'
names(mod5)

[1] "coefficients" "residuals" "effects" "rank"
[5] "fitted.values" "assign" "qr" "df.residual"
[9] "xlevels" "call" "terms" "model"

7.9. R PRACTICUM 119

names(smod5)

[1] "call" "terms" "residuals" "coefficients"
[5] "aliased" "sigma" "df" "r.squared"
[9] "adj.r.squared" "fstatistic" "cov.unscaled"
names(gmod5)

[1] "r.squared" "adj.r.squared" "sigma" "statistic"
[5] "p.value" "df" "logLik" "AIC"
[9] "BIC" "deviance" "df.residual"
Examples:
head(mod5$fitted.values)

1 2 3 4 5 6
23.0605 19.5635 23.6760 18.5949 19.5635 19.5635
head(mod5$residuals)#head of residual vector

1 2 3 4 5 6
-4.360484 -8.063529 -8.636014 7.355080 4.466471 0.436471
smod5$r.squared

[1] 0.208858
smod5$fstatistic # F-stat. and its degrees of freedom

value numdf dendf
65.6688 4.0000 995.0000
gmod5$statistic #the F-statistic of the model

[1] 65.6688
mod5$df.residual

[1] 995

For some often used statistics, such as coefficients and their statistics, fitted values,
or residuals there are specialized functions to extract them from regression results.
N <- nobs(mod5)
yhat <- fitted(mod5) # fitted values
ehat <- resid(mod5) # estimated residuals
allcoeffs <- coef(mod5) # only coefficients, no statistics
coef(mod5)[[2]] #or:

120 CHAPTER 7. USING INDICATOR VARIABLES

Table 7.13: Example of using the function ’tidy’

term estimate std.error statistic p.value
(Intercept) -5.28116 1.900468 -2.77887 0.005557
educ 2.07039 0.134878 15.35009 0.000000
black -4.16908 1.774714 -2.34916 0.019011
female -4.78461 0.773414 -6.18635 0.000000
black:female 3.84429 2.327653 1.65158 0.098937

[1] 2.07039
coef(mod5)[["educ"]]

[1] 2.07039
coeftest(mod5)# all coefficients and their statistics

##
t test of coefficients:
##
Estimate Std. Error t value Pr(>|t|)
(Intercept) -5.2812 1.9005 -2.779 0.00556 **
educ 2.0704 0.1349 15.350 < 2e-16 ***
black -4.1691 1.7747 -2.349 0.01901 *
female -4.7846 0.7734 -6.186 8.98e-10 ***
black:female 3.8443 2.3277 1.652 0.09894 .

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
The 'tidy()' function is from the package 'broom':
tabl <- tidy(mod5) #this gives the same result as coeftest()
kable(tabl, caption=" Example of using the function 'tidy'")

7.9.2 ggplot2, An Excellent Data Visualising Tool

The function ggplot in package ggplot2 is a very flexible plotting tool. For in-
stance, it can assign different colours to different levels of an indicator variable.
The following example uses the file utown to plot price against sqft using different
colours for houses with swimming pool or for houses close to university.
library(ggplot2)
data("utown", package="PoEdata")
fpool <- as.factor(utown$pool)

7.9. R PRACTICUM 121

futown <- as.factor(utown$utown)
ggplot(data = utown) +

geom_point(mapping = aes(x = sqft, y = price,
color = fpool, shape=fpool))

ggplot(data = utown) +
geom_point(mapping = aes(x = sqft, y = price,
color = futown, shape=futown))

A brilliant, yet concise presentation of the ggplot() system can be found in (Grole-
mund and Wickham, 2016), which I strongly recommend.

122 CHAPTER 7. USING INDICATOR VARIABLES

150

200

250

300

350

20.0 22.5 25.0 27.5 30.0

sqft

pr
ic

e

fpool

0

1

150

200

250

300

350

20.0 22.5 25.0 27.5 30.0

sqft

pr
ic

e

futown

0

1

Figure 7.3: Graphs of dataset ’utown’ using the ’ggplot’ function

Chapter 8

Heteroskedasticity

rm(list=ls()) #Removes all items in Environment!
library(lmtest) #for coeftest() and bptest().
library(broom) #for glance() and tidy()
library(PoEdata) #for PoE4 datasets
library(car) #for hccm() robust standard errors
library(sandwich)
library(knitr)
library(stargazer)

Reference for the package sandwich (Lumley and Zeileis, 2015).

One of the assumptions of the Gauss-Markov theorem is homoskedasticity, which
requires that all observations of the response (dependent) variable come from dis-
tributions with the same variance σ2. In many economic applications, however, the
spread of y tends to depend on one or more of the regressors x. For example, in the
food simple regression model (Equation (8.1)) expenditure on food stays closer to
its mean (regression line) at lower incomes and to be more spread about its mean at
higher incomes. Think just that people have more choices at higher income whether
to spend their extra income on food or something else.

food_expi = β1 + β2incomei + ei (8.1)

In the presence of heteroskedasticity, the coefficient estimators are still unbiased,
but their variance is incorrectly calculated by the usual OLS method, which makes
confidence intervals and hypothesis testing incorrect as well. Thus, new methods
need to be applied to correct the variances.

123

124 CHAPTER 8. HETEROSKEDASTICITY

5 10 15 20 25 30

10
0

20
0

30
0

40
0

50
0

60
0

income

fo
od

 e
xp

en
di

tu
re

Figure 8.1: Heteroskedasticity in the ’food’ data

8.1 Spotting Heteroskedasticity in Scatter Plots

When the variance of y, or of e, which is the same thing, is not constant, we say
that the response or the residuals are heteroskedastic. Figure 8.1 shows, again,
a scatter diagram of the food dataset with the regression line to show how the
observations tend to be more spread at higher income.
data("food",package="PoEdata")
mod1 <- lm(food_exp~income, data=food)
plot(food$income,food$food_exp, type="p",

xlab="income", ylab="food expenditure")
abline(mod1)

Another useful method to visualize possible heteroskedasticity is to plot the residuals
against the regressors suspected of creating heteroskedasticity, or, more generally,
against the fitted values of the regression. Figure 8.2 shows both these options for
the simple food_exp model.
res <- residuals(mod1)
yhat <- fitted(mod1)
plot(food$income,res, xlab="income", ylab="residuals")
plot(yhat,res, xlab="fitted values", ylab="residuals")

8.2. HETEROSKEDASTICITY TESTS 125

5 10 15 20 25 30

−
20

0
−

10
0

0
10

0
20

0

income

re
si

du
al

s

150 200 250 300 350 400

−
20

0
−

10
0

0
10

0
20

0

fitted values

re
si

du
al

s

Figure 8.2: Residual plots in the ’food’ model

8.2 Heteroskedasticity Tests

Suppose the regression model we want to test for heteroskedasticity is the one in
Equation (8.2).

yi = β1 + β2xi2 + ... + βKxiK + ei (8.2)

The test we are construction assumes that the variance of the errors is a function h of
a number of regressors zs, which may or may not be present in the initial regression
model that we want to test. Equation (8.3) shows the general form of the variance
function.

var(yi) = E(e2
i) = h(α1 + α2zi2 + ... + αSziS) (8.3)

The variance var(yi) is constant only if all the coefficients of the regressors z in
Equation (8.3) are zero, which provides the null hypothesis of our heteroskedasticity
test shown in Equation (8.4).

H0 : α2 = α3 = ... αS = 0 (8.4)

Since we do not know the true variances of the response variable yi, all we can do
is to estimate the residuals from the initial model in Equation (8.2) and replace e2

i

in Equation (8.3) with the estimated residuals. For a linear function h(), the test
equation is, finally, Equation (8.5).

ê2
i = α1 + α2zi2 + ... + αSziS + νi (8.5)

126 CHAPTER 8. HETEROSKEDASTICITY

Te relevant test statistic is χ2, given by Equation (8.6), where R2 is the one resulted
from Equation (8.5).

χ2 = N × R2 ∼ χ2
(S−1) (8.6)

The Breusch-Pagan heteroskedasticiy test uses the method we have just described,
where the regressors zs are the variables xk in the initial model. Let us apply this test
to the food model. The function to determine a critical value of the χ2 distribution
for a significance level α and S − 1 degrees of freedom is qchisq(1-alpha, S-1).
alpha <- 0.05
mod1 <- lm(food_exp~income, data=food)
ressq <- resid(mod1)^2
#The test equation:
modres <- lm(ressq~income, data=food)
N <- nobs(modres)
gmodres <- glance(modres)
S <- gmodres$df #Number of Betas in model
#Chi-square is always a right-tail test
chisqcr <- qchisq(1-alpha, S-1)
Rsqres <- gmodres$r.squared
chisq <- N*Rsqres
pval <- 1-pchisq(chisq,S-1)

Our test yields a value of the test statistic χ2 of 7.38, which is to be compared to the
critical χ2

cr having S − 1 = 1 degrees of freedom and α = 0.05. This critical value
is χ2

cr = 3.84. Since the calculated χ2 exceeds the critical value, we reject the null
hypothesis of homoskedasticity, which means there is heteroskedasticity in our data
and model. Alternatively, we can find the p-value corresponding to the calculated
χ2, p = 0.007.

Let us now do the same test, but using a White version of the residuals equation,
in its quadratic form.
modres <- lm(ressq~income+I(income^2), data=food)
gmodres <- glance(modres)
Rsq <- gmodres$r.squared
S <- gmodres$df #Number of Betas in model
chisq <- N*Rsq
pval <- 1-pchisq(chisq, S-1)

The calculated p-value in this version is p = 0.023, which also implies rejection of
the null hypothesis of homoskedasticity.

8.2. HETEROSKEDASTICITY TESTS 127

Table 8.1: Breusch-Pagan heteroskedasticity test

statistic p.value parameter method
7.38442 0.006579 1 studentized Breusch-Pagan test

The function bptest() in package lmtest does (the robust version of) the Breusch-
Pagan test in R. The following code applies this function to the basic food equation,
showing the results in Table 8.1, where ‘statistic’ is the calculated χ2.
mod1 <- lm(food_exp~income, data=food)
kable(tidy(bptest(mod1)),
caption="Breusch-Pagan heteroskedasticity test")

The Goldfeld-Quandt heteroskedasticity test is useful when the regression model
to be tested includes an indicator variable among its regressors. The test compares
the variance of one group of the indicator variable (say group 1) to the variance of
the benchmark group (say group 0), as the null hypothesis in Equation(8.7) shows.

H0 : σ̂2
1 = σ̂2

0, HA : σ̂2
1 ̸= σ̂2

0 (8.7)

The test statistic when the null hyppthesis is true, given in Equation (8.8), has an
F distribution with its two degrees of freedom equal to the degrees of freedom of
the two subsamples, respectively N1 − K and N0 − K.

F = σ̂2
1

σ̂2
0

(8.8)

Let us apply this test to a wage equation based on the dataset cps2, where metro is
an indicator variable equal to 1 if the individual lives in a metropolitan area and 0
for rural area. I will split the dataset in two based on the indicator variable metro
and apply the regression model (Equation (8.9)) separately to each group.

wage = β1 + β2educ + β3exper + β4metro + e (8.9)

alpha <- 0.05 #two tail, will take alpha/2
data("cps2", package="PoEdata")
#Create the two groups, m (metro) and r (rural)
m <- cps2[which(cps2$metro==1),]
r <- cps2[which(cps2$metro==0),]
wg1 <- lm(wage~educ+exper, data=m)
wg0 <- lm(wage~educ+exper, data=r)

128 CHAPTER 8. HETEROSKEDASTICITY

df1 <- wg1$df.residual #Numerator degrees of freedom
df0 <- wg0$df.residual #Denominatot df
sig1squared <- glance(wg1)$sigma^2
sig0squared <- glance(wg0)$sigma^2
fstat <- sig1squared/sig0squared
Flc <- qf(alpha/2, df1, df0)#Left (lower) critical F
Fuc <- qf(1-alpha/2, df1, df0) #Right (upper) critical F

The results of these calculations are as follows: calculated F statistic F = 2.09,
the lower tail critical value Flc = 0.81, and the upper tail critical value Fuc =
1.26. Since the calculated amount is greater than the upper critical value, we reject
the hypothesis that the two variances are equal, facing, thus, a heteroskedasticity
problem. If one expects the variance in the metropolitan area to be higher and
wants to test the (alternative) hypothesis H0 : σ2

1 ≤ σ2
0, HA : σ2

1 > σ2
0, one needs

to re-calcuate the critical value for α = 0.05 as follows:
Fc <- qf(1-alpha, df1, df0) #Right-tail test

The critical value for the right tail test is Fc = 1.22, which still implies rejecting the
null hypothesis.

The Goldfeld-Quant test can be used even when there is no indicator variable in
the model or in the dataset. One can split the dataset in two using an arbitrary
rule. Let us apply the method to the basic food equation, with the data split in
low-income (li) and high-income (hi) halves. The cutoff point is, in this case, the
median income, and the hypothesis to be tested

H0 : σ2
hi ≤ σ2

li, HA : σ2
hi > σ2

li

alpha <- 0.05
data("food", package="PoEdata")
medianincome <- median(food$income)
li <- food[which(food$income<=medianincome),]
hi <- food[which(food$income>=medianincome),]
eqli <- lm(food_exp~income, data=li)
eqhi <- lm(food_exp~income, data=hi)
dfli <- eqli$df.residual
dfhi <- eqhi$df.residual
sigsqli <- glance(eqli)$sigma^2
sigsqhi <- glance(eqhi)$sigma^2
fstat <- sigsqhi/sigsqli #The larger var in numerator
Fc <- qf(1-alpha, dfhi, dfli)
pval <- 1-pf(fstat, dfhi, dfli)

8.3. HETEROSKEDASTICITY-CONSISTENT STANDARD ERRORS 129

Table 8.2: R function ‘gqtest()‘ with the ’food’ equation

df1 df2 statistic p.value method
18 18 3.61476 0.004596 Goldfeld-Quandt test

The resulting F statistic in the food example is F = 3.61, which is greater than the
critical value Fcr = 2.22, rejecting the null hypothesis in favour of the alternative
hypothesis that variance is higher at higher incomes. The p-value of the test is
p = 0.0046.

In the package lmtest, R has a specialized function to perform Goldfeld-Quandt
tests, the function gqtest which takes, among other arguments, the formula de-
scribing the model to be tested, a break point specifying how the data should be
split (percentage of the number of observations), what is the alternative hypothe-
sis (“greater”, “two.sided”, or “less”), how the data should be ordered (order.by=),
and data=. Let us apply gqtest() to the food example with the same partition as
we have just did before.
foodeq <- lm(food_exp~income, data=food)
tst <- gqtest(foodeq, point=0.5, alternative="greater",

order.by=food$income)
kable(tidy(tst),

caption="R function `gqtest()` with the 'food' equation")

Please note that the results from applying gqtest() (Table 8.2 are the same as
those we have already calculated.

8.3 Heteroskedasticity-Consistent Standard Errors

Since the presence of heteroskedasticity makes the lest-squares standard errors incor-
rect, there is a need for another method to calculate them. White robust standard
errors is such a method.

The R function that does this job is hccm(), which is part of the car package
and yields a heteroskedasticity-robust coefficient covariance matrix. This matrix
can then be used with other functions, such as coeftest() (instead of summary),
waldtest() (instead of anova), or linearHypothesis() to perform hypothesis test-
ing. The function hccm() takes several arguments, among which is the model for
which we want the robust standard errors and the type of standard errors we wish
to calculate. type can be “constant” (the regular homoskedastic errors), “hc0”,
“hc1”, “hc2”, “hc3”, or “hc4”; “hc1” is the default type in some statistical software

130 CHAPTER 8. HETEROSKEDASTICITY

Table 8.3: Regular standard errors in the ’food’ equation

term estimate std.error statistic p.value
(Intercept) 83.4160 43.41016 1.92158 0.062182
income 10.2096 2.09326 4.87738 0.000019

Table 8.4: Robust (HC1) standard errors in the ’food’ equation

term estimate std.error statistic p.value
(Intercept) 83.4160 27.46375 3.03731 0.004299
income 10.2096 1.80908 5.64356 0.000002

packages. Let us compute robust standard errors for the basic food equation and
compare them with the regular (incorrect) ones.
foodeq <- lm(food_exp~income,data=food)
kable(tidy(foodeq),caption=
"Regular standard errors in the 'food' equation")

cov1 <- hccm(foodeq, type="hc1") #needs package 'car'
food.HC1 <- coeftest(foodeq, vcov.=cov1)
kable(tidy(food.HC1),caption=

"Robust (HC1) standard errors in the 'food' equation")

When comparing Tables 8.3 and 8.4, it can be observed that the robust standard
errors are smaller and, since the coefficients are the same, the t-statistics are higher
and the p-values are smaller. Lower p-values with robust standard errors is, however,
the exception rather than the rule.

Next is an example of using robust standard errors when performing a fictitious
linear hypothesis test on the basic ‘andy’ model, to test the hypothesis H0 : β2+β3 =
0
data("andy", package="PoEdata")
andy.eq <- lm(sales~price+advert, data=andy)
bp <- bptest(andy.eq) #Heteroskedsticity test
b2 <- coef(andy.eq)[["price"]]
b3 <- coef(andy.eq)[["advert"]]
H0 <- "price+advert=0"
kable(tidy(linearHypothesis(andy.eq, H0,

vcov=hccm(andy.eq, type="hc1"))),
caption="Linear hypothesis with robust standard errors")

8.4. GLS: KNOWN FORM OF VARIANCE 131

Table 8.5: Linear hypothesis with robust standard errors

res.df df statistic p.value
73 NA NA NA
72 1 23.387 7e-06

Table 8.6: Linear hypothesis with regular standard errors

res.df rss df sumsq statistic p.value
73 2254.71 NA NA NA NA
72 1718.94 1 535.772 22.4415 0.000011

kable(tidy(linearHypothesis(andy.eq, H0)),
caption="Linear hypothesis with regular standard errors")

This example demonstrates how to introduce robust standards errors in a
linearHypothesis function. It also shows that, when heteroskedasticity is not
significant (bptst does not reject the homoskedasticity hypothesis) the robust and
regular standard errors (and therefore the F statistics of the tests) are very similar.

Just for completeness, I should mention that a similar function, with similar uses is
the function vcov, which can be found in the package sandwich.

8.4 GLS: Known Form of Variance

Let us consider the regression equation given in Equation (8.10)), where the errors
are assumed heteroskedastic.

yi = β1 + β2xi + ei, var(ei) = σi (8.10)

Heteroskedasticity implies different variances of the error term for each observation.
Ideally, one should be able to estimate the N variances in order to obtain reliable
standard errors, but this is not possible. The second best in the absence of such esti-
mates is an assumption of how variance depends on one or several of the regressors.
The estimator obtained when using such an assumption is called a generalized
least squares estimator, gls, which may involve a structure of the errors as pro-
posed in Equation (8.11), which assumes a linear relationship between variance and
the regressor xi with the unknown parameter σ2 as a proportionality factor.

132 CHAPTER 8. HETEROSKEDASTICITY

Table 8.7: OLS estimates for the ’food’ equation

term estimate std.error statistic p.value
(Intercept) 83.4160 43.41016 1.92158 0.062182
income 10.2096 2.09326 4.87738 0.000019

var(ei) = σ2
i = σ2xi (8.11)

One way to circumvent guessing a proportionality factor in Equation (8.11) is to
transform the initial model in Equation (8.10) such that the error variance in the
new model has the structure proposed in Equation (8.11). This can be achieved if
the initial model is divided through by

√
xi and estimate the new model shown in

Equation (8.12). If Equation (8.12) is correct, then the resulting estimator is BLUE.

y∗
i = β1x∗

i1 + β2x∗
i2 + e∗

i (8.12)

In general, if the initial variables are multiplied by quantities that are specific to each
observation, the resulting estimator is called a weighted least squares estimator,
wls. Unlike the robust standard errors method for heteroskedasticity correction, gls
or wls methods change the estimates of regression coefficients.

The function lm() can do wls estimation if the argument weights is provided under
the form of a vector of the same size as the other variables in the model. R takes
the square roots of the weights provided to multiply the variables in the regression.
Thus, if you wish to multiply the model by 1√

xi
, the weights should be wi = 1

xi
.

Let us apply these ideas to re-estimate the food equation, which we have determined
to be affected by heteroskedasticity.
w <- 1/food$income
food.wls <- lm(food_exp~income, weights=w, data=food)
vcvfoodeq <- coeftest(foodeq, vcov.=cov1)
kable(tidy(foodeq),

caption="OLS estimates for the 'food' equation")

kable(tidy(food.wls),
caption="WLS estimates for the 'food' equation")

kable(tidy(vcvfoodeq),caption=
"OLS estimates for the 'food' equation with robust standard errors")

Tables 8.7, 8.8, and 8.9 compare ordinary least square model to a weighted least
squares model and to OLS with robust standard errors. The WLS model multiplies

8.5. GROUPED DATA 133

Table 8.8: WLS estimates for the ’food’ equation

term estimate std.error statistic p.value
(Intercept) 78.6841 23.78872 3.30762 0.002064
income 10.4510 1.38589 7.54100 0.000000

Table 8.9: OLS estimates for the ’food’ equation with robust standard errors

term estimate std.error statistic p.value
(Intercept) 83.4160 27.46375 3.03731 0.004299
income 10.2096 1.80908 5.64356 0.000002

the variables by 1 /
√

income, where the weights provided have to be w = 1 / income.
The effect of introducing the weights is a slightly lower intercept and, more impor-
tantly, different standard errors. Please note that the WLS standard errors are
closer to the robust (HC1) standard errors than to the OLS ones.

8.5 Grouped Data

We have seen already (Equation (8.7)) how a dichotomous indicator variable splits
the data in two groups that may have different variances. The generalized least
squares method can account for group heteroskedasticity, by choosing appropriate
weights for each group; if the variables are transformed by multiplying them by
1/σj , for group j, the resulting model is homoskedastic. Since σj is unknown, we
replace it with its estimate σ̂j . This method is named feasible generalized least
squares.
data("cps2", package="PoEdata")
rural.lm <- lm(wage~educ+exper, data=cps2, subset=(metro==0))
sigR <- summary(rural.lm)$sigma
metro.lm <- lm(wage~educ+exper, data=cps2, subset=(metro==1))
sigM <- summary(metro.lm)$sigma
cps2$wght <- rep(0, nrow(cps2))
Create a vector of weights
for (i in 1:1000)
{

if (cps2$metro[i]==0){cps2$wght[i] <- 1/sigR^2}
else{cps2$wght[i] <- 1/sigM^2}

}
wge.fgls <- lm(wage~educ+exper+metro, weights=wght, data=cps2)

134 CHAPTER 8. HETEROSKEDASTICITY

wge.lm <- lm(wage~educ+exper+metro, data=cps2)
wge.hce <- coeftest(wge.lm, vcov.=hccm(wge.lm, data=cps2))
stargazer(rural.lm, metro.lm, wge.fgls,wge.hce,

header=FALSE,
title="OLS vs. FGLS estimates for the 'cps2' data",
type=.stargazertype, # "html" or "latex" (in index.Rmd)
keep.stat="n", # what statistics to print
omit.table.layout="n",
star.cutoffs=NA,
digits=3,

single.row=TRUE,
intercept.bottom=FALSE, #moves the intercept coef to top
column.labels=c("Rural","Metro","FGLS", "HC1"),
dep.var.labels.include = FALSE,
model.numbers = FALSE,
dep.var.caption="Dependent variable: wage",
model.names=FALSE,
star.char=NULL) #supresses the stars

Table 8.10: OLS vs. FGLS estimates for the ’cps2’ data

Dependent variable: wage
Rural Metro FGLS HC1

Constant −6.166 −9.052 −9.398 −9.914
(1.899) (1.189) (1.020) (1.218)

educ 0.956 1.282 1.196 1.234
(0.133) (0.080) (0.069) (0.084)

exper 0.126 0.135 0.132 0.133
(0.025) (0.018) (0.015) (0.016)

metro 1.539 1.524
(0.346) (0.346)

Observations 192 808 1,000

The table titled “OLS, vs. FGLS estimates for the ‘cps2’ data” helps comparing
the coefficients and standard errors of four models: OLS for rural area, OLS for
metro area, feasible GLS with the whole dataset but with two types of weights, one

8.6. GLS: UNKNOWN FORM OF VARIANCE 135

for each area, and, finally, OLS with heteroskedasticity-consistent (HC1) standard
errors. Please be reminded that the regular OLS standard errors are not to be
trusted in the presence of heteroskedasticity.

The previous code sequence needs some explanation. It runs two regression models,
rural.lm and metro.lm just to estimate σ̂R and σ̂M needed to calculate the weights
for each group. The subsets, this time, were selected directly in the lm() function
through the argument subset=, which takes as argument some logical expression
that may involve one or more variables in the dataset. Then, I create a new vector
of a size equal to the number of observations in the dataset, a vector that will be
populated over the next few code lines with weights. I choose to create this vector
as a new column of the dataset cps2, a column named wght. With this the hard
part is done; I just need to run an lm() model with the option weights=wght and
that gives my FGLS coefficients and standard errors.

The next lines make a for loop runing through each observation. If observation i is
a rural area observation, it receives a weight equal to 1/σ2

R; otherwise, it receives the
weight 1/σ2

M . Why did I square those sigmas? Because, remember, the argument
weights in the lm() function requires the square of the factor multiplying the
regression model in the WLS method.

The remaining part of the code repeats models we ran before and places them in
one table for making comparison easier.

8.6 GLS: Unknown Form of Variance

Suppose we wish to estimate the model in Equation (8.13), where the errors are
known to be heteroskedastic but their variance is an unknown function of S some
variables zs that could be among the regressors in our model or other variables.

yi = β1 + β2xi2 + ...βkxiK + ei (8.13)

Equation (8.14) uses the residuals from Equation (8.13) as estimates of the variances
of the error terms and serves at estimating the functional form of the variance. If the
assumed functional form of the variance is the exponential function var(ei) = σ2

i =
σ2xγ

i , then the regressors zis in Equation (8.14) are the logs of the initial regressors
xis, zis = log(xis).

ln(ê2
i) = α1 + α2zi2 + ... + αSziS + νi (8.14)

The variance estimates for each error term in Equation (8.13) are the fitted values,
σ̂2

i of Equation (8.14), which can then be used to construct a vector of weights

136 CHAPTER 8. HETEROSKEDASTICITY

for the regression model in Equation (8.13). Let us follow these steps on the food
basic equation where we assume that the variance of error term i is an unknown
exponential function of income. So, the purpose of the following code fragment is to
determine the weights and to supply them to the lm() function. Remember, lm()
multiplies each observation by the square root of the weight you supply. For
instance, if you want to multiply the observations by 1/σi, you should supply the
weight wi = 1/σ2

i .
data("food", package="PoEdata")
food.ols <- lm(food_exp~income, data=food)
ehatsq <- resid(food.ols)^2
sighatsq.ols <- lm(log(ehatsq)~log(income), data=food)
vari <- exp(fitted(sighatsq.ols))
food.fgls <- lm(food_exp~income, weights=1/vari, data=food)

stargazer(food.ols, food.HC1, food.wls, food.fgls,
header=FALSE,
title="Comparing various 'food' models",
type=.stargazertype, # "html" or "latex" (in index.Rmd)
keep.stat="n", # what statistics to print
omit.table.layout="n",
star.cutoffs=NA,
digits=3,

single.row=TRUE,
intercept.bottom=FALSE, #moves the intercept coef to top
column.labels=c("OLS","HC1","WLS","FGLS"),
dep.var.labels.include = FALSE,
model.numbers = FALSE,
dep.var.caption="Dependent variable: 'food expenditure'",
model.names=FALSE,
star.char=NULL) #supresses the stars

The table titled “Comparing various ‘food’ models” shows that the FGLS with
unknown variances model substantially lowers the standard errors of the coefficients,
which in turn increases the t-ratios (since the point estimates of the coefficients
remain about the same), making an important difference for hypothesis testing.

For a few classes of variance functions, the weights in a GLS model can be calculated
in R using the varFunc() and varWeights() functions in the package nlme.

8.7. HETEROSKEDASTICITY IN THE LINEAR PROBABILITY MODEL 137

Table 8.11: Comparing various ’food’ models

Dependent variable: ’food expenditure’
OLS HC1 WLS FGLS

Constant 83.416 83.416 78.684 76.054
(43.410) (27.464) (23.789) (9.713)

income 10.210 10.210 10.451 10.633
(2.093) (1.809) (1.386) (0.972)

Observations 40 40 40

8.7 Heteroskedasticity in the Linear Probability Model

As we have already seen, the linear probability model is, by definition, heteroskedas-
tic, with the variance of the error term given by its binomial distribution parameter
p, the probability that y is equal to 1, var(y) = p(1 − p), where p is defined in
Equation (8.15).

p = β1 + β2x2 + ... + βKxK + e (8.15)

Thus, the linear probability model provides a known variance to be used with GLS,
taking care that none of the estimated variances is negative. One way to avoid
negative or greater than one probabilities is to artificially limit them to the interval
(0, 1).

Let us revise the coke model in dataset coke using this structure of the variance.
data("coke", package="PoEdata")
coke.ols <- lm(coke~pratio+disp_coke+disp_pepsi, data=coke)
coke.hc1 <- coeftest(coke.ols, vcov.=hccm(coke.ols, type="hc1"))
p <- fitted(coke.ols)
Truncate negative or >1 values of p
pt<-p
pt[pt<0.01] <- 0.01
pt[pt>0.99] <- 0.99
sigsq <- pt*(1-pt)
wght <- 1/sigsq
coke.gls.trunc <- lm(coke~pratio+disp_coke+disp_pepsi,

data=coke, weights=wght)

138 CHAPTER 8. HETEROSKEDASTICITY

Eliminate negative or >1 values of p
p1 <- p
p1[p1<0.01 | p1>0.99] <- NA
sigsq <- p1*(1-p1)
wght <- 1/sigsq
coke.gls.omit <- lm(coke~pratio+disp_coke+disp_pepsi,

data=coke, weights=wght)

stargazer(coke.ols, coke.hc1, coke.gls.trunc, coke.gls.omit,
header=FALSE,
title="Comparing various 'coke' models",
type=.stargazertype, # "html" or "latex" (in index.Rmd)
keep.stat="n", # what statistics to print
omit.table.layout="n",
star.cutoffs=NA,
digits=4,

single.row=TRUE,
intercept.bottom=FALSE, #moves the intercept coef to top
column.labels=c("OLS","HC1","GLS-trunc","GLS-omit"),
dep.var.labels.include = FALSE,
model.numbers = FALSE,
dep.var.caption="Dependent variable: 'choice of coke'",
model.names=FALSE,
star.char=NULL) #supresses the stars

8.7. HETEROSKEDASTICITY IN THE LINEAR PROBABILITY MODEL 139

Table 8.12: Comparing various ’coke’ models

Dependent variable: ’choice of coke’
OLS HC1 GLS-trunc GLS-omit

Constant 0.8902 0.8902 0.6505 0.8795
(0.0655) (0.0653) (0.0568) (0.0594)

pratio −0.4009 −0.4009 −0.1652 −0.3859
(0.0613) (0.0604) (0.0444) (0.0527)

disp_coke 0.0772 0.0772 0.0940 0.0760
(0.0344) (0.0339) (0.0399) (0.0353)

disp_pepsi −0.1657 −0.1657 −0.1314 −0.1587
(0.0356) (0.0344) (0.0354) (0.0360)

Observations 1,140 1,140 1,124

140 CHAPTER 8. HETEROSKEDASTICITY

Chapter 9

Time-Series: Stationary
Variables

rm(list=ls()) #Removes all items in Environment!
library(dynlm) #for the `dynlm()` function
library(orcutt) # for the `cochrane.orcutt()` function
library(nlWaldTest) # for the `nlWaldtest()` function
library(zoo) # for time series functions (not much used here)
library(pdfetch) # for retrieving data (just mentioned here)
library(lmtest) #for `coeftest()` and `bptest()`.
library(broom) #for `glance(`) and `tidy()`
library(PoEdata) #for PoE4 datasets
library(car) #for `hccm()` robust standard errors
library(sandwich)
library(knitr) #for kable()
library(forecast)

New packages: dynlm (Zeileis, 2016); orcutt (Spada et al., 2012); nlWaldTest
(Komashko, 2016); zoo [R-zoo]; pdfetch (Reinhart, 2015); and forecast (Hyndman,
2016).

Time series are data on several variables on an observational unit (such as an indi-
vidual, country, or firm) when observations span several periods. Correlation among
subsequent observations, the importance of the natural order in the data and dy-
namics (past values of data influence present and future values) are features of time
series that do not occur in cross-sectional data.

Time series models assume, in addition to the usual linear regression assumptions,
that the esries is stationary, that is, the distribution of the error term, as well as the

141

142 CHAPTER 9. TIME-SERIES: STATIONARY VARIABLES

correlation between error terms a few periods apart are constant over time. Constant
distribution requires, in particular, that the variable does not display a trend in
its mean or variance; constant correlation implies no clustering of observations in
certain periods.

9.1 An Overview of Time Series Tools in R

R creates a time series variable or dataset using the function ts(), with the following
main arguments: your data file in matrix or data frame form, the start period,
the end period, the frequency of the data (1 is annual, 4 is quarterly, and 12 is
monthly), and the names of your column variables. Another class of time series
objects is created by the function zoo() in the package zoo, which, unlike ts(), can
handle irregular or high-frequency time series. Both ts and zoo classes of objects
can be used by the function dynlm() in the package with the same name to solve
models that include lags and other time series specific operators.

In standard R, two functions are very useful when working with time series: the
difference function, diff(yt) = yt − yt−1, and the lag function, lag(yt) = yt−1.

The package pdfetch is a very useful tool for getting R-compatible time series data
from different online sources such as the World Bank, Eurostat, European Central
Bank, and Yahoo Finance. The package WDI retrieves data from the very rich World
Development Indicators database, maintained by the World Bank.

9.2 Finite Distributed Lags

A finite distributed lag model (FDL) assumes a linear relationship between a depen-
dent variable y and several lags of an independent variable x. Equation (9.1) shows
a finite distributed lag model of order q.

yt = α + β0xt + β1xt−1 + ... + βqxt−q + et (9.1)

The coefficient βs is an s-period delay multiplier, and the coefficient β0, the
immediate (contemporaneous) impact of a change in x on y, is an impact multi-
plier. If x increases by one unit today, the change in y will be β0 + β1 + ... + βs

after s periods; this quantity is called the s-period interim multiplier. The total
multiplier is equal to the sum of all βs in the model.

Let us look at Okun’s law as an example of an FDL model. Okun’s law relates
contemporaneous (time t) change in unemployment rate, DUt, to present and past
levels of economic growth rate, Gt−s.

9.2. FINITE DISTRIBUTED LAGS 143

Table 9.1: The ‘okun‘ dataset with differences and lags

g u uL1 du gL1 gL2 gL3
1.4 7.3 NA NA NA NA NA
2.0 7.2 7.3 -0.1 1.4 NA NA
1.4 7.0 7.2 -0.2 2.0 1.4 NA
1.5 7.0 7.0 0.0 1.4 2.0 1.4
0.9 7.2 7.0 0.2 1.5 1.4 2.0
1.5 7.0 7.2 -0.2 0.9 1.5 1.4

Table 9.2: The ‘okun‘ distributed lag model with three lags

term estimate std.error statistic p.value
(Intercept) 0.5810 0.0539 10.7809 0.0000
L(g, 0:3)0 -0.2021 0.0330 -6.1204 0.0000
L(g, 0:3)1 -0.1645 0.0358 -4.5937 0.0000
L(g, 0:3)2 -0.0716 0.0353 -2.0268 0.0456
L(g, 0:3)3 0.0033 0.0363 0.0911 0.9276

data("okun", package="PoEdata")
library(dynlm)
check.ts <- is.ts(okun) # "is structured as time series?"
okun.ts <- ts(okun, start=c(1985,2), end=c(2009,3),frequency=4)
okun.ts.tab <- cbind(okun.ts,

lag(okun.ts[,2], -1),
diff(okun.ts[,2], lag=1),
lag(okun.ts[,1], -1),
lag(okun.ts[,1], -2),
lag(okun.ts[,1], -3))

kable(head(okun.ts.tab),
caption="The `okun` dataset with differences and lags",
col.names=c("g","u","uL1","du","gL1","gL2","gL3"))

Table 9.1 shows how lags and differences work. Please note how each lag uses up an
observation period.
okunL3.dyn <- dynlm(d(u)~L(g, 0:3), data=okun.ts)
kable(tidy(summary(okunL3.dyn)), digits=4,

caption="The `okun` distributed lag model with three lags")

144 CHAPTER 9. TIME-SERIES: STATIONARY VARIABLES

Table 9.3: The ‘okun‘ distributed lag model with two lags

term estimate std.error statistic p.value
(Intercept) 0.5836 0.0472 12.3604 0.0000
L(g, 0:2)0 -0.2020 0.0324 -6.2385 0.0000
L(g, 0:2)1 -0.1653 0.0335 -4.9297 0.0000
L(g, 0:2)2 -0.0700 0.0331 -2.1152 0.0371

Table 9.4: Goodness-of-fit statistics for ‘okun‘ models

r.squared statistic AIC BIC
0.652406 42.2306 -55.4318 -40.1085
0.653946 57.9515 -58.9511 -46.1293

okunL2.dyn <- dynlm(d(u)~L(g, 0:2), data=okun.ts)
kable(tidy(summary(okunL2.dyn)), digits=4,

caption="The `okun` distributed lag model with two lags")

Tables 9.2 and 9.3 summarize the results of linear models with 3 and 2 lags respec-
tively. Many of the output analysis functions that we have used with the lm()
function, such as summary() and coeftest() are also applicable to dynlm().
glL3 <- glance(okunL3.dyn)[c("r.squared","statistic","AIC","BIC")]
glL2 <- glance(okunL2.dyn)[c("r.squared","statistic","AIC","BIC")]
tabl <- rbind(glL3, as.numeric(glL2))
kable(tabl, caption="Goodness-of-fit statistics for `okun` models")

Table 9.4 compares the two FDL models of the okun example. The first row is the
model with three lags, the second is the model with two lags. All the measures in
this table points to the second model (two lags) as a better specification.

A note on how these tables were created in R is of interest. Table 9.1 was cre-
ated using the function cbind, which puts together several columns (vectors); table
9.4 used two functions: rbind(), which puts together two rows, and as.numeric,
which extracts only the numbers from the glance object, without the names of the
columns.

9.3 Serial Correlation

Serial correlation, or autocorrelation in a time series describes the correlation
between two observations separated by one or several periods. Time series tend

9.3. SERIAL CORRELATION 145

Time

gr
ow

th

1985 1990 1995 2000 2005 2010

−
1

0
1

2

Time

un
em

pl
oy

m
en

t

1985 1990 1995 2000 2005 2010

4
5

6
7

8
9

Figure 9.1: Growth and unemployment rates in the ’okun’ dataset

to display autocorrelation more than cross sections because of their ordered nature.
Autocorrelation could be an attribute of one series, independent of the model in
which this series appears. If this series is, however, an error term, its properties do
depend on the model, since error series can only exist in relation to a model.
plot(okun.ts[,"g"], ylab="growth")
plot(okun.ts[,"u"], ylab="unemployment")

The “growth” graph in Figure 9.1 display clusters of values: positive for several
periods followed by a few of negative values, which is an indication of autocorrelation;
the same is true for unemployment, which does not change as dramatically as growth
but still shows persistence.
ggL1 <- data.frame(cbind(okun.ts[,"g"], lag(okun.ts[,"g"],-1)))
names(ggL1) <- c("g","gL1")
plot(ggL1)
meang <- mean(ggL1$g, na.rm=TRUE)
abline(v=meang, lty=2)
abline(h=mean(ggL1$gL1, na.rm=TRUE), lty=2)

ggL2 <- data.frame(cbind(okun.ts[,"g"], lag(okun.ts[,"g"],-2)))
names(ggL2) <- c("g","gL2")
plot(ggL2)
meang <- mean(ggL2$g, na.rm=TRUE)
abline(v=meang, lty=2)
abline(h=mean(ggL2$gL2, na.rm=TRUE), lty=2)

Figures 9.2 illustrate the correlation between the growth rate and its first two lags,
which is, indeed autocorrelation. But is there a more precise test to detect autocor-
relation?

146 CHAPTER 9. TIME-SERIES: STATIONARY VARIABLES

−1 0 1 2

−
1

0
1

2

g

gL
1

−1 0 1 2

−
1

0
1

2

g

gL
2

Figure 9.2: Scatter plots between ’g’ and its lags

Suppose we wish to test the hypothesis formulated in Equation (9.2), where ρk is
the population k-th order autocorrelation coefficient.

H0 : ρk = 0, HA : ρk ̸= 0 (9.2)

A test can be constructed based on the sample correlation coefficient, rk, which
measures the correlation between a variable and its k-th lag; the test statistic is
given in Equation (9.3), where T is the number of periods.

Z = rk − 0√
1
T

=
√

Trk ∼ N(0, 1) (9.3)

For a 5% significance level, Z must be outside the interval [−1.96, 1, 96], that is, in
the rejection region. Rejecting the null hypothesis is, in this case, bad news, since
rejection constitutes evidence of autocorrelation. So, for a way to remember the
meaning of the test, one may think of it as a test of non-autocorrelation.

The results of the (non-) autocorrelation test are usually summarized in a correlo-
gram, a bar diagram that visualizes the values of the test statistic

√
Trk for several

lags as well as the 95% confidence interval. A bar (
√

Trk) that exceedes (upward
or downward) the limits of the confidence interval indicates autocorrelation for the
corresponding lag.
growth_rate <- okun.ts[,"g"]
acf(growth_rate)

Figure 9.3 is a correlogram, where each bar corresponding to one lag, starting with
lag 0. The correlogram shows little or no evidence of autocorrelation, except for the
first and second lag (second and third bar in the figure).

9.3. SERIAL CORRELATION 147

0 1 2 3 4

−
0.

2
0.

2
0.

4
0.

6
0.

8
1.

0

Lag

A
C

F

Series growth_rate

Figure 9.3: Correlogram for the growth rate, dataset ’okun’

Let us consider another example, the dataset phillips_aus, which containes quarterly
data on unemploymnt and inflation over the period 1987Q1 to 2009Q3. We wish to
apply the autocorrelation test to the error term in a time series regression to see if
the non-autocorrelation in the errors is violated. Let us consider the FDL model in
Equation (9.4).

inft = β1 + β2Dut + et (9.4)

Let’s first take a look at plots of the data (visualising the data is said to be a good
practice rule in data analysis.)
data("phillips_aus", package="PoEdata")
phill.ts <- ts(phillips_aus,

start=c(1987,1),
end=c(2009,3),
frequency=4)

inflation <- phill.ts[,"inf"]
Du <- diff(phill.ts[,"u"])
plot(inflation)
plot(Du)

The plots in Figure 9.4 definitely show patterns in the data for both inflation and
unemployment rates. But we are interested to determine if the error term in Equa-

148 CHAPTER 9. TIME-SERIES: STATIONARY VARIABLES

Time

in
fla

tio
n

1990 1995 2000 2005 2010

−
0.

5
0.

5
1.

0
1.

5
2.

0
2.

5

Time

D
u

1990 1995 2000 2005 2010

−
0.

6
−

0.
2

0.
2

0.
6

Figure 9.4: Data time plots in the ’phillips’ dataset

Table 9.5: Summary of the ‘phillips‘ model

term estimate std.error statistic p.value
(Intercept) 0.777621 0.065825 11.81347 0.000000
diff(u) -0.527864 0.229405 -2.30101 0.023754

tion (9.4) satisfies the non-autocorrelation assumption of the time series regression
model.
phill.dyn <- dynlm(inf~diff(u),data=phill.ts)
ehat <- resid(phill.dyn)
kable(tidy(phill.dyn), caption="Summary of the `phillips` model")

Table 9.5 gives a p-value of 0.0238, which is significant at a $5% $ level. But is this
p-value reliable? Let us investigate the autocorrelation structure of the errors in
this model.
plot(ehat)
abline(h=0, lty=2)

corrgm <- acf(ehat)
plot(corrgm)

The time series plot in Figure 9.5 suggests that some patterns exists in the residuals,
which is confirmed by the correlogram in Figure 9.6. The previous result suggesting
that there is a significant relationship between inflation and change in unemployment
rate may not be, afterall, too reliable.

While visualising the data and plotting the correlogram are powerful methods of
spotting autocorrelation, in many applications we need a precise criterion, a test
statistic to decide whether autocorrelation is a problem. One such a method is the

9.3. SERIAL CORRELATION 149

Time

eh
at

1990 1995 2000 2005 2010

−
1.

0
0.

0
1.

0
2.

0

Figure 9.5: Residuals of the Phillips equation

0 1 2 3 4

−
0.

2
0.

2
0.

4
0.

6
0.

8
1.

0

Lag

A
C

F

Series ehat

Figure 9.6: Correlogram of the residuals in the Phillips model

150 CHAPTER 9. TIME-SERIES: STATIONARY VARIABLES

Lagrange Multiplier test. Suppose we want to test for autocorrelation in the
residuals the model given in Equation (9.5), where we assume that the errors have
the autocorrelation structure described in Equation (9.6).

yt = β1 + β2xt + et (9.5)

et = ρet−1 + νt (9.6)

A test for autocorrelation would be based on the hypothesis in Equation (9.7).

H0 : ρ = 0, HA : ρ ̸= 0 (9.7)

After little algebraic manipulation, the auxiliary regression that the LM test actually
uses is the one in Equation (9.8).

êt = γ1 + γ2xt + ρêt−1 + νt (9.8)

The test statistic is T × R2, where R2 is the coefficient of determination resulted
from estimating the auxiliary equation (Equation (9.8)). In R, all these calculations
can be done in one command, bgtest(), which is the Breusch-Godfrey test for
autocorrelation function. This function can test for autocorrelation of higher orders,
which requires including higher lags for ê in the auxiliary equation.

Let us do this test for the Phillips example. The next code sequence does the
test first for only one lag and using an F -statistic; then, for lags up to 4, using a
χ2-statistic. R does this test by either eliminating the first observations that are
necessary to calculate the lags (fill=NA), or by setting them equal to zero (fill=0).
a <- bgtest(phill.dyn, order=1, type="F", fill=0)
b <- bgtest(phill.dyn, order=1, type="F", fill=NA)
c <- bgtest(phill.dyn, order=4, type="Chisq", fill=0)
d <- bgtest(phill.dyn, order=4, type="Chisq", fill=NA)
dfr <- data.frame(rbind(a[c(1,2,4)],

b[c(1,2,4)],
c[c(1,2,4)],
d[c(1,2,4)]
))

dfr <- cbind(c("1, F, 0",
"1, F, NA", "4, Chisq, 0", "4, Chisq, NA"), dfr)

names(dfr)<-c("Method", "Statistic", "Parameters", "p-Value")
kable(dfr, caption="Breusch-Godfrey test for the Phillips example")

9.4. ESTIMATION WITH SERIALLY CORRELATED ERRORS 151

Table 9.6: Breusch-Godfrey test for the Phillips example

Method Statistic Parameters p-Value
1, F, 0 38.4654 1, 87 1.82193e-08
1, F, NA 38.6946 1, 86 1.73442e-08
4, Chisq, 0 36.6719 4 2.10457e-07
4, Chisq, NA 33.5937 4 9.02736e-07

All the four tests summarized in Table 9.6 reject the null hypothesis of no autocor-
relation. The above code sequence requires a bit of explanation. The first four lines
do the BG test on the previously estimated Phillips model (phill.dyn), using vari-
ous parametrs: order tells R how many lags we want; type gives the test statistic
to be used, either F or χ2; and, finally, fill tells R whether to delete the first
observations or replace them with e = 0. The first column in Table 9.6 summarizes
these options: number of lags, test statistic used, and how the missing observations
are handeled.

The remaining of the code sequence is just to create a clear and convenient way
of presenting the results of the four tests. As always, to inspect the content of an
object like a type and run the command names(object).

How many lags should be considered when performing the autocorrelation test? One
suggestion would be to limit the test to the number of lags that the correlogram
shows to exceed the confidence band.

R can perform another autocorrelation test, Durbin-Watson, which is being used
less and less today because of its limitations. However, it may be considered when
the sample is small. The following command can be used to perform this test:
dwtest(phill.dyn)

##
Durbin-Watson test
##
data: phill.dyn
DW = 0.8873, p-value = 2.2e-09
alternative hypothesis: true autocorrelation is greater than 0

9.4 Estimation with Serially Correlated Errors

Similar to the case of heteroskedasticity, autocorrelation in the errors does not pro-
duce biased estimates of the coefficients in linear regression, but it produces incor-

152 CHAPTER 9. TIME-SERIES: STATIONARY VARIABLES

Table 9.7: Comparing standard errors for the Phillips model

Incorrect vcovHAC NeweyWest kernHAC
(Intercept 0.066 0.095 0.128 0.131
Du 0.229 0.304 0.331 0.335

rect standard errors. The similarity with heteroskedasticity goes even further: with
autocorrelation it is possible to calculate correct (heteroskedasticity and auto-
correlation consistent, HAC) standard errors, known as Newey-West standard
errors.

There are several functions in R that compute HAC standard errors, of which I
choose three, all available in the package sandwich.
library(sandwich)
s0 <- coeftest(phill.dyn)
s1 <- coeftest(phill.dyn, vcov.=vcovHAC(phill.dyn))
s2 <- coeftest(phill.dyn, vcov.=NeweyWest(phill.dyn))
s3 <- coeftest(phill.dyn, vcov.=kernHAC(phill.dyn))
tbl <- data.frame(cbind(s0[c(3,4)],s1[c(3,4)],

s2[c(3,4)],s3[c(3,4)]))
names(tbl) <- c("Incorrect","vcovHAC", "NeweyWest", "kernHAC")
row.names(tbl) <- c("(Intercept", "Du")
kable(tbl, digits=3,
caption="Comparing standard errors for the Phillips model")

Table 9.7 compares three versions of HAC standard errors for the Phillips equation
plus the incorrect ones from the initial equation. The differences come from different
choices for the methods of calculating them.

Correcting the standard errors in a model with autocorrelated errors does not make
the estimator of the coefficients a minimum-variance one. Therefore, we would like
to find better estimators, as we did in the case of heteroskedasticity. Let us look
at models with a particular structure of the error term , a structure called first-
order autoregressive process, or AR(1)model, described in Equation (9.9).
The variable in this process is assumed to have zero mean and constant variance, σ2

ν ,
and the errors νt should not be autocorrelated. In addition, the autocorrelation
coefficient, ρ, should take values in the interval (−1, 1). It can be shown that
ρ = corr(et, et−1).

et = ρet−1 + νt (9.9)

The following code lines calculate and display the correlation coefficients for the first

9.5. NONLINEAR LEAST SQUARES ESTIMATION 153

five lags in the residuals of the Phillips equation (Equation (9.4)). Please notice that
the autocorrelations tend to become smaller and smaller for distant lags, but they
still remain higher than Equation (9.9) implies.
ehat <- resid(phill.dyn)
ac <- acf(ehat, plot=FALSE)
The Phillips equation: five lag correlations in residuals
ac$acf[2:6]

[1] 0.548659 0.455732 0.433216 0.420494 0.339034

The correlation coefficient for the first lag is an estimate of the coefficient ρ in the
AR(1) process defined in Equation (9.9), ρ̂1 = ρ̂ = r1 = 0.549

9.5 Nonlinear Least Squares Estimation

The simple linear regression model in Equation (9.5) with AR(1) errors defined
in Equation (9.6) can be transformed into a model having uncorrelated errors, as
Equation (9.10) shows.

yt = β1(1 − ρ) + β2xt + ρyt−1 − ρβ2xt−1 + νt (9.10)

Equation (9.10) is nonlinear in the coefficients, and therefore it needs special meth-
ods of estimation. Applying the same transformations to the Phillips model given
in Equation (9.4), we obtain its nonlinear version, Equation (9.11).

inft = β1(1 − ρ) + β2Dut + ρinft−1 − ρβ2Dut−1 + νt (9.11)

The next code line estimates the non-linear model in Equation (9.11) using the
nls() function, which requires the data under a data frame form. The first few
lines of code create a separate variables for inf and u and their lags, then brings
all of them together in a data frame. The main arguments of the nls function are
the following: formula, a nonlinear function of the regression parameters, data= a
data frame, and ‘start=list(initial guess values of the parameters), and others.
library(dynlm)
phill.dyn <- dynlm(inf~diff(u), data=phill.ts)
Non-linear AR(1) model with 'Cochrane-Orcutt method'nls'

phill.ts.tab <- cbind(phill.ts[,"inf"],
phill.ts[,"u"],
lag(phill.ts[,"inf"], -1),

154 CHAPTER 9. TIME-SERIES: STATIONARY VARIABLES

diff(phill.ts[,"u"], lag=1),
lag(diff(phill.ts[,2],lag=1), -1)
)

phill.dfr <- data.frame(phill.ts.tab)
names(phill.dfr) <- c("inf", "u", "Linf", "Du", "LDu")
phill.nls <- nls(inf~b1*(1-rho)+b2*Du+rho*Linf-

rho*b2*LDu,
data=phill.dfr,
start=list(rho=0.5, b1=0.5, b2=-0.5))

s1 # This is `phill.dyn` with HAC errors:

##
t test of coefficients:
##
Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.77762 0.09485 8.198 1.82e-12 ***
diff(u) -0.52786 0.30444 -1.734 0.0864 .

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
phill.dyn # The simple linear model:

##
Time series regression with "ts" data:
Start = 1987(2), End = 2009(3)
##
Call:
dynlm(formula = inf ~ diff(u), data = phill.ts)
##
Coefficients:
(Intercept) diff(u)
0.778 -0.528
phill.nls # The 'nls' model:

Nonlinear regression model
model: inf ~ b1 * (1 - rho) + b2 * Du + rho * Linf - rho * b2 * LDu
data: phill.dfr
rho b1 b2
0.557 0.761 -0.694
residual sum-of-squares: 23.2
##
Number of iterations to convergence: 3
Achieved convergence tolerance: 8.06e-06

9.6. A MORE GENERAL MODEL 155

coef(phill.nls)[["rho"]]

[1] 0.557398

Comparing the nonlinear model with the two linear models (with, and without HAC
standard errors) shows differences in both coefficients and standard errors. This
is an indication that nonlinear estimation is a better choice than HAC standard
errors. Please note that the NLS model provides an estimate of the autocorrelation
coefficient, ρ = 0.557.

9.6 A More General Model

Equation (9.12) gives an autoregresive distributed lag model, which is a gener-
alization of the model presented in Equation (9.10). The two models are equivalent
under the restriction δ1 = −θ1δ0.

yt = δ + θ1yt−1 + δ0xt + δ1xt−1 + νt (9.12)

Equation (9.13) is the Phillips version of the ARDL model given by Equation (9.12).

inft = δ + θ1inft−1 + δ0Dut + δ1Dut−1 + νt (9.13)

A Wald test can be used to decide if the two models, the nonlinear one and the more
general one are equivalent.
s.nls <- summary(phill.nls)
phill.gen <- dynlm(inf~L(inf)+d(u)+L(d(u)),

data=phill.ts)
s.gen <- summary(phill.gen)
nlW <- nlWaldtest(phill.gen, texts="b[4]=-b[2]*b[3]")

The R function performing the Wald test is nlWaldtest in package nlWaldTest,
which can test nonlinear restrictions. The result in our case is a χ2 value of 0.11227,
with p-value of 0.737574, which does not reject the null hypothesis that the restric-
tion δ1 = −θ1δ0 cannot be rejected, making, in turn, Equations (9.11) and (9.13)
equivalent.

The code lines above use the L and d from package dynlm for constructing lags and
differences in time series. Unlike the similar functions that we have previously used
(lag and diff), these do not work outside the command dynlm. Please note that
constructing lags with lag() requires specifying the negative sign of the lag, which
is not necessary for the L() function..

156 CHAPTER 9. TIME-SERIES: STATIONARY VARIABLES

Table 9.8: Using dynlm with L and d operators

term estimate std.error statistic p.value
(Intercept) 0.333633 0.089903 3.71104 0.000368
L(inf) 0.559268 0.090796 6.15959 0.000000
d(u) -0.688185 0.249870 -2.75417 0.007195
L(d(u)) 0.319953 0.257504 1.24252 0.217464

Table 9.9: Using dynlm with lag and diff operators

term estimate std.error statistic p.value
(Intercept) 0.333633 0.089903 3.71104 0.000368
lag(inf, -1) 0.559268 0.090796 6.15959 0.000000
diff(u) -0.688185 0.249870 -2.75417 0.007195
lag(diff(u), -1) 0.319953 0.257504 1.24252 0.217464

phill1.gen <- dynlm(inf~lag(inf, -1)+diff(u)+lag(diff(u), -1), data=phill.ts)

The results can be compared in Tables 9.8 and 9.9.
kable(tidy(phill.gen),

caption="Using dynlm with L and d operators")

kable(tidy(phill1.gen),
caption="Using dynlm with lag and diff operators")

9.7 Autoregressive Models

An autoregressive model of order p, AR(p) (Equation (9.14)) is a model with p lags
of the response acting as independent variables and no other regressors.

yt = δ + θ1yt−1 + θ2yt−2 + ... + θpyt−p + νt (9.14)

The next code sequence and Table 9.10 show an autoregressive model of order 2
using the series g in the data file okun.
data(okun)
okun.ts <- ts(okun)
okun.ar2 <- dynlm(g~L(g)+L(g,2), data=okun.ts)

9.7. AUTOREGRESSIVE MODELS 157

Table 9.10: Autoregressive model of order 2 using the dataset okun

term estimate std.error statistic p.value
(Intercept) 0.4657 0.1433 3.2510 0.0016
L(g) 0.3770 0.1000 3.7692 0.0003
L(g, 2) 0.2462 0.1029 2.3937 0.0187

2 4 6 8 10 12

−
0.

2
−

0.
1

0.
0

0.
1

0.
2

Lag

A
C

F

res.ar2

Figure 9.7: Residual correlogram for US GDP AR(2) model

kable(tidy(okun.ar2), digits=4,
caption="Autoregressive model of order 2 using the dataset $okun$")

How can we decide how many lags to include in an autoregressive model? One way
is to look at the correlogram of the series and include the lags that show autocorre-
lation. The follwing code creates the correlogram in the AR(2) residuals of the US
GDP series. The correlogram in Figure 9.7 shows that basically only the first two
lags may be included.
res.ar2 <- resid(okun.ar2)
Acf(res.ar2, lag.max=12) # New: Acf() from package forecast

Another way of choosing the specification of an autoregressive model is to compare
models of several orders and choose the one that provides the lowest AIC or BIC
value.

158 CHAPTER 9. TIME-SERIES: STATIONARY VARIABLES

Table 9.11: Lag order selection for an AR model

1 2 3 4 5
AIC 169.4 163.5 163.1 161.6 162.5
BIC 177.1 173.8 175.9 176.9 180.3

aics <- rep(0,5)
bics <- rep(0,5)
y <- okun.ts[,"g"]
for (i in 1:5){

ari <- dynlm(y~L(y,1:i), start=i)
aics[i] <- AIC(ari)
bics[i] <- BIC(ari)

}
tbl <- data.frame(rbind(aics, bics))
names(tbl) <- c("1","2","3","4","5")
row.names(tbl) <- c("AIC","BIC")
kable(tbl, digits=1, align='c',

caption="Lag order selection for an AR model")

Table 9.11 displays the AIC and BIC (or SC) values for autoregressive models on the
US GDP in dataset okun with number of lags from 1 to 5. (As mentioned before,
the numbers do not coincide with those in PoE, but the ranking does.) The lowest
AIC value indicates that the optimal model should include four lags, while the BIC
values indicate the model with only two lags as the winner. Other criteria may be
taken into account in such a situation, for instance the correlogram, which agrees
with the BIC’s choice of model.

The previous code fragment needs some explanation. The first two lines initialize
the vectors that are going to hold the AIC and BIC results. The problem of auto-
matically changing the number of regressors is addressed by using the convenient
function L(y, 1:i). AIC() and BIC() are basic R functions.

9.8 Forecasting

Let us consider first an autoregressive (AR) model, exemplified by the US GDP
growth with two lags specified in Equation (9.15).

gt = δ + θ1gt−1 + θ2gt−2 + νt (9.15)

9.8. FORECASTING 159

Table 9.12: The AR(2) growth model

term estimate std.error statistic p.value
(Intercept) 0.465726 0.143258 3.25097 0.001602
L(y, 1:2)1 0.377001 0.100021 3.76923 0.000287
L(y, 1:2)2 0.246239 0.102869 2.39372 0.018686

Table 9.13: Forcasts for the AR(2) growth model

Point.Forecast Lo.80 Hi.80 Lo.95 Hi.95
99 0.718 0.021 1.415 -0.348 1.784
100 0.933 0.188 1.678 -0.206 2.073
101 0.994 0.202 1.787 -0.218 2.207

Once the coefficients of this model are estimated, they can be used to predict (fore-
cast) out-of-sample, future values of the response variable. Let us do this for periods
T + 1, T + 2, and T + 3, where T is the last period in the sample. Equation (9.16)
gives the forecast for period s into the future.

gT +s = δ + θ1gT +s−1 + θ2gT +s−2 + νT +s (9.16)

y <- okun.ts[,"g"]
g.ar2 <- dynlm(y~L(y, 1:2))
kable(tidy(g.ar2), caption="The AR(2) growth model")

Table 9.12 shows the results of the AR(2) model. R uses the function forecast()
in package forecast to automatically calculate forecasts based on autoregressive
or other time series models. One such model is ar(), which fits an autoregressive
model to a univariate time series. The arguments of ar() include: x= the name of
the time series, aic=TRUE, if we want automatic selection of the number of lags
based on the AIC information criterion; otherwise, aic=FALSE; order.max= the
maximum lag order in the autoregressive model.
ar2g <- ar(y, aic=FALSE, order.max=2, method="ols")
fcst <- data.frame(forecast(ar2g, 3))
kable(fcst, digits=3,
caption="Forcasts for the AR(2) growth model")

Table 9.13 shows the forecasted values for three future periods based on the AR(2)
growth model.

160 CHAPTER 9. TIME-SERIES: STATIONARY VARIABLES

Forecasts from AR(2)

0 20 40 60 80 100

−
1

0
1

2

Figure 9.8: Forcasts and confidence intervals for three future periods

plot(forecast(ar2g,3))

Figure 9.8 illustrates the forecasts produced by the AR(2) model of US GDP and
their interval estimates.

Using more information under the form of additional regressors can improve the
accuracy of forecasting. We have already studied ARDL models; let us use such a
model to forecast the rate of unemployment based on past unemployment and GDP
growth data. The dataset is still okun, and the model is an ARDL(1,1) as the one
in Equation (9.17).

Dut = δ + θ1Dut−1 + δ0gt + δ1gt−1 + νt (9.17)

Since we are interested in forecasting levels of unemployment, not differences, we
want to transform the ARDL(1,1) model in Equation (9.17) into the ARDL(2,1) one
in Equation (9.18).

uT +1 = δ + θ∗
1uT + θ∗

2uT −1 + δ0gT +1 + δ1gT + νT +1 (9.18)

Another forecasting model is the exponential smoothing one, which, like the
AR model, uses only the variable to be forecasted. In addition, the exponential
smoothing model requires a weighting parameter, α, and an initial level of the

9.8. FORECASTING 161

Forecasts from ETS(A,N,N)

0 20 40 60 80 100

−
1

0
1

2

Figure 9.9: Exponential smoothing forecast using ’ets’

forecasted variable, ŷ. Next period’s forecast is a weighted average of this period’s
level and this period’s forecast, as indicated in Equation (9.19).

ŷT +1 = αyT + (1 − α)ŷT (9.19)

There are sevaral ways to compute an exponential smoothing forecast in R. I only
use two here, for comparison. The first is the function ets() in the forecast
package.
y <- okun.ts[,"g"]
okun.ets <- ets(y)
okunf.ets <- forecast(okun.ets,1) #one-period forecast
plot(okunf.ets)

The results include the computed value of the weight, α = 0.381, the point estimate
of the growth rate gT +1 = 0.054, and the 95 percent interval estimate (−1.051, 1.158).
Figure 9.9 illustrates these results.

The second method uses the function HoltWinters and is shown in the following
code fragment.
okun.HW <- HoltWinters(y, beta=FALSE, gamma=FALSE)
plot(okun.HW)

162 CHAPTER 9. TIME-SERIES: STATIONARY VARIABLES

Holt−Winters filtering

Time

O
bs

er
ve

d
/ F

itt
ed

0 20 40 60 80 100

−
1

0
1

2

Figure 9.10: Exponential smoothing forecast using ’HoltWinters’

okunf.HW <- forecast(okun.HW,1)

Similar to the ets function, HoltWinters automatically determines the optimal
weight α of the exponential smoothing model. In our case, the value is α =
0.381. The point estimate is gT +1 = 0.054, and the 95 percent interval estimate
is (−1.06, 1.168). Figure 9.10 compares the forecasted with the actual series.

9.9 Multiplier Analysis

In an ARDL(p, q) model, if one variable changes at some period it affects the re-
sponse over several subsequent periods. Multiplier analysis quantifies these time
effects. Let me remind you the form of the ARDL(p, q) model in Equation (9.20).

yt = δ + θ1yt−1 + ... + θpyt−p + δ0xt + δ1xt−1 + ... + δqxt−q + νt (9.20)

The model in Equation (9.20) can be transformed by iterative substitution in an
infinite distributed lag model, which includes only explanatory variables with no
lags of the response. The transformed model is shown in Equation (9.21).

yt = α + β0xt + β1xt−1 + β2xt−2 + β3xt−3 + ... + et (9.21)

9.9. MULTIPLIER ANALYSIS 163

Coefficient βs in Equation (9.21) is called the s-period delay multiplier; the sum of
the βs from today to period s in the past is called interim multiplier, and the sum
of all periods to infinity is called total multiplier.

164 CHAPTER 9. TIME-SERIES: STATIONARY VARIABLES

Chapter 10

Random Regressors

rm(list=ls()) #Removes all items in Environment!
library(AER) #for `ivreg()`
library(lmtest) #for `coeftest()` and `bptest()`.
library(broom) #for `glance(`) and `tidy()`
library(PoEdata) #for PoE4 datasets
library(car) #for `hccm()` robust standard errors
library(sandwich)
library(knitr) #for making neat tables with `kable()`
library(stargazer)

In most data coming from natural, non-controlled phenomena, both the dependent
and independent variables are random. In many cases, some of the independent vari-
ables are also correlated with the error term in a regression model, which makes the
OLS method inappropriate. Regressors (x) that are correlated with the error term
are called endogeneous; likewise, those that are not are called exogeneous. The
remedy for this violation of the linear regression assumption is the use of instru-
mental variables, or instruments, which are variables (z) that do not directly
influence the response but are correlated with the endogenous regressor in question.

10.1 The Instrumental Variables (IV) Method

A strong instrument, one that is highly correlated with the endogenous regressor
it concerns, reduces the variance of the estimated coefficient. Assume the multiple
regression model in Equation (10.1), where regressors x2 to xK−1 are exogenous and
xK is endogenous. The IV method consists in two stages: first regress xK on all
the other regressors and all the instruments and create the fitted values series, x̂K ;

165

166 CHAPTER 10. RANDOM REGRESSORS

Table 10.1: First stage in the 2SLS model for the ’wage’ equation

term estimate std.error statistic p.value
(Intercept) 9.7751 0.4239 23.0605 0.0000

exper 0.0489 0.0417 1.1726 0.2416
I(exper^2) -0.0013 0.0012 -1.0290 0.3040
mothereduc 0.2677 0.0311 8.5992 0.0000

second, regress the initial equation, in which xK is replaced by x̂K . Therefore, the
IV method is often called two-stage least squares, or 2SLS.

y = β1 + β2x2 + ... + βKxK + e (10.1)

Consider the wage model in Equation (10.2) using the mroz dataset. The notori-
ous difficulty with this model is that the error term may include some unobserved
attributes, such as personal ability, that determine both wage and education. In
other words, the independent variable educ is correlated with the error term, is
endogenous.

log(wage) = β1 + β2educ + β3exper + β4exper2 + e (10.2)

An instrument that may address the endogeneity of educ is mothereduc, of which
we can reasonably assume that it does not directly influence the daughter’s wage,
but it influences her education.

Let us first carry out an explicit two-stage model with only one instrument,
mothereduc. The first stage is to regress educ on other regressors and the
instrument, as Equation (10.3) shows.

educ = γ1 + γ2exper + γ3exper2 + θ1mothereduc + νeduc (10.3)

data("mroz", package="PoEdata")
mroz1 <- mroz[mroz$lfp==1,] #restricts sample to lfp=1
educ.ols <- lm(educ~exper+I(exper^2)+mothereduc, data=mroz1)
kable(tidy(educ.ols), digits=4, align='c',caption=

"First stage in the 2SLS model for the 'wage' equation")

The p-value for mothereduc is very low (see Table 10.1), indicating a strong correla-
tion between this instrument and the endogenous variable educ aven after controling

10.1. THE INSTRUMENTAL VARIABLES (IV) METHOD 167

Table 10.2: Second stage in the 2SLS model for the ’wage’ equation

term estimate std.error statistic p.value
(Intercept) 0.1982 0.4933 0.4017 0.6881
educHat 0.0493 0.0391 1.2613 0.2079
exper 0.0449 0.0142 3.1668 0.0017

I(exper^2) -0.0009 0.0004 -2.1749 0.0302

for other variables. The second stage in the two-stage procedure is to create the fit-
ted values of educ from the first stage (Equation (10.3)) and plug them into the
model of interest, Euation (10.2) to replace the original variable educ.
educHat <- fitted(educ.ols)
wage.2sls <- lm(log(wage)~educHat+exper+I(exper^2), data=mroz1)
kable(tidy(wage.2sls), digits=4, align='c',caption=

"Second stage in the 2SLS model for the 'wage' equation")

The results of the explicit 2SLS procedure are shown in Table 10.2; keep n mind,
however, that the standard errors calculated in this way are incorrect; the correct
method is to use a dedicated software function to solve an instrumental variable
model. In R, such a function is ivreg().
data("mroz", package="PoEdata")
mroz1 <- mroz[mroz$lfp==1,] #restricts sample to lfp=1.
mroz1.ols <- lm(log(wage)~educ+exper+I(exper^2), data=mroz1)
mroz1.iv <- ivreg(log(wage)~educ+exper+I(exper^2)|

exper+I(exper^2)+mothereduc, data=mroz1)
mroz1.iv1 <- ivreg(log(wage)~educ+exper+I(exper^2)|

exper+I(exper^2)+mothereduc+fathereduc,
data=mroz1)

stargazer(mroz1.ols, wage.2sls, mroz1.iv, mroz1.iv1,
title="Wage equation: OLS, 2SLS, and IV models compared",
header=FALSE,
type=.stargazertype, # "html" or "latex" (in index.Rmd)
keep.stat="n", # what statistics to print
omit.table.layout="n",
star.cutoffs=NA,
digits=4,

single.row=TRUE,
intercept.bottom=FALSE, #moves the intercept coef to top
column.labels=c("OLS","explicit 2SLS", "IV mothereduc",

"IV mothereduc and fathereduc"),

168 CHAPTER 10. RANDOM REGRESSORS

dep.var.labels.include = FALSE,
model.numbers = FALSE,
dep.var.caption="Dependent variable: wage",
model.names=FALSE,
star.char=NULL) #supresses the stars)

Table 10.3: Wage equation: OLS, 2SLS, and IV models compared

Dependent variable: wage
OLS explicit 2SLS IV mothereduc IV mothereduc and fathereduc

Constant −0.5220 0.1982 0.1982 0.0481
(0.1986) (0.4933) (0.4729) (0.4003)

educ 0.1075 0.0493 0.0614
(0.0141) (0.0374) (0.0314)

educHat 0.0493
(0.0391)

exper 0.0416 0.0449 0.0449 0.0442
(0.0132) (0.0142) (0.0136) (0.0134)

I(exper̂ 2) −0.0008 −0.0009 −0.0009 −0.0009
(0.0004) (0.0004) (0.0004) (0.0004)

Observations 428 428 428 428

The table titled “Wage equation: OLS, 2SLS, and IV compared” shows that the
importance of education in determining wage decreases in the IV model. It also
shows that the explicit 2SLS model and the IV model with only mothered instrument
yield the same coefficients (the educ in the IV model is equivalent to the educHat
in 2SLS), but the standard errors are different. The correct ones are those provided
by the IV model.

A few observations are in order concerning the above code sequence. First, since
some of the individuals are not in the labor force, their wages are zero and the log
cannot be calculated. I excluded those observations using only those for which lpf
is equal to 1. Second, the instrument list in the command ivreg includes both the
instrument itself (mothereduc) and all exogenous regressors, which are, so to speak,
their own instruments. The vertical bar character | separates the proper regressor
list from the instrument list.

10.1. THE INSTRUMENTAL VARIABLES (IV) METHOD 169

Table 10.4: The ’educ’ first-stage equation

term estimate std.error statistic p.value
(Intercept) 9.1026 0.4266 21.3396 0.0000
exper 0.0452 0.0403 1.1236 0.2618
I(exper^2) -0.0010 0.0012 -0.8386 0.4022
mothereduc 0.1576 0.0359 4.3906 0.0000
fathereduc 0.1895 0.0338 5.6152 0.0000

To test for weak instruments in the wage equation, we just test the joint significance
of the instruments in an educ model as shown in Equation (10.4).

educ = γ1 + γ2exper + γ3exper2 + θ1mothereduc + θ2fathereduc + ν (10.4)

educ.ols <- lm(educ~exper+I(exper^2)+mothereduc+fathereduc,
data=mroz1)

tab <- tidy(educ.ols)
kable(tab, digits=4,

caption="The 'educ' first-stage equation")

linearHypothesis(educ.ols, c("mothereduc=0", "fathereduc=0"))

Linear hypothesis test
##
Hypothesis:
mothereduc = 0
fathereduc = 0
##
Model 1: restricted model
Model 2: educ ~ exper + I(exper^2) + mothereduc + fathereduc
##
Res.Df RSS Df Sum of Sq F Pr(>F)
1 425 2219
2 423 1759 2 460.6 55.4 <2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The test rejects the null hypothesis that both mothereduc and fathereduc coeffi-
cients are zero, indicating that at least one instrument is strong. A rule of thumb
requires to soundly reject the null hypothesis at a value of the F -statistic greater
than 10 or, for only one instrument, a t-statistic greater than 3.16, to make sure
that an instrument is strong.

170 CHAPTER 10. RANDOM REGRESSORS

For a model to be identified the number of instruments should be at least equal to
the number of endogenous variables. If there are more instruments than endogenous
variables, the model is said to be overidentified.

10.2 Specification Tests

We have seen before how to test for weak instruments with only one instrument.
This test can be extended to several instruments. The null hypothesis is H0: “All
instruments are weak”.

Since using IV when it is not necessary worsens our estimates, we would like to
test whether the variables that worry us are indeed endogenous. This problem is
addressed by the Hausman test for endogeneity, where the null hypothesis is
H0 : Cov(x, e) = 0. Thus, rejecting the null hypothesis indicates the existence of
endogeneity and the need for instrumental variables.

The test for the validity of instruments (whether the instruments are corrrelated
with the error term) can only be performed for the extra instruments, those that are
in excess of the number of endogenous variables. This test is sometimes called a test
for overidentifying restrictions, or the Sargan test. The null hypothesis is that
the covariance between the instrument and the error term is zero, H0 : Cov(z, e) = 0.
Thus, rejecting the null indicates that at least one of the extra instruments is not
valid.

R automatically performs these three tests and reports the results in the output to
the ivreg function.
summary(mroz1.iv1, diagnostics=TRUE)

##
Call:
ivreg(formula = log(wage) ~ educ + exper + I(exper^2) | exper +
I(exper^2) + mothereduc + fathereduc, data = mroz1)
##
Residuals:
Min 1Q Median 3Q Max
-3.0986 -0.3196 0.0551 0.3689 2.3493
##
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.048100 0.400328 0.12 0.9044
educ 0.061397 0.031437 1.95 0.0515 .
exper 0.044170 0.013432 3.29 0.0011 **

10.2. SPECIFICATION TESTS 171

I(exper^2) -0.000899 0.000402 -2.24 0.0257 *
##
Diagnostic tests:
df1 df2 statistic p-value
Weak instruments 2 423 55.40 <2e-16 ***
Wu-Hausman 1 423 2.79 0.095 .
Sargan 1 NA 0.38 0.539

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
Residual standard error: 0.675 on 424 degrees of freedom
Multiple R-Squared: 0.136, Adjusted R-squared: 0.13
Wald test: 8.14 on 3 and 424 DF, p-value: 0.0000279

The results for the wage equation are as follows:

• Weak instruments test: rejects the null, meaning that at least one instrument
is strong

• (Wu-)Hausman test for endogeneity: barely rejects the null that the variable of
concern is uncorrelated with the error term, indicating that educ is marginally
endogenous

• Sargan overidentifying restrictions: does not reject the null, meaning that the
extra instruments are valid (are uncorrelated with the error term).

The test for weak instruments might be unreliable with more than one endogenous
regressor, though, because there is indeed one F -statistic for each endogenous re-
gressor. An alternative is the Cragg-Donald test based on the statistic shown in
Equation (10.5), where G is the number of exogenous regressors, B is the number of
endogenous regressors, L is the number of external instruments, and rB is the lowest
canonical correlation (a measure of the correlation between the endogenous and
the exogenous variables, calculated by the function cancor() in R).

F = N − G − B

L

r2
B

1 − r2
B

(10.5)

Let us look at the hours equation with two endogenous variables, mtr and educ, and
two external instruments, mothereduc and fathereduc. One of the two exogenous
regressors, nwifeinc, is the family income net of the wife’s income; the other ex-
ogenous regressor, mtr, is the wife’s marginal tax rate. Equation (10.6) shows this
model; the dataset is mroz, restricted to women that are in the labor force.

hours = β1 + β2mtr + β3educ + β4kidsl6 + β5nwifeinc + e (10.6)

172 CHAPTER 10. RANDOM REGRESSORS

The next code sequence uses the R function cancor() to calculate the lowest of
two canonical correlations, rB, which is needed for the Cragg-Donald F -statistic in
Equation (10.5).
data("mroz", package="PoEdata")
mroz1 <- mroz[which(mroz$wage>0),]
nwifeinc <- (mroz1$faminc-mroz1$wage*mroz1$hours)/1000
G<-2; L<-2; N<-nrow(mroz1)
x1 <- resid(lm(mtr~kidsl6+nwifeinc, data=mroz1))
x2 <- resid(lm(educ~kidsl6+nwifeinc, data=mroz1))
z1 <-resid(lm(mothereduc~kidsl6+nwifeinc, data=mroz1))
z2 <-resid(lm(fathereduc~kidsl6+nwifeinc, data=mroz1))
X <- cbind(x1,x2)
Y <- cbind(z1,z2)
rB <- min(cancor(X,Y)$cor)
CraggDonaldF <- ((N-G-L)/L)/((1-rB^2)/rB^2)

The result is the Cragg-Donald F = 0.100806, which is much smaller than the
critical value of 4.58 given in Table 10E.1 of the textbook (Hill et al., 2011). This
test rejects the null hypothesis of strong instruments, contradicting my previous
result.

Chapter 11

Simultaneous Equations Models

rm(list=ls()) #Removes all items in Environment!
library(systemfit)
library(broom) #for `glance(`) and `tidy()`
library(PoEdata) #for PoE4 dataset
library(knitr) #for kable()

New package: systemfit (Henningsen and Hamann, 2015).

Simultaneous equations are models with more than one response variable, where the
solution is determined by an equilibrium among opposing forces. The econometric
problem is similar to the endogenous variables we have studied already in the pre-
vious chapter because the mutual interaction between dependent variables can be
considered a form of endogeneity. The typical example of an economic simultaneous
equation problem is the supply and demand model, where price and quantity are
interdependent and are determined by the interaction between supply and demand.

Usually, an economic model such as demand and supply equations include several of
the depednedent (endogenous) variables in each equation. Such a model is called the
structural form of the model. If the structural form is transformed such that each
equation shows one dependent variable as a function of only exogenous independent
variables, the new form is called the reduced form. The reduced form can be
estimated by least squares, while the structural form cannot because it includes
endogenous variables on its right-hand side.

The necessary condition for identification requires that, for the problem to
have a solution each equation in the structural form of the system should miss at
least an exogenous variable that is present in other equations.

Simultaneous equations are the object of package systemfit in R, with the func-

173

174 CHAPTER 11. SIMULTANEOUS EQUATIONS MODELS

tion systemfit(), which requires the following main arguments: formula= a list
describing the equations of the system; method= the desired (appropriate) method
of estimation, which can be one of “OLS”, “WLS”, “SUR”, “2SLS”, “W2SLS”, or
“3SLS” (we have only studied OLS, WLS, and 2SLS so far); inst= a list of instru-
mental variables under the form of one-sided model formulas; all the endogenous
variables in the system must be in this list.

The following example uses the dataset truffles, where q is quantity of truffles
traded, p is the market price, ps is the price of a substitute, di is income, and pf
is a measure of costs of production. The structural demand and supply equations
(Equations (11.1) and (11.2)) are formulated based on economic theory; quantity
and price are endogenous, and all the other variables are considered exogenous.

q = α1 + α2p + α3ps + α4di + ed (11.1)

q = β1 + β2p + β3pf + es (11.2)

data("truffles", package="PoEdata")
D <- q~p+ps+di
S <- q~p+pf
sys <- list(D,S)
instr <- ~ps+di+pf
truff.sys <- systemfit(sys, inst=instr,

method="2SLS", data=truffles)
summary(truff.sys)

##
systemfit results
method: 2SLS
##
N DF SSR detRCov OLS-R2 McElroy-R2
system 60 53 692.47 49.803 0.43896 0.80741
##
N DF SSR MSE RMSE R2 Adj R2
eq1 30 26 631.917 24.3045 4.9300 -0.02395 -0.14210
eq2 30 27 60.555 2.2428 1.4976 0.90188 0.89461
##
The covariance matrix of the residuals
eq1 eq2
eq1 24.3045 2.1694
eq2 2.1694 2.2428
##

175

The correlations of the residuals
eq1 eq2
eq1 1.00000 0.29384
eq2 0.29384 1.00000
##
##
2SLS estimates for 'eq1' (equation 1)
Model Formula: q ~ p + ps + di
Instruments: ~ps + di + pf
##
Estimate Std. Error t value Pr(>|t|)
(Intercept) -4.27947 5.54388 -0.7719 0.44712
p -0.37446 0.16475 -2.2729 0.03154 *
ps 1.29603 0.35519 3.6488 0.00116 **
di 5.01398 2.28356 2.1957 0.03724 *

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
Residual standard error: 4.92996 on 26 degrees of freedom
Number of observations: 30 Degrees of Freedom: 26
SSR: 631.91714 MSE: 24.30451 Root MSE: 4.92996
Multiple R-Squared: -0.02395 Adjusted R-Squared: -0.1421
##
##
2SLS estimates for 'eq2' (equation 2)
Model Formula: q ~ p + pf
Instruments: ~ps + di + pf
##
Estimate Std. Error t value Pr(>|t|)
(Intercept) 20.032802 1.223115 16.378 1.554e-15 ***
p 0.337982 0.024920 13.563 1.434e-13 ***
pf -1.000909 0.082528 -12.128 1.946e-12 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
Residual standard error: 1.49759 on 27 degrees of freedom
Number of observations: 30 Degrees of Freedom: 27
SSR: 60.55457 MSE: 2.24276 Root MSE: 1.49759
Multiple R-Squared: 0.90188 Adjusted R-Squared: 0.89461

The output of the systemfit() function shows the estimates by structural
equation:eq1is the demand function, where, as expected, price has a
negative sign, andeq2‘ is the supply equation, with a positive sign for price.

176 CHAPTER 11. SIMULTANEOUS EQUATIONS MODELS

Table 11.1: Reduced form for quantity

term estimate std.error statistic p.value
(Intercept) 7.8951 3.2434 2.4342 0.0221
ps 0.6564 0.1425 4.6051 0.0001
di 2.1672 0.7005 3.0938 0.0047
pf -0.5070 0.1213 -4.1809 0.0003

Table 11.2: Reduced form for price

term estimate std.error statistic p.value
(Intercept) 7.8951 3.2434 2.4342 0.0221
ps 0.6564 0.1425 4.6051 0.0001
di 2.1672 0.7005 3.0938 0.0047
pf -0.5070 0.1213 -4.1809 0.0003

By evaluating the reduced form equation using OLS, one can determinne the effects
of changes in exogenous variables on the equilibrium market price and quantity,
while the structural equations show the effects of such changes on the quantity de-
manded, respectively on the quantity supplied. Estimating the structural equations
by such methods as 2SLS is, in fact, estimating the market demand and supply
curves, which is extremly useful for economic analysis. Estimating the reduced
forms, while being useful for prediction, does not allow for deep analysis - it only
gives the equilibrium point, not the whole curves.
Q.red <- lm(q~ps+di+pf, data=truffles)
P.red <- lm(q~ps+di+pf, data=truffles)
kable(tidy(Q.red), digits=4,

caption="Reduced form for quantity")

kable(tidy(P.red), digits=4,
caption="Reduced form for price")

Tables 11.1 and 11.2 show that all the exogenous variables have significant effects
on the equilibrium quantity and price and have the expected signs.

The fultonfish dataset provides another demand and supply example where the
simultaneous equations method can be applied. The purpose of this example is to
emphasize that the exogenous variables that are key for identification must be sta-
tistically significant. Otherwise, the structural equation that needs to be identified
by those variables cannot be reliably estimated. The remaining equations in the
structural system are, however, not affected.

177

log(quan) = α1 + α2log(price) + α3mon + α4tue + α4wed + α5thu + eD (11.3)

log(quan) = β1 + β2log(price) + β3stormy + eS (11.4)

In the fultonfish example, the endogenous variables are lprice, the log of price,
and lquan; the exogenous variables are the indicator variables for the day of the
week, and whether the catching day was stormy. The identification variable for the
demand equation is stormy, which will only show up in the supply equation; the
identification variables for the supply equation will be mon, tue, wed, and thu.

log(q) = π11 + π21mon + π31tue + π41wed + π51thu + π61stormy + ν1 (11.5)

log(p) = π12 + π22mon + π32tue + π42wed + π52thu + π62stormy + ν2 (11.6)

Now, let us consider the reduced form equations (Equations (11.5) and (11.6)). Since
the endogenous variable that appears in the right-hand side of the structural equa-
tions (Equations (11.3) and (11.4)) is price, the price reduced equation (Equation
(11.6)) is essential for evaluating the identification state of the model. Let us focus
on this equation. If the weekday indicators are all insignificant, the supply equation
cannot be identified; if stormy turns out insignificant, the demand equation cannot
be identified; if the weekday indicators are insignificat but stormy is significant the
supply is not identified, but the demand is; if at least one weekday indicator turns
out significant but stormy turns out insignificant, the demand equation is not iden-
tified but the supply equation is. Equations (11.3) and (11.4) display the structural
demand and supply equations for the fultonfish example.
data("fultonfish", package="PoEdata")
fishQ.ols <- lm(lquan~mon+tue+wed+thu+stormy, data=fultonfish)
kable(tidy(fishQ.ols), digits=4,

caption="Reduced 'Q' equation for the fultonfish example")

fishP.ols <- lm(lprice~mon+tue+wed+thu+stormy, data=fultonfish)
kable(tidy(fishP.ols), digits=4,

caption="Reduced 'P' equation for the fultonfish example")

The relevant equation for evaluating identification is shown in Table 11.4, which is
the price reduced equation. The results show that the weekday indicators are not

178 CHAPTER 11. SIMULTANEOUS EQUATIONS MODELS

Table 11.3: Reduced ’Q’ equation for the fultonfish example

term estimate std.error statistic p.value
(Intercept) 8.8101 0.1470 59.9225 0.0000
mon 0.1010 0.2065 0.4891 0.6258
tue -0.4847 0.2011 -2.4097 0.0177
wed -0.5531 0.2058 -2.6875 0.0084
thu 0.0537 0.2010 0.2671 0.7899
stormy -0.3878 0.1437 -2.6979 0.0081

Table 11.4: Reduced ’P’ equation for the fultonfish example

term estimate std.error statistic p.value
(Intercept) -0.2717 0.0764 -3.5569 0.0006
mon -0.1129 0.1073 -1.0525 0.2950
tue -0.0411 0.1045 -0.3937 0.6946
wed -0.0118 0.1069 -0.1106 0.9122
thu 0.0496 0.1045 0.4753 0.6356
stormy 0.3464 0.0747 4.6387 0.0000

significant, which will make the 2SLS estimation of the supply equation unreliable;
the coefficient on stormy is significant, thus the estimation of the (structural) de-
mand equation will be reliable. The following code sequence and output show the
2SLS estimates of the demand and supply (the structural) equations.
fish.D <- lquan~lprice+mon+tue+wed+thu
fish.S <- lquan~lprice+stormy
fish.eqs <- list(fish.D, fish.S)
fish.ivs <- ~mon+tue+wed+thu+stormy
fish.sys <- systemfit(fish.eqs, method="2SLS",

inst=fish.ivs, data=fultonfish)
summary(fish.sys)

##
systemfit results
method: 2SLS
##
N DF SSR detRCov OLS-R2 McElroy-R2
system 222 213 109.61 0.1073 0.09424 -0.59781
##
N DF SSR MSE RMSE R2 Adj R2
eq1 111 105 52.090 0.49610 0.70434 0.13912 0.09813

179

eq2 111 108 57.522 0.53261 0.72980 0.04936 0.03176
##
The covariance matrix of the residuals
eq1 eq2
eq1 0.49610 0.39614
eq2 0.39614 0.53261
##
The correlations of the residuals
eq1 eq2
eq1 1.00000 0.77065
eq2 0.77065 1.00000
##
##
2SLS estimates for 'eq1' (equation 1)
Model Formula: lquan ~ lprice + mon + tue + wed + thu
Instruments: ~mon + tue + wed + thu + stormy
##
Estimate Std. Error t value Pr(>|t|)
(Intercept) 8.505911 0.166167 51.1890 < 2.2e-16 ***
lprice -1.119417 0.428645 -2.6115 0.010333 *
mon -0.025402 0.214774 -0.1183 0.906077
tue -0.530769 0.208000 -2.5518 0.012157 *
wed -0.566351 0.212755 -2.6620 0.008989 **
thu 0.109267 0.208787 0.5233 0.601837

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
Residual standard error: 0.70434 on 105 degrees of freedom
Number of observations: 111 Degrees of Freedom: 105
SSR: 52.09032 MSE: 0.4961 Root MSE: 0.70434
Multiple R-Squared: 0.13912 Adjusted R-Squared: 0.09813
##
##
2SLS estimates for 'eq2' (equation 2)
Model Formula: lquan ~ lprice + stormy
Instruments: ~mon + tue + wed + thu + stormy
##
Estimate Std. Error t value Pr(>|t|)
(Intercept) 8.6283544 0.3889702 22.1826 <2e-16 ***
lprice 0.0010593 1.3095470 0.0008 0.9994
stormy -0.3632461 0.4649125 -0.7813 0.4363

180 CHAPTER 11. SIMULTANEOUS EQUATIONS MODELS

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
Residual standard error: 0.7298 on 108 degrees of freedom
Number of observations: 111 Degrees of Freedom: 108
SSR: 57.52184 MSE: 0.53261 Root MSE: 0.7298
Multiple R-Squared: 0.04936 Adjusted R-Squared: 0.03176

In the output of the 2SLS estimation, eq1 is the demand equation, and eq2 is the
supply. As we have seen the demand equation is identified, i.e., reliable, while the
supply equation is not. A solution might be to find better instruments, other than
the weekdays for the demand equation. Finding valid instruments is, however, a
difficult task in many problems.

Chapter 12

Time Series: Nonstationarity

rm(list=ls()) #Removes all items in Environment!
library(tseries) # for ADF unit root tests
library(dynlm)
library(nlWaldTest) # for the `nlWaldtest()` function
library(lmtest) #for `coeftest()` and `bptest()`.
library(broom) #for `glance(`) and `tidy()`
library(PoEdata) #for PoE4 datasets
library(car) #for `hccm()` robust standard errors
library(sandwich)
library(knitr) #for kable()
library(forecast)

New package: tseries (Trapletti and Hornik, 2016).

A time series is nonstationary if its distribution, in particular its mean, variance, or
timewise covariance change over time. Nonstationary time series cannot be used in
regression models because they may create spurious regression, a false relation-
ship due to, for instance, a common trend in otherwise unrelated variables. Two or
more nonstationary series can still be part of a regression model if they are cointe-
grated, that is, they are in a stationary relationship of some sort.

We are concerned with testing time series for nonstationarity and finding out how can
we transform nonstationary time series such that we can still use them in regression
analysis.
data("usa", package="PoEdata")
usa.ts <- ts(usa, start=c(1984,1), end=c(2009,4),

frequency=4)
Dgdp <- diff(usa.ts[,1])

181

182 CHAPTER 12. TIME SERIES: NONSTATIONARITY

Table 12.1: Time series data frame constructed with ’ts.union’

gdp inf f b Dgdp Dinf Df Db
3807.4 9.47 9.69 11.19 NA NA NA NA
3906.3 10.03 10.56 12.64 98.9 0.56 0.87 1.45
3976.0 10.83 11.39 12.64 69.7 0.80 0.83 0.00
4034.0 11.51 9.27 11.10 58.0 0.68 -2.12 -1.54
4117.2 10.51 8.48 10.68 83.2 -1.00 -0.79 -0.42
4175.7 9.24 7.92 9.76 58.5 -1.27 -0.56 -0.92

Dinf <- diff(usa.ts[,"inf"])
Df <- diff(usa.ts[,"f"])
Db <- diff(usa.ts[,"b"])
usa.ts.df <- ts.union(gdp=usa.ts[,1], # package tseries

inf=usa.ts[,2],
f=usa.ts[,3],
b=usa.ts[,4],
Dgdp,Dinf,Df,Db,
dframe=TRUE)

plot(usa.ts.df$gdp)
plot(usa.ts.df$Dgdp)
plot(usa.ts.df$inf)
plot(usa.ts.df$Dinf)
plot(usa.ts.df$f)
plot(usa.ts.df$Df)
plot(usa.ts.df$b)
plot(usa.ts.df$Db)

A novelty in the above code sequence is the use of the function ts.union, wich
binds together several time series, with the possibility of constructing a data frame.
Table 12.1 presents the head of this data frame.
kable(head(usa.ts.df),
caption="Time series data frame constructed with 'ts.union'")

12.1 AR(1), the First-Order Autoregressive Model

An AR(1) stochastic process is defined by Equation (12.1), where the error term
is sometimes called “innovation” or “shock.”

12.1. AR(1), THE FIRST-ORDER AUTOREGRESSIVE MODEL 183

Time

us
a.

ts
.d

f$
gd

p

1985 1990 1995 2000 2005 2010

40
00

80
00

12
00

0

Time

us
a.

ts
.d

f$
D

gd
p

1985 1990 1995 2000 2005 2010

−
30

0
−

10
0

0
10

0
20

0

Time

us
a.

ts
.d

f$
in

f

1985 1990 1995 2000 2005 2010

2
4

6
8

10
12

14

Time

us
a.

ts
.d

f$
D

in
f

1985 1990 1995 2000 2005 2010

−
1.

5
−

0.
5

0.
5

1.
0

1.
5

Time

us
a.

ts
.d

f$
f

1985 1990 1995 2000 2005 2010

0
2

4
6

8
10

Time

us
a.

ts
.d

f$
D

f

1985 1990 1995 2000 2005 2010

−
2.

0
−

1.
0

0.
0

0.
5

1.
0

Time

us
a.

ts
.d

f$
b

1985 1990 1995 2000 2005 2010

2
4

6
8

10
12

Time

us
a.

ts
.d

f$
D

b

1985 1990 1995 2000 2005 2010

−
1.

5
−

0.
5

0.
5

1.
0

1.
5

Figure 12.1: Various time series to illustrate nonstationarity

184 CHAPTER 12. TIME SERIES: NONSTATIONARITY

yt = ρyt−1 + νt, |ρ| < 1 (12.1)

The AR(1) process is stationary if |ρ| < 1; when ρ = 1, the process is called random
walk. The next code piece plots various AR(1) processes, with or without a constant,
with or without trend (time as a term in the random process equation), with ρ lesss
or equal to 1. The generic equation used to draw the diagrams is given in Equation
(12.2).

yt = α + λt + ρyt−1 + νt (12.2)

N <- 500
a <- 1
l <- 0.01
rho <- 0.7

set.seed(246810)
v <- ts(rnorm(N,0,1))

y <- ts(rep(0,N))
for (t in 2:N){

y[t]<- rho*y[t-1]+v[t]
}
plot(y,type='l', ylab="rho*y[t-1]+v[t]")
abline(h=0)

y <- ts(rep(0,N))
for (t in 2:N){

y[t]<- a+rho*y[t-1]+v[t]
}
plot(y,type='l', ylab="a+rho*y[t-1]+v[t]")
abline(h=0)

y <- ts(rep(0,N))
for (t in 2:N){

y[t]<- a+l*time(y)[t]+rho*y[t-1]+v[t]
}
plot(y,type='l', ylab="a+l*time(y)[t]+rho*y[t-1]+v[t]")
abline(h=0)

y <- ts(rep(0,N))
for (t in 2:N){

12.2. SPURIOUS REGRESSION 185

y[t]<- y[t-1]+v[t]
}
plot(y,type='l', ylab="y[t-1]+v[t]")
abline(h=0)

a <- 0.1
y <- ts(rep(0,N))
for (t in 2:N){

y[t]<- a+y[t-1]+v[t]
}
plot(y,type='l', ylab="a+y[t-1]+v[t]")
abline(h=0)

y <- ts(rep(0,N))
for (t in 2:N){

y[t]<- a+l*time(y)[t]+y[t-1]+v[t]
}
plot(y,type='l', ylab="a+l*time(y)[t]+y[t-1]+v[t]")
abline(h=0)

12.2 Spurious Regression

Nonstationarity can lead to spurious regression, an apparent relationship between
variables that are, in reality not related. The following code sequence generates two
independent random walk processes, y and x, and regresses y on x.
T <- 1000
set.seed(1357)
y <- ts(rep(0,T))
vy <- ts(rnorm(T))
for (t in 2:T){

y[t] <- y[t-1]+vy[t]
}

set.seed(4365)
x <- ts(rep(0,T))
vx <- ts(rnorm(T))
for (t in 2:T){

x[t] <- x[t-1]+vx[t]
}
y <- ts(y[300:1000])

186 CHAPTER 12. TIME SERIES: NONSTATIONARITY

Time

rh
o*

y[
t−

1]
+

v[
t]

0 100 200 300 400 500

−
4

−
2

0
2

4

Time

a+
rh

o*
y[

t−
1]

+
v[

t]
0 100 200 300 400 500

0
2

4
6

Time

a+
l*

tim
e(

y)
[t]

+
rh

o*
y[

t−
1]

+
v[

t]

0 100 200 300 400 500

0
5

10
15

20

Time

y[
t−

1]
+

v[
t]

0 100 200 300 400 500

−
15

−
5

0
5

10

Time

a+
y[

t−
1]

+
v[

t]

0 100 200 300 400 500

0
10

20
30

40

Time

a+
l*

tim
e(

y)
[t]

+
y[

t−
1]

+
v[

t]

0 100 200 300 400 500

0
20

0
60

0
10

00

Figure 12.2: Artificially generated AR(1) processes with rho=0.7

12.2. SPURIOUS REGRESSION 187

Time

y
an

d
x

0 100 200 300 400 500 600 700

−
40

−
20

0
20

40

Figure 12.3: Artificially generated independent random variables

x <- ts(x[300:1000])
ts.plot(y,x, ylab="y and x")

spurious.ols <- lm(y~x)
summary(spurious.ols)

##
Call:
lm(formula = y ~ x)
##
Residuals:
Min 1Q Median 3Q Max
-12.55 -5.97 -2.45 4.51 24.68
##
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -20.3871 1.6196 -12.59 < 2e-16 ***
x -0.2819 0.0433 -6.51 1.5e-10 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
Residual standard error: 7.95 on 699 degrees of freedom
Multiple R-squared: 0.0571, Adjusted R-squared: 0.0558

188 CHAPTER 12. TIME SERIES: NONSTATIONARITY

25 30 35 40 45 50 55

−
45

−
35

−
25

−
15

x

y

Figure 12.4: Scatter plot of artificial series y and x

F-statistic: 42.4 on 1 and 699 DF, p-value: 1.45e-10

The summary output of the regression shows a strong correlation between the two
variables, thugh they have been generated independently. (Not any two randomly
generated processes need to create spurious regression, though.) Figure 12.3 depicts
the two time series, y and x, and Figure 12.4 shows them in a scatterplot.
plot(x, y, type="p", col="grey")

12.3 Unit Root Tests for Stationarity

The Dickey-Fuller test for stationarity is based on an AR(1) process as defined in
Equation (12.1); if our time series seems to display a constant and trend, the basic
equation is the one in Equation (12.2). According to the Dickey-Fuller test, a time
series is nonstationary when ρ = 1, which makes the AR(1) process a random walk.
The null and alternative hypotheses of the test is given in Equation (12.3).

H0 : ρ = 1, HA : ρ < 1 (12.3)

The basic AR(1) equations mentioned above are transformed, for the purpose of the
DF test into Equation (12.4), with the transformed hypothesis shown in Equation

12.3. UNIT ROOT TESTS FOR STATIONARITY 189

Time

us
a.

ts
.d

f$
f

1985 1990 1995 2000 2005 2010

0
2

4
6

8
10

1 2 3 4 5

−
0.

2
0.

0
0.

2
0.

4
0.

6
0.

8

Lag

A
C

F

usa.ts.df$f

Figure 12.5: A plot and correlogram for series f in dataset usa

(12.5). Rejecting the DF null hypothesis implies that our time series is
stationary.

∆yt = α + γyt−1 + λt + νt (12.4)

H0 : γ = 0, HA : γ < 0 (12.5)

An augmented DF test includes several lags of the variable tested; the number of
lags to include can be assessed by examining the correlogram of the variable. The
DF test can be of three types: with no constant and no trend, with constsnt and
no trend, and, finally, with constant and trend. It is important to specify which DF
test we want because the critical values are different for the three different types of
the test. One decides which test to perform by examining a time series plot of the
variable and determine if an imaginary regression line would have an intercept and
a slope.

Let us apply the DF test to the f series in the usa dataset.
plot(usa.ts.df$f)
Acf(usa.ts.df$f)

The time series plot in Figure 12.5 indicates both intercept and trend for our series,
while the correlogram suggests including 10 lags in the DF test equation. Suppose
we choose α = 0.05 for the DF test. The adf.test function does not require
specifying whether the test should be conducted with constant or trend, and if no
value for the number of lags is given (the argument for the number of lags is k), R
will calculate a value for it. I would recommend always taking a look at the series’
plot and correlogram.

190 CHAPTER 12. TIME SERIES: NONSTATIONARITY

adf.test(usa.ts.df$f, k=10)

##
Augmented Dickey-Fuller Test
##
data: usa.ts.df$f
Dickey-Fuller = -3.373, Lag order = 10, p-value = 0.0628
alternative hypothesis: stationary

The result of the test is a p-value greater than our chosen significance level of 0.05;
therefore, we cannot reject the null hypothesis of nonstationarity.
plot(usa.ts.df$b)

Time

us
a.

ts
.d

f$
b

1985 1990 1995 2000 2005 2010

2
4

6
8

10
12

Acf(usa.ts.df$b)

12.3. UNIT ROOT TESTS FOR STATIONARITY 191

1 2 3 4 5

−
0.

2
0.

0
0.

2
0.

4
0.

6
0.

8

Lag

A
C

F

usa.ts.df$b

adf.test(usa.ts.df$b, k=10)

##
Augmented Dickey-Fuller Test
##
data: usa.ts.df$b
Dickey-Fuller = -2.984, Lag order = 10, p-value = 0.169
alternative hypothesis: stationary

Here is a code to reproduce the results in the textbook.
f <- usa.ts.df$f
f.dyn <- dynlm(d(f)~L(f)+L(d(f)))
tidy(f.dyn)

term estimate std.error statistic p.value
1 (Intercept) 0.1725221 0.1002333 1.72121 8.83371e-02
2 L(f) -0.0446213 0.0178142 -2.50482 1.38840e-02
3 L(d(f)) 0.5610582 0.0809827 6.92812 4.36020e-10
b <- usa.ts.df$b
b.dyn <- dynlm(d(b)~L(b)+L(d(b)))
tidy(b.dyn)

term estimate std.error statistic p.value
1 (Intercept) 0.2368730 0.1291731 1.83376 0.06969326
2 L(b) -0.0562412 0.0208081 -2.70285 0.00809146
3 L(d(b)) 0.2903078 0.0896069 3.23979 0.00162920

192 CHAPTER 12. TIME SERIES: NONSTATIONARITY

Time

df

1985 1990 1995 2000 2005 2010

−
2.

0
−

1.
0

0.
0

0.
5

1.
0

1 2 3 4 5

−
0.

2
0.

0
0.

2
0.

4

Lag

A
C

F

df

Figure 12.6: Plot and correlogram for series diff(f) in dataset usa

A concept that is closely related to stationarity is order of integration, which
is how many times we need to difference a series untill it becomes stationary. A
series is I(0), that is, integrated of order 0 if it is already stationary (it is stationary
in levels, not in differences); a series is I(1) if it is nonstationary in levels, but
stationary in its first differences.
df <- diff(usa.ts.df$f)
plot(df)
Acf(df)
adf.test(df, k=2)

##
Augmented Dickey-Fuller Test
##
data: df
Dickey-Fuller = -4.178, Lag order = 2, p-value = 0.01
alternative hypothesis: stationary
db <- diff(usa.ts.df$b)
plot(db)
Acf(db)
adf.test(db, k=1)

##
Augmented Dickey-Fuller Test
##
data: db
Dickey-Fuller = -6.713, Lag order = 1, p-value = 0.01
alternative hypothesis: stationary

Both the plots and the DF tests indicate that the f and b series are stationary in
first differences, which makes each of them integrated of order 1. The next code

12.3. UNIT ROOT TESTS FOR STATIONARITY 193

Time

db

1985 1990 1995 2000 2005 2010

−
1.

5
−

0.
5

0.
5

1.
0

1.
5

1 2 3 4 5

−
0.

2
0.

0
0.

1
0.

2

Lag

A
C

F

db

Figure 12.7: Plot and correlogram for series diff(b) in dataset usa

sequence reproduces the results in the textbook. Please note the term (−1) in the
dynlm command; it tells R that we do not want an intercept in our model. Figures
12.6 and 12.7 show plots of the differenced f and b series, respectively.
df.dyn <- dynlm(d(df)~L(df)-1)
db.dyn <- dynlm(d(db)~L(db)-1)
tidy(df.dyn)

term estimate std.error statistic p.value
1 L(df) -0.446986 0.0814619 -5.48706 3.0409e-07
tidy(db.dyn)

term estimate std.error statistic p.value
1 L(db) -0.701796 0.0915937 -7.66205 1.14657e-11

Function ndiffs() in the package forecast is a very convenient way of determining
the order of integration of a series. The arguments of this function are x, a time
series, alpha, the significacnce level of the test (0.05 by default), test= one of “kpss”,
“adf”, or “pp”, which indicates the unit root test to be used; we have only studied
the “adf” test.), and max.d= maximum number of differences. The output of this
function is an integer, which is the order of integration of the time series.
ndiffs(f)

[1] 1
ndiffs(b)

[1] 1

As we have already found, the orders of integration for both f and b are 1.

194 CHAPTER 12. TIME SERIES: NONSTATIONARITY

12.4 Cointegration

Two series are cointegrated when their trends are not too far apart and are in some
sense similar. This vague statement, though, can be made precise by conducting
a cointegration test, which tests whether the residuals from regressing one series
on the other one are stationary. If they are, the series are cointegrated. Thus, a
cointegration test is in fact a Dickey-Fuler stationarity test on residuals, and its null
hypothesis is of noncointegration. In other words, we would like to reject the null
hypothesis in a cointegration test, as we wanted in a stationarity test.

Let us apply this method to determine the state of cointegration between the series
f and b in dataset usa.
fb.dyn <- dynlm(b~f)
ehat.fb <- resid(fb.dyn)
ndiffs(ehat.fb) #result: 1

[1] 1
output <- dynlm(d(ehat.fb)~L(ehat.fb)+L(d(ehat.fb))-1) #no constant
foo <- tidy(output)
foo

term estimate std.error statistic p.value
1 L(ehat.fb) -0.224509 0.0535039 -4.19613 0.0000588749
2 L(d(ehat.fb)) 0.254045 0.0937006 2.71124 0.0078910837

The relevant statistic is τ = −4.196133, which is less than −3.37, the relevant critical
value for the cointegration test. In conclusion, we reject the null hypothesis that
the residuals have unit roots, therefore the series are cointegrated.

R has a special function to perform cointegration tests, function po.test in package
tseries. (The name comes from the method it uses, which is called “Phillips-
Ouliaris.”) The main argument of the function is a matrix having in its first column
the dependent variable of the cointegration equation and the independent variables
in the other columns. Let me illustrate its application in the case of the same series
fb and f .
bfx <- as.matrix(cbind(b,f), demean=FALSE)
po.test(bfx)

##
Phillips-Ouliaris Cointegration Test
##
data: bfx
Phillips-Ouliaris demeaned = -20.51, Truncation lag parameter = 1,

12.5. THE ERROR CORRECTION MODEL 195

p-value = 0.0499

The PO test marginally rejects the null of no cointegration at the 5 percent level.

12.5 The Error Correction Model

A relationship between cointegrated I(1) variables is a long run relationship, while a
relationship between I(0) variables is a short run one. The short run error correction
model combines, in some sense, short run and long run effects. Starting from an
ARDL(1,1) model (Equation (12.6)) and assuming that there is a steady state (long
run) relationship between y and x, one can derive the error correction model in
Equation (12.7), where more lagged differences of x may be necessary to eliminate
autocorrelation.

yt = δ + θ1yt−1 + δ0xt + δ1xt−1 + νt (12.6)

∆yt = −α(yt−1 − β1 − β2xt−1) + δ0∆xt + νt (12.7)

In the case of the US bonds and funds example, the error correction model can be
constructed as in Equation (12.8).

∆bt = −α(bt−1 − β1 − β2ft−1) + δ0∆ ft + δ1∆ ft−1 + νt (12.8)

The R function that estimates a nonlinear model such as the one in Equation (12.8)
is nls, which requires three main argumants: a formula, which is the regression
model to be estimated written using regular text mathematical operators, a start=
list of guessed or otherwise approximated values of the estimated parameters to
initiate a Gauss-Newton numerical optimization process, and data= a data frame,
list, or environment data source. Please note that data cannot be a matrix.

In the next code sequence, the initial values of the parameters have been determined
by estimating Equation (12.6) with b and f replacing y and x.
b.ols <- dynlm(L(b)~L(f))
b1ini <- coef(b.ols)[[1]]
b2ini <- coef(b.ols)[[2]]
d.ols <- dynlm(b~L(b)+f+L(f))
aini <- 1-coef(d.ols)[[2]]
d0ini <- coef(d.ols)[[3]]
d1ini <- coef(d.ols)[[4]]
Db <- diff(b)

196 CHAPTER 12. TIME SERIES: NONSTATIONARITY

Table 12.2: Parameter estimates in the error correction model

term estimate std.error statistic p.value
a 0.141877 0.049656 2.85720 0.005230
b1 1.429188 0.624625 2.28807 0.024304
b2 0.776557 0.122475 6.34052 0.000000
d0 0.842463 0.089748 9.38697 0.000000
d1 -0.326845 0.084793 -3.85463 0.000208

Table 12.3: Stationarity test within the error correction model

term estimate std.error statistic p.value
L(ehat) -0.168488 0.042909 -3.92668 0.000158
L(d(ehat)) 0.179486 0.092447 1.94149 0.055013

Df <- diff(f)
Lb <- lag(b,-1)
Lf <- lag(f,-1)
LDf <- lag(diff(f),-1)
bfset <- data.frame(ts.union(cbind(b,f,Lb,Lf,Db,Df,LDf)))
formula <- Db ~ -a*(Lb-b1-b2*Lf)+d0*Df+d1*LDf
bf.nls <- nls(formula, na.action=na.omit, data=bfset,

start=list(a=aini, b1=b1ini, b2=b2ini,
d0=d0ini, d1=d1ini))

kable(tidy(bf.nls),
caption="Parameter estimates in the error correction model")

The error correction model can also be used to test the two series for cointegration.
All we need to do is to test the errors of the correction part embedded in Equation
(12.8) for stationarity. The estimated errors are given by Equation (12.9).

êt−1 = bt−1 − β1 − β2ft−1 (12.9)

ehat <- bfset$Lb-coef(bf.nls)[[2]]-coef(bf.nls)[[3]]*bfset$Lf
ehat <- ts(ehat)
ehat.adf <- dynlm(d(ehat)~L(ehat)+L(d(ehat))-1)
kable(tidy(ehat.adf),
caption="Stationarity test within the error correction model")

12.5. THE ERROR CORRECTION MODEL 197

foo <- tidy(ehat.adf)

To test for cointegration, one should compare the t-ratio of the lagged term shown
as ‘statistic’ in Equation 12.3, t = −3.927 to the critical value of −3.37. The result
is to reject the null of no cointegration, which means the series are cointegrated.

198 CHAPTER 12. TIME SERIES: NONSTATIONARITY

Chapter 13

VEC and VAR Models

rm(list=ls()) #Removes all items in Environment!
library(tseries) # for `adf.test()`
library(dynlm) #for function `dynlm()`
library(vars) # for function `VAR()`
library(nlWaldTest) # for the `nlWaldtest()` function
library(lmtest) #for `coeftest()` and `bptest()`.
library(broom) #for `glance(`) and `tidy()`
library(PoEdata) #for PoE4 datasets
library(car) #for `hccm()` robust standard errors
library(sandwich)
library(knitr) #for `kable()`
library(forecast)

New package: vars (Pfaff, 2013).

When there is no good reason to assume a one-way causal relationship between two
time series variables we may think of their relationship as one of mutual interaction.
The concept of “vector,” as in vector error correction refers to a number of series in
such a model.

13.1 VAR and VEC Models

Equations (13.1) and (13.1) show a generic vector autoregression model of order
1, VAR(1), which can be estimated if the series are both I(0). If they are I(1), the
same equations need to be estimated in first differences.

199

200 CHAPTER 13. VEC AND VAR MODELS

yt = β10 + β11yt−1 + β12xt−1 + νy
t (13.1)

xt = β20 + β21yt−1 + β22xt−1 + νx
t (13.2)

If the two variables in Equations (13.1) and (13.2) and are cointegrated, their coin-
tegration relationship should be taken into account in the model, since it is valuable
information; such a model is called vector error correction. The cointegration
relationship is, remember, as shown in Equation (13.3), where the error term has
been proven to be stationary.

yt = β0 + β1xt + et (13.3)

13.2 Estimating a VEC Model

The simplest method is a two-step procedure. First, estimate the cointegrating
relationship given in Equation (13.3) and created the lagged resulting residual series
êt−1 = yt−1 − b0 − b1xt−1. Second, estimate Equations (13.4) and (13.5) by OLS.

∆yt = α10 + α11 + êt−1 + νy
t (13.4)

∆xt = α20 + α21 + êt−1 + νx
t (13.5)

The following example uses the dataset gdp, which includes GDP series for Australia
and USA for the period since 1970:1 to 2000:4. First we determine the order of
integration of the two series.
data("gdp", package="PoEdata")
gdp <- ts(gdp, start=c(1970,1), end=c(2000,4), frequency=4)

ts.plot(gdp[,"usa"],gdp[,"aus"], type="l",
lty=c(1,2), col=c(1,2))

legend("topleft", border=NULL, legend=c("USA","AUS"),
lty=c(1,2), col=c(1,2))

Figure 13.1 represents the two series in levels, revealing a common trend and, there-
fore, suggesting that the series are nonstationary.

13.2. ESTIMATING A VEC MODEL 201

Time

1970 1975 1980 1985 1990 1995 2000

40
50

60
70

80
90

10
0

USA
AUS

Figure 13.1: Australian and USA GDP series from dataset ’gdp’

adf.test(gdp[,"usa"])

##
Augmented Dickey-Fuller Test
##
data: gdp[, "usa"]
Dickey-Fuller = -0.9083, Lag order = 4, p-value = 0.949
alternative hypothesis: stationary
adf.test(gdp[,"aus"])

##
Augmented Dickey-Fuller Test
##
data: gdp[, "aus"]
Dickey-Fuller = -0.6124, Lag order = 4, p-value = 0.975
alternative hypothesis: stationary
adf.test(diff(gdp[,"usa"]))

##
Augmented Dickey-Fuller Test
##
data: diff(gdp[, "usa"])

202 CHAPTER 13. VEC AND VAR MODELS

Table 13.1: The results of the cointegration equation ’cint1.dyn’

term estimate std.error statistic p.value
usa 0.985 0.002 594.787 0

Dickey-Fuller = -4.293, Lag order = 4, p-value = 0.01
alternative hypothesis: stationary
adf.test(diff(gdp[,"aus"]))

##
Augmented Dickey-Fuller Test
##
data: diff(gdp[, "aus"])
Dickey-Fuller = -4.417, Lag order = 4, p-value = 0.01
alternative hypothesis: stationary

The stationarity tests indicate that both series are I(1), Let us now test them for
cointegration, using Equations (13.6) and (13.7).

aust = β1usat + et (13.6)

êt = aust − β1usat (13.7)

cint1.dyn <- dynlm(aus~usa-1, data=gdp)
kable(tidy(cint1.dyn), digits=3,

caption="The results of the cointegration equation 'cint1.dyn'")

ehat <- resid(cint1.dyn)
cint2.dyn <- dynlm(d(ehat)~L(ehat)-1)
summary(cint2.dyn)

##
Time series regression with "ts" data:
Start = 1970(2), End = 2000(4)
##
Call:
dynlm(formula = d(ehat) ~ L(ehat) - 1)
##
Residuals:
Min 1Q Median 3Q Max
-1.4849 -0.3370 -0.0038 0.4656 1.3507

13.3. ESTIMATING A VAR MODEL 203

##
Coefficients:
Estimate Std. Error t value Pr(>|t|)
L(ehat) -0.1279 0.0443 -2.89 0.0046 **

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
Residual standard error: 0.598 on 122 degrees of freedom
Multiple R-squared: 0.064, Adjusted R-squared: 0.0564
F-statistic: 8.35 on 1 and 122 DF, p-value: 0.00457

Our test rejects the null of no cointegration, meaning that the series are cointegrated.
With cointegrated series we can construct a VEC model to better understand the
causal relationship between the two variables.
vecaus<- dynlm(d(aus)~L(ehat), data=gdp)
vecusa <- dynlm(d(usa)~L(ehat), data=gdp)
tidy(vecaus)

term estimate std.error statistic p.value
1 (Intercept) 0.4917059 0.0579095 8.49094 6.12454e-14
2 L(ehat) -0.0987029 0.0475158 -2.07727 3.98926e-02
tidy(vecusa)

term estimate std.error statistic p.value
1 (Intercept) 0.5098843 0.0466768 10.923715 9.50758e-20
2 L(ehat) 0.0302501 0.0382992 0.789837 4.31168e-01

The coefficient on the error correction term (êt−1) is significant for Australia, sug-
gesting that changes in the US economy do affect Australian economy; the error
correction coefficient in the US equation is not statistically significant, suggesting
that changes in Australia do not influence American economy. To interpret the sign
of the error correction coefficient, one should remember that êt−1 measures the devi-
ation of Australian economy from its cointegrating level of 0.985 of the US economy
(see Equations (13.6) and (13.7) and the value of β1 in Table 13.1).

13.3 Estimating a VAR Model

The VAR model can be used when the variables under study are I(1) but not coin-
tegrated. The model is the one in Equations (??), but in differences, as specified in
Equations (13.8) and (13.9).

204 CHAPTER 13. VEC AND VAR MODELS

Time

1960 1970 1980 1990 2000 2010

7.
5

8.
0

8.
5

9.
0

c
y

Figure 13.2: Logs of income (y) and consumption (c), dataset ’fred’

∆yt = β11∆yt−1 + β12∆xt−1 + ν∆y
t (13.8)

∆xt = β21∆yt−1 + β22∆xt−1 + ν∆x
t (13.9)

Let us look at the income-consumption relationship based on the fred detaset, where
consumption and income are already in logs, and the period is 1960:1 to 2009:4.
Figure 13.2 shows that the two series both have a trend.
data("fred", package="PoEdata")
fred <- ts(fred, start=c(1960,1),end=c(2009,4),frequency=4)
ts.plot(fred[,"c"],fred[,"y"], type="l",

lty=c(1,2), col=c(1,2))
legend("topleft", border=NULL, legend=c("c","y"),

lty=c(1,2), col=c(1,2))

Are the two series cointegrated?
Acf(fred[,"c"])
Acf(fred[,"y"])
adf.test(fred[,"c"])

##

13.3. ESTIMATING A VAR MODEL 205

Augmented Dickey-Fuller Test
##
data: fred[, "c"]
Dickey-Fuller = -2.62, Lag order = 5, p-value = 0.316
alternative hypothesis: stationary
adf.test(fred[,"y"])

##
Augmented Dickey-Fuller Test
##
data: fred[, "y"]
Dickey-Fuller = -2.291, Lag order = 5, p-value = 0.454
alternative hypothesis: stationary
adf.test(diff(fred[,"c"]))

##
Augmented Dickey-Fuller Test
##
data: diff(fred[, "c"])
Dickey-Fuller = -4.713, Lag order = 5, p-value = 0.01
alternative hypothesis: stationary
adf.test(diff(fred[,"y"]))

##
Augmented Dickey-Fuller Test
##
data: diff(fred[, "y"])
Dickey-Fuller = -5.775, Lag order = 5, p-value = 0.01
alternative hypothesis: stationary
cointcy <- dynlm(c~y, data=fred)
ehat <- resid(cointcy)
adf.test(ehat)

##
Augmented Dickey-Fuller Test
##
data: ehat
Dickey-Fuller = -2.562, Lag order = 5, p-value = 0.341
alternative hypothesis: stationary

Figure 13.3 shows a long serial correlation sequence; therefore, I will let R calculate
the lag order in the ADF test. As the results of the above adf and cointegration

206 CHAPTER 13. VEC AND VAR MODELS

1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

fred[, "c"]

1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

fred[, "y"]

Figure 13.3: Correlograms for the series c and y, dataset fred

tests show, the series are both I(1) but they fail the cointegration test (the series are
not cointegrated.) (Plese rememebr that the adf.test function uses a constant and
trend in the test equation; therefore, the critical values are not the same as in the
textbook. However, the results of the tests should be the same most of the time.)
library(vars)
Dc <- diff(fred[,"c"])
Dy <- diff(fred[,"y"])
varmat <- as.matrix(cbind(Dc,Dy))
varfit <- VAR(varmat) # `VAR()` from package `vars`
summary(varfit)

##
VAR Estimation Results:
=========================
Endogenous variables: Dc, Dy
Deterministic variables: const
Sample size: 198
Log Likelihood: 1400.444
Roots of the characteristic polynomial:
0.344 0.343
Call:
VAR(y = varmat)
##
##
Estimation results for equation Dc:
===================================
Dc = Dc.l1 + Dy.l1 + const
##
Estimate Std. Error t value Pr(>|t|)

13.3. ESTIMATING A VAR MODEL 207

Dc.l1 0.215607 0.074749 2.88 0.0044 **
Dy.l1 0.149380 0.057734 2.59 0.0104 *
const 0.005278 0.000757 6.97 4.8e-11 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
##
Residual standard error: 0.00658 on 195 degrees of freedom
Multiple R-Squared: 0.12, Adjusted R-squared: 0.111
F-statistic: 13.4 on 2 and 195 DF, p-value: 3.66e-06
##
##
Estimation results for equation Dy:
===================================
Dy = Dc.l1 + Dy.l1 + const
##
Estimate Std. Error t value Pr(>|t|)
Dc.l1 0.475428 0.097326 4.88 2.2e-06 ***
Dy.l1 -0.217168 0.075173 -2.89 0.0043 **
const 0.006037 0.000986 6.12 5.0e-09 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
##
Residual standard error: 0.00856 on 195 degrees of freedom
Multiple R-Squared: 0.112, Adjusted R-squared: 0.103
F-statistic: 12.3 on 2 and 195 DF, p-value: 9.53e-06
##
##
##
Covariance matrix of residuals:
Dc Dy
Dc 0.0000432 0.0000251
Dy 0.0000251 0.0000733
##
Correlation matrix of residuals:
Dc Dy
Dc 1.000 0.446
Dy 0.446 1.000

Function VAR(), which is part of the package vars (Pfaff, 2013), accepts the follow-
ing main arguments: y= a matrix containing the endogenous variables in the VAR
model, p= the desired lag order (default is 1), and exogen= a matrix of exogenous

208 CHAPTER 13. VEC AND VAR MODELS

xy$x

D
c

0.
00

0
0.

00
6

xy$x

D
y

0.
00

0
0.

00
6

0 1 2 3 4 5 6 7 8 9 10

Orthogonal Impulse Response from Dc

95 % Bootstrap CI, 100 runs

xy$x

D
c

−
0.

00
2

0.
00

6

xy$x

D
y

−
0.

00
2

0.
00

6

0 1 2 3 4 5 6 7 8 9 10

Orthogonal Impulse Response from Dy

95 % Bootstrap CI, 100 runs

Figure 13.4: Impulse response diagrams for the series c and y, dataset fred

variables. (VAR is a more powerful instrument than I imply here; please type ?VAR()
for more information.) The results of a VAR model are more useful in analysing the
time response to shocks in the variables, which is the topic of the next section.

13.4 Impulse Responses and Variance Decompositions

Impulse responses are best represented in graphs showing the responses of a VAR
endogenous variable in time.
impresp <- irf(varfit)
plot(impresp)

The interpretation of Figures 13.4 is straightforward: an impulse (shock) to Dc
at time zero has large effects the next period, but the effects become smaller and
smaller as the time passes. The dotted lines show the 95 percent interval estimates
of these effects. The VAR function prints the values corresponding to the impulse
response graphs.
plot(fevd(varfit)) # `fevd()` is in package `vars`

Forecast variance decomposition estimates the contribution of a shock in each vari-
able to the response in both variables. Figure 13.5 shows that almost 100 percent of
the variance in Dc is caused by Dc itself, while only about 80 percent in the variance
of Dy is caused by Dy and the rest is caused by Dc. The R function fevd() in
package vars allows forecast variance decomposition.

13.4. IMPULSE RESPONSES AND VARIANCE DECOMPOSITIONS 209

1 2 3 4 5 6 7 8 9 10

Dy
Dc

FEVD for Dc

Horizon

P
er

ce
nt

ag
e

0.
0

1.
0

1 2 3 4 5 6 7 8 9 10

Dy
Dc

FEVD for Dy

Horizon

P
er

ce
nt

ag
e

0.
0

1.
0

Figure 13.5: Forecast variance decomposition for the series c and y, dataset fred

210 CHAPTER 13. VEC AND VAR MODELS

Chapter 14

Time-Varying Volatility and
ARCH Models

rm(list=ls()) #Removes all items in Environment!
library(FinTS) #for function `ArchTest()`
library(rugarch) #for GARCH models
library(tseries) # for `adf.test()`
library(dynlm) #for function `dynlm()`
library(vars) # for function `VAR()`
library(nlWaldTest) # for the `nlWaldtest()` function
library(lmtest) #for `coeftest()` and `bptest()`.
library(broom) #for `glance(`) and `tidy()`
library(PoEdata) #for PoE4 datasets
library(car) #for `hccm()` robust standard errors
library(sandwich)
library(knitr) #for `kable()`
library(forecast)

New packages: FinTS (Graves, 2014) and rugarch (Ghalanos, 2015).

The autoregressive conditional heteroskedasticity (ARCH) model concerns
time series with time-varying heteroskedasticity, where variance is conditional on
the information existing at a given point in time.

211

212 CHAPTER 14. TIME-VARYING VOLATILITY AND ARCH MODELS

14.1 The ARCH Model

The ARCH model assumes that the conditional mean of the error term in a time
series model is constant (zero), unlike the nonstationary series we have discussed
so far), but its conditional variance is not. Such a model can be described as in
Equations (14.1), (14.2) and (14.3).

yt = ϕ + et (14.1)

et|It−1 ∼ N(0, ht) (14.2)

ht = α0 + α1e2
t−1, α0 > 0, 0 ≤ α1 < 1 (14.3)

Equations (14.4) and (14.5) give both the test model and the hypotheses to test
for ARCH effects in a time series, where the residuals êt come from regressing
the variable yt on a constant, such as (14.1), or on a constant plus other regressors;
the test shown in Equation (14.4) may include several lag terms, in which case the
null hypothesis (Equation (14.5)) would be that all of them are jointly insignificant.

ê2
t = γ0 + γ1ê2

t−1 + ... + γqe2
t−q + νt (14.4)

H0 : γ1 = ... = γq = 0 HA : γ1 ̸= 0 or ...γq ̸= 0 (14.5)

The null hypothesis is that there are no ARCH effects. The test statistic is

(T − q)R2 ∼ χ2
(1−α,q)

. The following example uses the dataset byd, which contains 500 generated obser-
vations on the returns to shares in BrightenYourDay Lighting. Figure 14.1 shows a
time series plot of the data and histogram.
data("byd", package="PoEdata")
rTS <- ts(byd$r)
plot.ts(rTS)
hist(rTS, main="", breaks=20, freq=FALSE, col="grey")

Let us first perform, step by step, the ARCH test described in Equations (14.4) and
(14.5), on the variable r from dataset byd.

14.1. THE ARCH MODEL 213

Time

rT
S

0 100 200 300 400 500

−
2

0
2

4
6

rTS

D
en

si
ty

−2 0 2 4 6

0.
0

0.
1

0.
2

0.
3

Figure 14.1: Level and histogram of variable ’byd’

byd.mean <- dynlm(rTS~1)
summary(byd.mean)

##
Time series regression with "ts" data:
Start = 1, End = 500
##
Call:
dynlm(formula = rTS ~ 1)
##
Residuals:
Min 1Q Median 3Q Max
-3.847 -0.723 -0.049 0.669 5.931
##
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.078 0.053 20.4 <2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
Residual standard error: 1.19 on 499 degrees of freedom
ehatsq <- ts(resid(byd.mean)^2)
byd.ARCH <- dynlm(ehatsq~L(ehatsq))
summary(byd.ARCH)

##
Time series regression with "ts" data:
Start = 2, End = 500

214 CHAPTER 14. TIME-VARYING VOLATILITY AND ARCH MODELS

##
Call:
dynlm(formula = ehatsq ~ L(ehatsq))
##
Residuals:
Min 1Q Median 3Q Max
-10.802 -0.950 -0.705 0.320 31.347
##
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.908 0.124 7.30 1.1e-12 ***
L(ehatsq) 0.353 0.042 8.41 4.4e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
Residual standard error: 2.45 on 497 degrees of freedom
Multiple R-squared: 0.125, Adjusted R-squared: 0.123
F-statistic: 70.7 on 1 and 497 DF, p-value: 4.39e-16
T <- nobs(byd.mean)
q <- length(coef(byd.ARCH))-1
Rsq <- glance(byd.ARCH)[[1]]
LM <- (T-q)*Rsq
alpha <- 0.05
Chicr <- qchisq(1-alpha, q)

The result is the LM statistic, equal to 62.16, which is to be compared to the
critical chi-squared value with α = 0.05 and q = 1 degrees of freedom; this value is
χ2

(0.95,1) = 3.84; this indicates that the null hypothesis is rejected, concluding that
the series has ARCH effects.

The same conclusion can be reached if, instead of the step-by-step procedure we use
one of R’s ARCH test capabilities, the ArchTest() function in package FinTS.
bydArchTest <- ArchTest(byd, lags=1, demean=TRUE)
bydArchTest

##
ARCH LM-test; Null hypothesis: no ARCH effects
##
data: byd
Chi-squared = 62.16, df = 1, p-value = 3.22e-15

Function garch() in the tseries package, becomes an ARCH model when used
with the order= argument equal to c(0,1). This function can be used to estimate

14.1. THE ARCH MODEL 215

and plot the variance ht defined in Equation (14.3), as shown in the following code
and in Figure 14.2.
byd.arch <- garch(rTS,c(0,1))

##
***** ESTIMATION WITH ANALYTICAL GRADIENT *****
##
##
I INITIAL X(I) D(I)
##
1 1.334069e+00 1.000e+00
2 5.000000e-02 1.000e+00
##
IT NF F RELDF PRELDF RELDX STPPAR D*STEP NPRELDF
0 1 5.255e+02
1 2 5.087e+02 3.20e-02 7.13e-01 3.1e-01 3.8e+02 1.0e+00 1.34e+02
2 3 5.004e+02 1.62e-02 1.78e-02 1.2e-01 1.9e+00 5.0e-01 2.11e-01
3 5 4.803e+02 4.03e-02 4.07e-02 1.2e-01 2.1e+00 5.0e-01 1.42e-01
4 7 4.795e+02 1.60e-03 1.99e-03 1.3e-02 9.7e+00 5.0e-02 1.36e-02
5 8 4.793e+02 4.86e-04 6.54e-04 1.2e-02 2.3e+00 5.0e-02 2.31e-03
6 9 4.791e+02 4.16e-04 4.93e-04 1.2e-02 1.7e+00 5.0e-02 1.39e-03
7 10 4.789e+02 3.80e-04 4.95e-04 2.3e-02 4.6e-01 1.0e-01 5.36e-04
8 11 4.789e+02 6.55e-06 6.73e-06 9.0e-04 0.0e+00 5.1e-03 6.73e-06
9 12 4.789e+02 4.13e-08 3.97e-08 2.2e-04 0.0e+00 9.8e-04 3.97e-08
10 13 4.789e+02 6.67e-11 6.67e-11 9.3e-06 0.0e+00 4.2e-05 6.67e-11
##
***** RELATIVE FUNCTION CONVERGENCE *****
##
FUNCTION 4.788831e+02 RELDX 9.327e-06
FUNC. EVALS 13 GRAD. EVALS 11
PRELDF 6.671e-11 NPRELDF 6.671e-11
##
I FINAL X(I) D(I) G(I)
##
1 2.152304e+00 1.000e+00 -2.370e-06
2 1.592050e-01 1.000e+00 -7.896e-06
sbydarch <- summary(byd.arch)
sbydarch

##
Call:
garch(x = rTS, order = c(0, 1))

216 CHAPTER 14. TIME-VARYING VOLATILITY AND ARCH MODELS

##
Model:
GARCH(0,1)
##
Residuals:
Min 1Q Median 3Q Max
-1.459 0.220 0.668 1.079 4.293
##
Coefficient(s):
Estimate Std. Error t value Pr(>|t|)
a0 2.1523 0.1857 11.59 <2e-16 ***
a1 0.1592 0.0674 2.36 0.018 *

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
Diagnostic Tests:
Jarque Bera Test
##
data: Residuals
X-squared = 48.57, df = 2, p-value = 2.85e-11
##
##
Box-Ljung test
##
data: Squared.Residuals
X-squared = 0.1224, df = 1, p-value = 0.726
hhat <- ts(2*byd.arch$fitted.values[-1,1]^2)
plot.ts(hhat)

14.2 The GARCH Model

Using package `rugarch` for GARCH models
library(rugarch)
garchSpec <- ugarchspec(

variance.model=list(model="sGARCH",
garchOrder=c(1,1)),

mean.model=list(armaOrder=c(0,0)),
distribution.model="std")

garchFit <- ugarchfit(spec=garchSpec, data=rTS)
coef(garchFit)

14.2. THE GARCH MODEL 217

Time

hh
at

0 100 200 300 400 500

5
10

15
20

Figure 14.2: Estimated ARCH(1) variance for the ’byd’ dataset

mu omega alpha1 beta1 shape
1.049273 0.396700 0.495108 0.240747 99.993042
rhat <- garchFit@fit$fitted.values
plot.ts(rhat)
hhat <- ts(garchFit@fit$sigma^2)
plot.ts(hhat)

tGARCH
garchMod <- ugarchspec(variance.model=list(model="fGARCH",

Time

rh
at

0 100 200 300 400 500

1.
04

0
1.

04
5

1.
05

0
1.

05
5

1.
06

0

Time

hh
at

0 100 200 300 400 500

0
5

10
15

Figure 14.3: Standard GARCH model (sGARCH) with dataset ’byd’

218 CHAPTER 14. TIME-VARYING VOLATILITY AND ARCH MODELS

Time

rh
at

0 100 200 300 400 500

0.
98

0
0.

98
5

0.
99

0
0.

99
5

Time

hh
at

0 100 200 300 400 500

2
4

6
8

Figure 14.4: The tGARCH model with dataset ’byd’

garchOrder=c(1,1),
submodel="TGARCH"),

mean.model=list(armaOrder=c(0,0)),
distribution.model="std")

garchFit <- ugarchfit(spec=garchMod, data=rTS)
coef(garchFit)

mu omega alpha1 beta1 eta11 shape
0.986685 0.352184 0.390614 0.375375 0.339461 99.999922
rhat <- garchFit@fit$fitted.values
plot.ts(rhat)
hhat <- ts(garchFit@fit$sigma^2)
plot.ts(hhat)

GARCH-in-mean
garchMod <- ugarchspec(

variance.model=list(model="fGARCH",
garchOrder=c(1,1),
submodel="APARCH"),

mean.model=list(armaOrder=c(0,0),
include.mean=TRUE,
archm=TRUE,
archpow=2
),

distribution.model="std"
)

garchFit <- ugarchfit(spec=garchMod, data=rTS)
coef(garchFit)

14.2. THE GARCH MODEL 219

Time

rh
at

0 100 200 300 400 500

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

4.
0

Time

hh
at

0 100 200 300 400 500

0
5

10
15

Figure 14.5: A version of the GARCH-in-mean model with dataset ’byd’

mu archm omega alpha1 beta1 eta11
0.820600 0.193482 0.368729 0.442932 0.286746 0.185526
lambda shape
1.897565 100.000000
rhat <- garchFit@fit$fitted.values
plot.ts(rhat)
hhat <- ts(garchFit@fit$sigma^2)
plot.ts(hhat)

Figures 14.3, 14.4, and 14.5 show a few versions of the GARCH model. Predictions
can be obtained using the function ugarchboot() from the package ugarch.

220 CHAPTER 14. TIME-VARYING VOLATILITY AND ARCH MODELS

Chapter 15

Panel Data Models

rm(list=ls()) #Removes all items in Environment!
library(plm)
library(tseries) # for `adf.test()`
library(dynlm) #for function `dynlm()`
library(vars) # for function `VAR()`
library(nlWaldTest) # for the `nlWaldtest()` function
library(lmtest) #for `coeftest()` and `bptest()`.
library(broom) #for `glance(`) and `tidy()`
library(PoEdata) #for PoE4 datasets
library(car) #for `hccm()` robust standard errors
library(sandwich)
library(knitr) #for `kable()`
library(forecast)
library(systemfit)
library(AER)
library(xtable)

New package: plm (Croissant and Millo, 2015).

Panel data gathers information about several individuals (cross-sectional units) over
several periods. The panel is balanced if all units are observed in all periods; if
some units are missing in some periods, the panel is unbalanced. Equation (15.1)
gives the form of a pooled panel data model, where the subscript i = 1, ..., N denotes
an individual (cross sectional unit), and t = 1, ..., T denotes the time period, or
longitudinal unit. The total number of observations in the panel is N × T .

yit = β1 + β2x2it + ... + βKxKit + eit (15.1)

221

222 CHAPTER 15. PANEL DATA MODELS

15.1 Organizing the Data as a Panel

A wide panel has the cross-sectional dimension (N) much larger than the longitu-
dinal dimension (T); when the opposite is true, we have a long panel. Normally,
the same units are observed in all periods; when this is not the case and each pe-
riod samples mostly other units, the result is not a proper panel data, but pooled
cross-sections model.

This manual uses the panel data package plm(), which also gives the possibility of
organizing the data under the form of a panel. Panel datsets can be organized in
mainly two forms: the long form has a column for each variable and a row for each
individual-period; the wide form has a column for each variable-period and a row
for each individual. Most panel data methods require the long form, but many data
sources provide one wide-form table for each variable; assembling the data from
different sources into a long form data frame is often not a trivial matter.

The next code sequence creates a panel structure for the dataset nls_panel using the
function pdata.frame of the plm package and displays a small part of this dataset.
Please note how the selection of the rows and columns to be displayed is done, using
the compact operator %in% and arrays such as c(1:6, 14:15). Table 15.1 shows
this sample.
library(xtable)
data("nls_panel", package="PoEdata")
nlspd <- pdata.frame(nls_panel, index=c("id", "year"))
smpl <- nlspd[nlspd$id %in% c(1,2),c(1:6, 14:15)]
tbl <- xtable(smpl)
kable(tbl, digits=4, align="c",

caption="A data sample")

Function pdim() extracts the dimensions of the panel data:
pdim(nlspd)

Balanced Panel: n=716, T=5, N=3580

15.2 The Pooled Model

A pooled model has the specification in Equation (15.1), which does not allow for
intercept or slope differences among individuals. Such a model can be estimated
in R using the specification pooling in the plm() function, as the following code
sequence illustrates.

15.2. THE POOLED MODEL 223

Table 15.1: A data sample

id year lwage hours age educ union exper
1-82 1 82 1.8083 38 30 12 1 7.6667
1-83 1 83 1.8634 38 31 12 1 8.5833
1-85 1 85 1.7894 38 33 12 1 10.1795
1-87 1 87 1.8465 40 35 12 1 12.1795
1-88 1 88 1.8564 40 37 12 1 13.6218
2-82 2 82 1.2809 48 36 17 0 7.5769
2-83 2 83 1.5159 43 37 17 0 8.3846
2-85 2 85 1.9302 35 39 17 0 10.3846
2-87 2 87 1.9190 42 41 17 1 12.0385
2-88 2 88 2.2010 42 43 17 1 13.2115

Table 15.2: Pooled model

term estimate std.error statistic p.value
(Intercept) 0.477 0.056 8.487 0.000
educ 0.071 0.003 26.567 0.000
exper 0.056 0.009 6.470 0.000
I(exper^2) -0.001 0.000 -3.176 0.002
tenure 0.015 0.004 3.394 0.001
I(tenure^2) 0.000 0.000 -1.886 0.059
black -0.117 0.016 -7.426 0.000
south -0.106 0.014 -7.465 0.000
union 0.132 0.015 8.839 0.000

wage.pooled <- plm(lwage~educ+exper+I(exper^2)+
tenure+I(tenure^2)+black+south+union,
model="pooling", data=nlspd)

kable(tidy(wage.pooled), digits=3,
caption="Pooled model")

The plm() function accepts the following main arguments, where the parameters
shown as vectors c(...), such as effect and model can only take one value at a
time out of the provided list.

plm(formula, data, subset, na.action, effect = c("individual", "time",
"twoways"), model = c("within", "random", "ht", "between", "pooling",
"fd"),...)

224 CHAPTER 15. PANEL DATA MODELS

Table 15.3: Pooled ’wage’ model with cluster robust standard errors

term estimate std.error statistic p.value
(Intercept) 0.47660 0.08441 5.64629 0.00000
educ 0.07145 0.00549 13.01550 0.00000
exper 0.05569 0.01129 4.93242 0.00000
I(exper^2) -0.00115 0.00049 -2.33440 0.01963
tenure 0.01496 0.00711 2.10401 0.03545
I(tenure^2) -0.00049 0.00041 -1.18697 0.23532
black -0.11671 0.02808 -4.15602 0.00003
south -0.10600 0.02701 -3.92422 0.00009
union 0.13224 0.02703 4.89327 0.00000

tbl <- tidy(coeftest(wage.pooled, vcov=vcovHC(wage.pooled,
type="HC0",cluster="group")))

kable(tbl, digits=5, caption=
"Pooled 'wage' model with cluster robust standard errors")

15.3 The Fixed Effects Model

The fixed effects model takes into account individual differences, translated into
different intercepts of the regression line for different individuals. The model in this
case assigns the subscript i to the constant term β1, as shown in Equation (15.2);
the constant terms calculated in this way are called fixed effects.

yit = β1i + β2ix2it + β3ix3it + eit (15.2)

Variables that change little or not at all over time, such as some individual char-
acteristics should not be included in a fixed effects model because they produce
collinearity with the fixed effects.
nls10 <- pdata.frame(nls_panel[nls_panel$id %in% 1:10,])

series nev_mar, not_smsa, south are constants and have been removed
wage.fixed <- lm(lwage~exper+I(exper^2)+

tenure+I(tenure^2)+union+factor(id)-1,
data=nls10)

kable(tidy(wage.fixed), digits=3,
caption="Fixed effects in a subsample")

15.3. THE FIXED EFFECTS MODEL 225

Table 15.4: Fixed effects in a subsample

term estimate std.error statistic p.value
exper 0.238 0.188 1.268 0.213
I(exper^2) -0.008 0.008 -1.036 0.307
tenure -0.012 0.034 -0.362 0.720
I(tenure^2) 0.002 0.003 0.854 0.399
union 0.114 0.151 0.753 0.457
factor(id)1 0.152 1.097 0.139 0.891
factor(id)2 0.187 1.071 0.174 0.863
factor(id)3 -0.063 1.351 -0.047 0.963
factor(id)4 0.186 1.343 0.138 0.891
factor(id)5 0.939 1.098 0.855 0.398
factor(id)6 0.794 1.112 0.715 0.480
factor(id)7 0.581 1.236 0.470 0.641
factor(id)8 0.538 1.097 0.490 0.627
factor(id)9 0.418 1.084 0.386 0.702
factor(id)10 0.615 1.090 0.564 0.577

Table 15.4 displays the results of an OLS regression on a subsample of the first
10 individuals in the dataset nls_panel. The table is generated by the previous
code sequence, where the novelty is using the factor variable id. The function
factor() generates dummy variables for all categories of the variable, taking the
first category as the reference. To include the reference in the output, one needs
to exclude the constant from the regression model by including the term −1 in
the regression formula. When the constant is not excluded, the coefficients of the
dummy variables represent, as usual, the difference between the respective category
and the benchmark one.

However, to estimate a fixed effects in R we do not need to create the dummy
variables, but use the option model="within" in the plm() function. The following
code fragment uses the whole sample.
wage.within <- plm(lwage~exper+I(exper^2)+

tenure+I(tenure^2)+south+union,
data=nlspd,
model="within")

tbl <- tidy(wage.within)
kable(tbl, digits=5, caption=
"Fixed effects using 'within' with full sample")

226 CHAPTER 15. PANEL DATA MODELS

Table 15.5: Fixed effects using ’within’ with full sample

term estimate std.error statistic p.value
exper 0.04108 0.00662 6.20590 0.00000
I(exper^2) -0.00041 0.00027 -1.49653 0.13463
tenure 0.01391 0.00328 4.24333 0.00002
I(tenure^2) -0.00090 0.00021 -4.35357 0.00001
south -0.01632 0.03615 -0.45153 0.65164
union 0.06370 0.01425 4.46879 0.00001

Table 15.6: Fixed effects using the ’within’ model option for n=10

term estimate std.error statistic p.value
exper 0.23800 0.18776 1.26758 0.21332
I(exper^2) -0.00819 0.00790 -1.03584 0.30738
tenure -0.01235 0.03414 -0.36171 0.71974
I(tenure^2) 0.00230 0.00269 0.85407 0.39887
union 0.11354 0.15086 0.75263 0.45670

wage10.within <- plm(lwage~exper+I(exper^2)+
tenure+I(tenure^2)+union,
data=nls10,
model="within")

tbl <- tidy(wage10.within)
kable(tbl, digits=5, caption=

"Fixed effects using the 'within' model option for n=10")

Table 15.6 presents the fixed effects model results for the subsample of 10 individuals
of the dataset nls_panel. This is to be compared to Table 15.4 to see that the
within method is equiivalent to including the dummies in the model. An interesting
comparison is between the pooled and fixed effect models. Comparing Table 15.2
with Table 15.5 one can notice that including accounting for individual heterogeneity
significantly lowers the marginal effects of the variables.

Testing if fixed effets are necessary is to compare the fixed effects model wage.within
with the pooled model wage.pooled. The function pFtest() does this comparison,
as in the following code lines.
kable(tidy(pFtest(wage.within, wage.pooled)), caption=

"Fixed effects test: Ho:'No fixed effects'")

Table 15.7 shows that the null hypothesis of no fixed effects is rejected.

15.4. THE RANDOM EFFECTS MODEL 227

Table 15.7: Fixed effects test: Ho:’No fixed effects’

df1 df2 statistic p.value method alternative
713 2858 15.1875 0 F test for individual effects significant effects

15.4 The Random Effects Model

The random effects model elaborates on the fixed effects model by recognizing
that, since the individuals in the panel are randomly selected, their characteristics,
measured by the intercept β1i should also be random. Thus, the random effects
model assumes the form of the intercept as given in Equation (15.3), where β1
stands for the population average and ui represents an individual-specific random
term. As in the case of fixed effects, random effects are also time-invariant.

β1i = β1 + ui (15.3)

If this form of the intercept is replaced in Equation (15.2), the result looks like
Equation (15.4).

yit = β1 + β2x2it + νit (15.4)

The intercept is here, unlike the fixed effects model constant across individuals, but
the error termm, νit, incorporates both individual specifics and the initial regression
error term, as Equation (15.5) shows.

νit = ui + eit (15.5)

Thus, the random effects model is distinguished by the special structure of its er-
ror term: errors have zero mean, a variance equal to σ2

u + σ2
e , uncorrelated across

individuals, and having timewise covariance equal to σ2
u.

An important feature of the random effects model is that the timewise correlation
in the errors does not decline over time (see Equation (15.6)).

ρ = corr(νit, νis) = σ2
u

σ2
u + σ2

e

(15.6)

Testing for random effects amounts to testing the hypothesis that there are no
differences among individuals, which implies that the individual-specific random
variable has zero variance. Equation (15.7) shows the hypothesis to be tested.

228 CHAPTER 15. PANEL DATA MODELS

Table 15.8: A random effects test for the wage equation

statistic p.value method alternative
62.1231 0 Lagrange Multiplier Test - (Honda) significant effects

H0 : σ2
u = 0, HA : σ2

u > 0 (15.7)

The same function we used for fixed effects can be used for random effects, but
setting the argument model= to ‘random’ and selecting the random.method as one
out of four possibilities: “swar” (default), “amemiya”, “walhus”, or “nerlove”. The
random effects test function is plmtest(), which takes as its main argument the
pooling model (indeed it extracts the residuals from the pooling object).
wageReTest <- plmtest(wage.pooled, effect="individual")
kable(tidy(wageReTest), caption=

"A random effects test for the wage equation")

Table 15.8 shows that the null hypothesis of zero variance in individual-specific
errors is rejected; therefore, heterogeneity among individuals may be significant.

Random effects estimator are reliable under the assumption that individual charac-
teristics (heterogeneity) are exogenous, that is, they are independent with respect
to the regressors in the random effects equation. The same Hausman test for en-
dogeneity we have already used in another chapter can be used here as well, with
the null hypothesis that individual random effects are exogenous. The test function
phtest() compares the fixed effects and the random effects models; the next code
lines estimate the random effects model and performs the Hausman endogeneity
test.
wage.random <- plm(lwage~educ+exper+I(exper^2)+

tenure+I(tenure^2)+black+south+union,
data=nlspd, random.method="swar",
model="random")

kable(tidy(wage.random), digits=4, caption=
"The random effects results for the wage equation")

kable(tidy(phtest(wage.within, wage.random)), caption=
"Hausman endogeneity test for the random effects wage model")

Table 15.10 shows a low p-value of the test, which indicates that the null hypothesis
saying that the individual random effects are exogenous is rejected, which makes
the random effects equation inconsistent. In this case the fixed effects model is

15.4. THE RANDOM EFFECTS MODEL 229

Table 15.9: The random effects results for the wage equation

term estimate std.error statistic p.value
(Intercept) 0.5339 0.0799 6.6854 0.0000
educ 0.0733 0.0053 13.7454 0.0000
exper 0.0436 0.0064 6.8606 0.0000
I(exper^2) -0.0006 0.0003 -2.1363 0.0327
tenure 0.0142 0.0032 4.4697 0.0000
I(tenure^2) -0.0008 0.0002 -3.8785 0.0001
black -0.1167 0.0302 -3.8652 0.0001
south -0.0818 0.0224 -3.6518 0.0003
union 0.0802 0.0132 6.0729 0.0000

Table 15.10: Hausman endogeneity test for the random effects wage model

statistic p.value parameter method alternative
20.745 0.002038 6 Hausman Test one model is inconsistent

the correct solution. (The number of parameters in Table 15.10 is given for the
time-varying variables only.)

The fixed effects model, however, does not allow time-invariant variables such as
educ or black. Since the problem of the random effects model is endogeneity, one
can use instrumental variables methods when time-invariant regressors must be in
the model. The Hausman-Taylor estimator uses instrumental variables in a ran-
dom effects model; it assumes four categories of regressors: time-varying exogenous,
time-varying endogenous, time-invariant exogenous, and time-invariant endogenous.
The number of time-varying variables must be at least equal to the number of
time-invariant ones. In our wage model, suppose exper, tenure and union are
time-varying exogenous, south is time-varying endogenous, black is time-invariant
exogenous, and educ is time-invariant endogenous. The same plm() function allows
carrying out Hausman-Taylor estimation by setting model= “ht”.
wage.HT <- plm(lwage~educ+exper+I(exper^2)+

tenure+I(tenure^2)+black+south+union |
exper+I(exper^2)+tenure+I(tenure^2)+union+black,
data=nlspd, model="ht")

kable(tidy(wage.HT), digits=5, caption=
"Hausman-Taylor estimates for the wage equation")

Table 15.11 shows the results of the Hausman-Taylor estimation, with the largest
changes taking place for educ and black.

230 CHAPTER 15. PANEL DATA MODELS

Table 15.11: Hausman-Taylor estimates for the wage equation

term estimate std.error statistic p.value
(Intercept) -0.75077 0.58624 -1.28066 0.20031
educ 0.17051 0.04446 3.83485 0.00013
exper 0.03991 0.00647 6.16382 0.00000
I(exper^2) -0.00039 0.00027 -1.46222 0.14368
tenure 0.01433 0.00316 4.53388 0.00001
I(tenure^2) -0.00085 0.00020 -4.31885 0.00002
black -0.03591 0.06007 -0.59788 0.54992
south -0.03171 0.03485 -0.91003 0.36281
union 0.07197 0.01345 5.34910 0.00000

Table 15.12: The head of the grunfeld2 dataset organized as a panel

inv v k firm year
1-1935 33.1 1170.6 97.8 1 1935
1-1936 45.0 2015.8 104.4 1 1936
1-1937 77.2 2803.3 118.0 1 1937
1-1938 44.6 2039.7 156.2 1 1938
1-1939 48.1 2256.2 172.6 1 1939
1-1940 74.4 2132.2 186.6 1 1940

15.5 Grunfeld’s Investment Example

The dataset grunfeld2 is a subset of the initial dataset; it includes two firms, GE
and WE observed over the period 1935 to 1954. The purpose of this example is
to identify various issues that should be taken into account when building a panel
data econometric model. The problem is to find the determinants of investment by
a firm , invit among regressors such as the value of the firm, vit, and capital stock
kit. Table 15.12 gives a glimpse of the grunfeld panel data.
data("grunfeld2", package="PoEdata")
grun <- pdata.frame(grunfeld2, index=c("firm","year"))
kable(head(grun), align="c", caption=
"The head of the grunfeld2 dataset organized as a panel")

Let us consider a pooling model first, assuming that the coefficients of the regression
equation, as well as the error variances are the same for both firms (no individual
heterogeneity).

15.5. GRUNFELD’S INVESTMENT EXAMPLE 231

Table 15.13: Grunfeld dataset, pooling panel data results

term estimate std.error statistic p.value
(Intercept) 17.87200 7.02408 2.54439 0.01525
v 0.01519 0.00620 2.45191 0.01905
k 0.14358 0.01860 7.71890 0.00000

Table 15.14: Grunfeld dataset, ’pooling’ panel data results

term estimate std.error statistic p.value
(Intercept) -9.9563 23.6264 -0.4214 0.6761
v 0.0266 0.0117 2.2651 0.0300
grun$firm2 9.4469 28.8054 0.3280 0.7450
k 0.1517 0.0194 7.8369 0.0000
v:grun$firm2 0.0263 0.0344 0.7668 0.4485
grun$firm2:k -0.0593 0.1169 -0.5070 0.6155

grun.pool <- plm(inv~v+k,
model="pooling",data=grun)

kable(tidy(grun.pool), digits=5, caption=
"Grunfeld dataset, pooling panel data results")

SSE.pool <- sum(resid(grun.pool)^2)
sigma2.pool <- SSE.pool/(grun.pool$df.residual)

For the pooling model, SSE = 16563.003385, and σ2 = 447.64874.

Allowing for different coefficients across firms but same error structure is the fixed
effects model summarized in Table 15.14. Note that the fixed effects are modeled
using the function factor().
grun.fe <- plm(inv~v*grun$firm+k*grun$firm,

model="pooling",data=grun)
kable(tidy(grun.fe), digits=4, caption=

"Grunfeld dataset, 'pooling' panel data results")

SSE.fe <- sum(resid(grun.fe)^2)
sigma2.fe <- SSE.fe/(grun.fe$df.residual)

For the fixed effects model with firm dummies, SSE = 14989.821701, and σ2 =
440.877109.

A test to see if the coefficients are significantly different between the pooling and

232 CHAPTER 15. PANEL DATA MODELS

Table 15.15: Pooling astimates for the GE firm (firm=1)

term estimate std.error statistic p.value
(Intercept) -9.9563 31.3742 -0.3173 0.7548

v 0.0266 0.0156 1.7057 0.1063
k 0.1517 0.0257 5.9015 0.0000

fixed effects equations can be done in R using the function pooltest from package
plm; to perform this test, the fixed effects model should be estimated with the
function pvcm with the argument model= “within”, as the next code lines show.
grun.pvcm <- pvcm(inv~v+k,

model="within", data=grun)
coef(grun.pvcm)

(Intercept) v k
1 -9.95631 0.0265512 0.1516939
2 -0.50939 0.0528941 0.0924065
pooltest(grun.pool, grun.pvcm)

##
F statistic
##
data: inv ~ v + k
F = 1.189, df1 = 3, df2 = 34, p-value = 0.328
alternative hypothesis: unstability

The result shows that the null hypothesis of zero coefficients for the individual
dummy terms are zero cannot be rejected. (However, the pvcm function is not
equivalent to the fixed effects model that uses individual dummies; it is, though,
useful for testing the ‘poolability’ of a dataset.)

Now, if we allow for different coefficients and different error variances, the equations
for each individual is independent from those for other individuals and it can be
estimated separately.
grun1.pool <- plm(inv~v+k, model="pooling",

subset=grun$firm==1, data=grun)
SSE.pool1<- sum(resid(grun1.pool)^2)
sig2.pool1 <- SSE.pool1/grun1.pool$df.residual
kable(tidy(grun1.pool), digits=4, align='c', caption=

"Pooling astimates for the GE firm (firm=1)")

15.5. GRUNFELD’S INVESTMENT EXAMPLE 233

Table 15.16: Pooling estimates for the WE firm (firm=2)

term estimate std.error statistic p.value
(Intercept) -0.5094 8.0153 -0.0636 0.9501

v 0.0529 0.0157 3.3677 0.0037
k 0.0924 0.0561 1.6472 0.1179

grun2.pool <- plm(inv~v+k, model="pooling",
subset=grun$firm==2, data=grun)

SSE.pool2 <- sum(resid(grun2.pool)^2)
sig2.pool2 <- SSE.pool2/grun2.pool$df.residual
kable(tidy(grun2.pool), digits=4, align='c', caption=

"Pooling estimates for the WE firm (firm=2)")

Tables 15.15 and 15.16 show the results for the equations on subsets of data, sepa-
rated by firms.

A Godfeld-Quandt test can be carried out to determine whether the variances are
different among firms, as the next code shows.
gqtest(grun.pool, point=0.5, alternative="two.sided",

order.by=grun$firm)

##
Goldfeld-Quandt test
##
data: grun.pool
GQ = 0.1342, df1 = 17, df2 = 17, p-value = 0.000143

The result is rejection of the null hypothesis that the variances are equal, indicating
that estimating separate equations for each firm is the correct model.

What happens when we assume that the only link between the two firms is correla-
tion between their contemporaneous error terms? This is the model of seemingly
unrelated regressions, a generalized least squares method.
library("systemfit")
grunf<- grunfeld2
grunf$Firm<-"WE"
for (i in 1:40){

if(grunf$firm[i]==1){grunf$Firm[i] <- "GE"}
}
grunf$firm <- NULL
names(grunf)<- c("inv", "val", "cap", "year", "firm")

234 CHAPTER 15. PANEL DATA MODELS

grunfpd <- plm.data(grunf, c("firm","year"))
grunf.SUR <- systemfit(inv~val+cap, method="SUR", data=grunfpd)
summary(grunf.SUR, resdCov=FALSE, equations=FALSE)

##
systemfit results
method: SUR
##
N DF SSR detRCov OLS-R2 McElroy-R2
system 40 34 15590 35641 0.69897 0.6151
##
N DF SSR MSE RMSE R2 Adj R2
GE 20 17 13788.4 811.08 28.479 0.69256 0.65639
WE 20 17 1801.3 105.96 10.294 0.74040 0.70986
##
The covariance matrix of the residuals used for estimation
GE WE
GE 777.45 207.59
WE 207.59 104.31
##
The covariance matrix of the residuals
GE WE
GE 811.08 224.28
WE 224.28 105.96
##
The correlations of the residuals
GE WE
GE 1.00000 0.76504
WE 0.76504 1.00000
##
##
Coefficients:
Estimate Std. Error t value Pr(>|t|)
GE_(Intercept) -27.719317 29.321219 -0.9454 0.357716
GE_val 0.038310 0.014415 2.6576 0.016575 *
GE_cap 0.139036 0.024986 5.5647 0.00003423 ***
WE_(Intercept) -1.251988 7.545217 -0.1659 0.870168
WE_val 0.057630 0.014546 3.9618 0.001007 **
WE_cap 0.063978 0.053041 1.2062 0.244256

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

15.5. GRUNFELD’S INVESTMENT EXAMPLE 235

First, please note that the systemfit() function requires a panel data file created
with plm.data, instead of the pdata.frame that we have used above; second, for
some reason I had to change the names of the variables to names having more than
one letter to make the function work. I did this using the function names().

236 CHAPTER 15. PANEL DATA MODELS

Chapter 16

Qualitative and LDV Models

rm(list=ls()) #Removes all items in Environment!
library(nlWaldTest) # for the `nlWaldtest()` function
library(lmtest) #for `coeftest()` and `bptest()`.
library(broom) #for `glance(`) and `tidy()`
library(PoEdata) #for PoE4 datasets
library(car) #for `hccm()` robust standard errors
library(sandwich)
library(knitr) #for `kable()`
library(forecast)
library(AER)
library(xtable)

16.1 The Linear Probability Model

Suppose the response variable is binary, as defined in Equation (16.1).

y = 1 if an individual chooses to buy a housey = 0 if an individual chooses not to buy
(16.1)

The linear probability model has the general form is shown in Equation (16.2).
E(y) is the probability that the response variable takes the value of 1; therefore, a
predicted value of y is a prediction for the probability that y = 1.

y = E(y) + e = β1 + β2x2 + ... + βkxk + e (16.2)

237

238 CHAPTER 16. QUALITATIVE AND LDV MODELS

−3 −2 −1 0 1 2 3

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

b1+b2x

P
[y

=
1]

−3 −2 −1 0 1 2 3

0.
0

0.
1

0.
2

0.
3

0.
4

x

dn
or

m
(x

)

Figure 16.1: The shape of the probit function is the standard normal distribution

16.2 The Probit Model

The probit model assumes a nonlinear relationship between the response variable
and regressors, this relationship being the cumulative distribution function of the
normal distribution (see Equation (16.3) and Figure 16.1, left).

p = P [y = 1] = E(y|x) = Φ(β1 + β2x) (16.3)

The slope of the regression curve is not constant, but is given by the standard normal
density function (Figure 16.1, right); the slope can be calculated using Equation
(16.4).

dp

dx
= ϕ(β1 + β2x)β2 (16.4)

Predictions of the probability that y = 1 are given by Equation (16.5).

p̂ = Φ(β̂1 + β̂2x) (16.5)

x <- seq(-3,3, .2)
plot(x, pnorm(x), type="l", xlab="b1+b2x", ylab="P[y=1]")
plot(x, dnorm(x), type="l")

16.3 The Transportation Example

The dataset transport containes N = 21 observations of transportation chioces
(auto = 1 if individual i chooses auto and 0 if individual i chooses bus). The

16.3. THE TRANSPORTATION EXAMPLE 239

Table 16.1: Transport example, estimated by probit

term estimate std.error statistic p.value
(Intercept) -0.0644 0.4007 -0.1608 0.8722

dtime 0.3000 0.1029 2.9154 0.0036

choice depends on the difference in time between the two means of transportation,
dtime = (bustime − autotime) ÷ 10.

The R function to estimate a probit model is glm, with the family argument equal to
binomial(link="probit"). The glm function has the following general structure:

glm(formula, family, data, …)
data("transport", package="PoEdata")
auto.probit <- glm(auto~dtime, family=binomial(link="probit"),

data=transport)
kable(tidy(auto.probit), digits=4, align='c', caption=

"Transport example, estimated by probit")

Equation (16.4) can be used to calculate partial effects of an increase in dtime by
one unit (10 minutes). The following code lines calculate this effect at dtime = 2
(time difference of 20 minutes).
xdtime <- data.frame(dtime=2)
predLinear <- predict(auto.probit, xdtime,

data=transport, type="link")
DpDdtime <- coef(auto.probit)[[2]]*dnorm(predLinear)
DpDdtime

1
0.10369

Predictions can be calculated using the function predict, which has the following
general form:

predict(object, newdata = NULL, type = c(“link”, “response”, “terms”),
se.fit = FALSE, dispersion = NULL, terms = NULL, na.action = na.pass,
…)

The optional argument newdata must be a data frame containing the new values of
the regressors for which the prediction is desired; if missing, prediction is calculated
for all observations in the sample.

Here is how to calculate the predicted probability of choosing auto when the time
difference is 30 minutes (dtime = 3):

240 CHAPTER 16. QUALITATIVE AND LDV MODELS

xdtime <- data.frame(dtime=3)
predProbit <- predict(auto.probit, xdtime,

data=transport, type="response")
predProbit

1
0.798292

The marginal effect at the average predicted value can be determined as follows:
avgPredLinear <- predict(auto.probit, type="link")
avgPred <- mean(dnorm(avgPredLinear))
AME <- avgPred*coef(auto.probit)
AME

(Intercept) dtime
-0.0103973 0.0484069

16.4 The Logit Model for Binary Choice

This is very similar to the probit model, with the difference that logit uses the
logistic function Λ to link the linear expression β1 + β2x to the probability that
the response variable is equal to 1. Equations (16.6) and (16.7) give the defining
expressions of the logit model (the two expressions are equivalent).

p = Λ(β1 + β2x) = 1
1 + e−(β1+β2x) (16.6)

p = exp(β1 + β2x)
1 + exp(β1 + β2x)

(16.7)

Equation (16.8) gives the marginal effect of a change in the regressor xk on the
probability that y = 1.

∂p

∂xk
= βkΛ(1 − Λ) (16.8)

data("coke", package="PoEdata")
coke.logit <- glm(coke~pratio+disp_coke+disp_pepsi,

data=coke, family=binomial(link="logit"))
kable(tidy(coke.logit), digits=5, align="c",

caption="Logit estimates for the 'coke' dataset")

16.4. THE LOGIT MODEL FOR BINARY CHOICE 241

Table 16.2: Logit estimates for the ’coke’ dataset

term estimate std.error statistic p.value
(Intercept) 1.92297 0.32582 5.90200 0.00000

pratio -1.99574 0.31457 -6.34437 0.00000
disp_coke 0.35160 0.15853 2.21781 0.02657
disp_pepsi -0.73099 0.16783 -4.35551 0.00001

coke.LPM <- lm(coke~pratio+disp_coke+disp_pepsi,
data=coke)

coke.probit <- glm(coke~pratio+disp_coke+disp_pepsi,
data=coke, family=binomial(link="probit"))

stargazer(coke.LPM, coke.probit, coke.logit,
header=FALSE,
title="Three binary choice models for the 'coke' dataset",
type=.stargazertype,
keep.stat="n",digits=4, single.row=FALSE,
intercept.bottom=FALSE,
model.names=FALSE,
column.labels=c("LPM","probit","logit"))

Prediction and marginal effects for the logit model can be determined using the same
predict function as for the probit model, and Equation (16.8) for marginal effects.
tble <- data.frame(table(true=coke$coke,

predicted=round(fitted(coke.logit))))
kable(tble, align='c', caption="Logit prediction results")

A useful measure of the predictive capability of a binary model is the number of
cases correctly predicted. The following table (created by the above code lines)
gives these numbers separated by the boinary choice values; the numbers have been
determined by rounding the predicted probabilities from the logit model.

The usual functions for hypothesis testing, such as anova, coeftest, waldtest and
linear.hypothesis are available for these models.
Hnull <- "disp_coke+disp_pepsi=0"
linearHypothesis(coke.logit, Hnull)

Linear hypothesis test
##
Hypothesis:
disp_coke + disp_pepsi = 0

242 CHAPTER 16. QUALITATIVE AND LDV MODELS

Table 16.3: Three binary choice models for the ’coke’ dataset

Dependent variable:
coke

LPM probit logit
(1) (2) (3)

Constant 0.8902∗∗∗ 1.1080∗∗∗ 1.9230∗∗∗

(0.0655) (0.1925) (0.3258)

pratio −0.4009∗∗∗ −1.1459∗∗∗ −1.9957∗∗∗

(0.0613) (0.1839) (0.3146)

disp_coke 0.0772∗∗ 0.2172∗∗ 0.3516∗∗

(0.0344) (0.0962) (0.1585)

disp_pepsi −0.1657∗∗∗ −0.4473∗∗∗ −0.7310∗∗∗

(0.0356) (0.1010) (0.1678)

Observations 1,140 1,140 1,140

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 16.4: Logit prediction results

true predicted Freq
0 0 507
1 0 263
0 1 123
1 1 247

16.5. MULTINOMIAL LOGIT 243

##
Model 1: restricted model
Model 2: coke ~ pratio + disp_coke + disp_pepsi
##
Res.Df Df Chisq Pr(>Chisq)
1 1137
2 1136 1 5.611 0.0179 *

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The above code tests the hypothesis that the effects of displaying coke and displaying
pepsi have equal but opposite effects, a null hypothesis that is being rejected by the
test. Here is another example, testing the null hypothesis that displaying coke and
pepsi have (jointly) no effect on an individual’s choice. This hypothesis is also
rejected.
Hnull <- c("disp_coke=0", "disp_pepsi=0")
linearHypothesis(coke.logit, Hnull)

Linear hypothesis test
##
Hypothesis:
disp_coke = 0
disp_pepsi = 0
##
Model 1: restricted model
Model 2: coke ~ pratio + disp_coke + disp_pepsi
##
Res.Df Df Chisq Pr(>Chisq)
1 1138
2 1136 2 18.97 0.0000759 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

16.5 Multinomial Logit

A relatively common R function that fits multinomial logit models is multinom from
package nnet. Let us use the dataset nels_small for an example of how multinom
works. The variable grades in this dataset is an index, with best grades represented
by lower values of grade. We try to explain the choice of a secondary institution
(psechoice) only by the high school grade. The variable pschoice can take one of
three values:

244 CHAPTER 16. QUALITATIVE AND LDV MODELS

• psechoice = 1 no college,
• psechoice = 2 two year college
• psechoice = 3 four year college

library(nnet)
data("nels_small", package="PoEdata")
nels.multinom <- multinom(psechoice~grades, data=nels_small)

weights: 9 (4 variable)
initial value 1098.612289
iter 10 value 875.313116
final value 875.313099
converged
summary(nels.multinom)

Call:
multinom(formula = psechoice ~ grades, data = nels_small)
##
Coefficients:
(Intercept) grades
2 2.50527 -0.308640
3 5.77017 -0.706247
##
Std. Errors:
(Intercept) grades
2 0.418394 0.0522853
3 0.404329 0.0529264
##
Residual Deviance: 1750.63
AIC: 1758.63

The output from function multinom gives coefficient estimates for each level of the
response variable psechoice, except for the first level, which is the benchmark.
medGrades <- median(nels_small$grades)
fifthPercentileGrades <- quantile(nels_small$grades, .05)
newdat <- data.frame(grades=c(medGrades, fifthPercentileGrades))
pred <- predict(nels.multinom, newdat, "probs")
pred

1 2 3
0.1810181 0.285573 0.533409
5% 0.0178176 0.096622 0.885560

16.6. THE CONDITIONAL LOGIT MODEL 245

The above code lines show how the usual function predict can calculate the pre-
dicted probabilities of choosing any of the three secondary education levels for two
arbitrary grades: one at the median grade in the sample, and the other at the top
fifth percent.

16.6 The Conditional Logit Model

In the multinomial logit model all individuals faced the same external conditions
and each individual’s choice is only determined by an individual’s circumstances or
preferences. The conditional logit model allows for individuals to face individual-
specific external conditions, such as the price of a product.

Suppose we want to study the effect of price on an individual’s decision about
choosing one of three brands of soft drinks:

1. pepsi
2. sevenup
3. coke

In the conditional logit model, the probability that individual i chooses brand j is
given by Equation (16.9).

pij = exp(β1j + β2priceij)
exp(β11 + β2pricei1) + exp(β12 + β2pricei2) + exp(β13 + β2pricei3)

(16.9)

In Equation (16.9) not all parameters β11, β12, and β13 can be estimated, and
therefore one will be set equal to zero. Unlike in the multinomial logit model, the
coefficient on the independent variable price is the same for all choices, but the value
of the independent variable is different for each individual.

R offers several alternatives that allow fitting conditional logit models, one of which
is the function MCMCmnl() from the package MCMCpack (others are, for instance,
clogit() in the survival package and mclogit() in the mclogit package). The
following code is adapted from (Adkins, 2014).
library(MCMCpack)
data("cola", package="PoEdata")
N <- nrow(cola)
N3 <- N/3
price1 <- cola$price[seq(1,N,by=3)]
price2 <- cola$price[seq(2,N,by=3)]
price3 <- cola$price[seq(3,N,by=3)]

246 CHAPTER 16. QUALITATIVE AND LDV MODELS

Table 16.5: Conditional logit estimates for the ’cola’ problem

Mean SD
b2 -2.2991 0.1382
b11 0.2839 0.0610
b12 0.1037 0.0621

bchoice <- rep("1", N3)
for (j in 1:N3){

if(cola$choice[3*j-1]==1) bchoice[j] <- "2"
if(cola$choice[3*j]==1) bchoice[j] <- "3"

}
cola.clogit <- MCMCmnl(bchoice ~

choicevar(price1, "b2", "1")+
choicevar(price2, "b2", "2")+
choicevar(price3, "b2", "3"),
baseline="3", mcmc.method="IndMH")

Calculating MLEs and large sample var-cov matrix.
This may take a moment...
Inverting Hessian to get large sample var-cov matrix.
sclogit <- summary(cola.clogit)
tabMCMC <- as.data.frame(sclogit$statistics)[,1:2]
row.names(tabMCMC)<- c("b2","b11","b12")
kable(tabMCMC, digits=4, align="c",
caption="Conditional logit estimates for the 'cola' problem")

Table 16.5 shows the estimated parameters βij in Equation (16.9), with choice 3
(coke) being the baseline, which makes β13 equal to zero. Using the βs in Table 16.5,
let us calculate the probability that individual i chooses pepsi and sevenup for some
given values of the prices that individual i faces. The calculations follow the formula
in Equation (16.9), with β13 = 0. Of course, the probability of choosing the baseline
brand, in this case Coke, must be such that the sum of all three probabilities is
equal to 1.
pPepsi <- 1
pSevenup <- 1.25
pCoke <- 1.10
b13 <- 0
b2 <- tabMCMC$Mean[1]
b11 <- tabMCMC$Mean[2]

16.7. ORDERED CHOICE MODELS 247

b12 <- tabMCMC$Mean[3]

The probability that individual i chooses Pepsi:
PiPepsi <- exp(b11+b2*pPepsi)/

(exp(b11+b2*pPepsi)+exp(b12+b2*pSevenup)+
exp(b13+b2*pCoke))

The probability that individual i chooses Sevenup:
PiSevenup <- exp(b12+b2*pSevenup)/

(exp(b11+b2*pPepsi)+exp(b12+b2*pSevenup)+
exp(b13+b2*pCoke))

The probability that individual i chooses Coke:
PiCoke <- 1-PiPepsi-PiSevenup

The calculatred probabilities are:

• pi, pepsi = 0.483
• pi, sevenup = 0.227
• pi, coke = 0.289

The three probabilities are different for different individuals because different in-
dividuals face different prices; in a more complex model other regressors may be
included, some of which may reflect individual characteristics.

16.7 Ordered Choice Models

The order of choices in these models is meaningful, unlike the multinomial and
conditional logit model we have studied so far. The following example explains
the choice of higher education, when the choice variable is psechoice and the only
regressor is grades; the dataset, nels_small, is already known to us.

The R package MCMCpack is again used here, with its function MCMCoprobit().
library(MCMCpack)
nels.oprobit <- MCMCoprobit(psechoice ~ grades,

data=nels_small, mcmc=10000)
sOprobit <- summary(nels.oprobit)
tabOprobit <- sOprobit$statistics[, 1:2]
kable(tabOprobit, digits=4, align="c",
caption="Ordered probit estimates for the 'nels' problem")

Table 16.6 gives the ordered probit estimates. The results from MCMCoprobit can
be translated into the textbook notations as follows:

248 CHAPTER 16. QUALITATIVE AND LDV MODELS

Table 16.6: Ordered probit estimates for the ’nels’ problem

Mean SD
(Intercept) 2.9542 0.1478
grades -0.3074 0.0193
gamma2 0.8616 0.0487

• µ1 = −(Intercept)
• β = grades
• µ2 = gamma2 − (Intercept)

The probabilities for each choice can be calculated as in the next code fragment:
mu1 <- -tabOprobit[1]
b <- tabOprobit[2]
mu2 <- tabOprobit[3]-tabOprobit[1]
xGrade <- c(mean(nels_small$grades),

quantile(nels_small$grades, 0.05))

Probabilities:
prob1 <- pnorm(mu1-b*xGrade)
prob2 <- pnorm(mu2-b*xGrade)-pnorm(mu1-b*xGrade)
prob3 <- 1-pnorm(mu2-b*xGrade)

Marginal effects:
Dp1DGrades <- -pnorm(mu1-b*xGrade)*b
Dp2DGrades <- (pnorm(mu1-b*xGrade)-pnorm(mu2-b*xGrade))*b
Dp3DGrades <- pnorm(mu2-b*xGrade)*b

For instance, the marginal effect of grades on the probability of attending a four-
year college for a student with average grade and for a student in the top 5 percent
are, respectively, −0.143 and −0.031.

16.8 Models for Count Data

Such models use the Poisson distribution function, of the (count) variable y, as
shown in Equations (16.10) and (16.11).

f(y) = P (Y = y) = e−λλy

y!
(16.10)

16.8. MODELS FOR COUNT DATA 249

Table 16.7: Poisson model for the ’olympics’ problem

term estimate std.error statistic p.value
(Intercept) -16.0767 0.1732 -92.8143 0
log(pop) 0.2080 0.0118 17.6419 0
log(gdp) 0.5701 0.0087 65.5780 0

E(y) = λ = exp(β1 + β2x)y = β1 (16.11)

data("olympics", package="PoEdata")
olympics.count <- glm(medaltot~log(pop)+log(gdp),

family= "poisson",
na.action=na.omit,
data=olympics)

kable(tidy(olympics.count), digits=4, align='c',
caption="Poisson model for the 'olympics' problem")

library(AER)
dispersiontest(olympics.count)

##
Overdispersion test
##
data: olympics.count
z = 5.489, p-value = 2.02e-08
alternative hypothesis: true dispersion is greater than 1
sample estimates:
dispersion
13.5792

Table 16.7 shows the output of a count model to explain the number of medals
won by a country based on the country’s population and GDP. The function
dispersiontest in package AER tests the validity of the Poisson distribution
based on this distribution’s characteristic that its mean is equal to its variance.
The null hypothesis of the test is equidispersion; rejecting the null questions the
validity of the model. Our example fails the overdispersion test.

250 CHAPTER 16. QUALITATIVE AND LDV MODELS

Histogram of mroz$hours

mroz$hours

F
re

qu
en

cy

0 1000 2000 3000 4000 5000

0
10

0
20

0
30

0

Figure 16.2: Histogram for the variable ’wage’ in the ’mroz’ dataset

16.9 The Tobit, or Censored Data Model

Censored data include a large number of observations for which the dependent vari-
able takes one, or a limited number of values. An example is the mroz data, where
about 43 percent of the women observed are not in the labour force, therefore their
market hours worked are zero. Figure 16.2 shows the histogram of the variable wage
in the dataset mroz.
data("mroz", package="PoEdata")
hist(mroz$hours, breaks=20, col="grey")

A censored model is based on the idea of a latent, or unobserved variable that is
not censored, and is explained via a probit model, as shown in Equation (16.12).

y∗
i = β1 + β2xi + ei (16.12)

The observable variable, y, is zero for all y∗ that are less or equal to zero and is
equal to y∗ when y∗ is greater than zero. The model for censored data is called
Tobit, and is described by Equation (16.13).

P (y = 0) = P (y∗ ≤ 0) = 1 − Φ[(β1 + β2x)/σ] (16.13)

16.9. THE TOBIT, OR CENSORED DATA MODEL 251

The marginal effect of a change in x on the observed variable y is given by Equation
(16.14).

∂E(y|x)
∂x

= β2Φ
(

β1 + β2x

σ

)
(16.14)

library(AER)
mroz.tobit <- tobit(hours~educ+exper+age+kidsl6,

data=mroz)
sMrozTobit <- summary(mroz.tobit)
sMrozTobit

##
Call:
tobit(formula = hours ~ educ + exper + age + kidsl6, data = mroz)
##
Observations:
Total Left-censored Uncensored Right-censored
753 325 428 0
##
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) 1349.8763 386.2991 3.49 0.00048 ***
educ 73.2910 20.4746 3.58 0.00034 ***
exper 80.5353 6.2878 12.81 < 2e-16 ***
age -60.7678 6.8882 -8.82 < 2e-16 ***
kidsl6 -918.9181 111.6607 -8.23 < 2e-16 ***
Log(scale) 7.0332 0.0371 189.57 < 2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
Scale: 1134
##
Gaussian distribution
Number of Newton-Raphson Iterations: 4
Log-likelihood: -3.83e+03 on 6 Df
Wald-statistic: 243 on 4 Df, p-value: < 2.2e-16

The following code lines calculate the marginal effect of education on hours for some
given values of the regressors.
xEduc <- 12.29
xExper <- 10.63
xAge <- 42.54

252 CHAPTER 16. QUALITATIVE AND LDV MODELS

xKids <- 1
bInt <- coef(mroz.tobit)[[1]]
bEduc <- coef(mroz.tobit)[[2]]
bExper <- coef(mroz.tobit)[[3]]
bAge <- coef(mroz.tobit)[[4]]
bKids <- coef(mroz.tobit)[[5]]
bSigma <- mroz.tobit$scale
Phactor <- pnorm((bInt+bEduc*xEduc+bExper*xExper+

bAge*xAge+bKids*xKids)/bSigma)
DhoursDeduc <- bEduc*Phactor

The calculated marginal effect is 26.606. (The function censReg() from package
censReg can also be used for estimating Tobit models; this function gives the pos-
sibility of calculating marginal effects using the function margEff().)

16.10 The Heckit, or Sample Selection Model

The models are useful when the sample selection is not random, but whehter an
individual is in the sample depends on individual characteristics. For example,
when studying wage determination for married women, some women are not in the
labour force, therefore their wages are zero.

The model to use in such situation is Heckit, which involves two equations: the se-
lection equation, given in Equation (16.15), and the linear equation of interest,
as in Equation (16.16).

z∗
i = γ1 + γ2wi + ui (16.15)

yi = β1 + β2xi + ei (16.16)

Estimates of the βs can be obtained by using least squares on the model in Equation
(16.17), where λi is calculated using the formula in Equation (16.18).

yi = β1 + β2xi + βλλi + νi (16.17)

λi = ϕ(γ1 + γ2wi)
Φ(γ1 + γ2wi)

(16.18)

The amount λ given by Equation (16.18) is called the inverse Mills ratio.

16.10. THE HECKIT, OR SAMPLE SELECTION MODEL 253

the Heckit procedure involves two steps, estimating both the selection equation and
the equation of interest. Function selection() in the sampleSelection package
performs both steps; therefore, it needs both equations among its arguments. (The
selection equation is, in fact, a probit model.)
library(sampleSelection)
wage.heckit <- selection(lfp~age+educ+I(kids618+kidsl6)+mtr,

log(wage)~educ+exper,
data=mroz, method="ml")

summary(wage.heckit)

--
Tobit 2 model (sample selection model)
Maximum Likelihood estimation
Newton-Raphson maximisation, 4 iterations
Return code 2: successive function values within tolerance limit
Log-Likelihood: -913.513
753 observations (325 censored and 428 observed)
10 free parameters (df = 743)
Probit selection equation:
Estimate Std. error t value Pr(> t)
(Intercept) 1.53798 0.61889 2.49 0.013 *
age -0.01346 0.00603 -2.23 0.026 *
educ 0.06278 0.02180 2.88 0.004 **
I(kids618 + kidsl6) -0.05108 0.03276 -1.56 0.119
mtr -2.20864 0.54620 -4.04 0.000053 ***
Outcome equation:
Estimate Std. error t value Pr(> t)
(Intercept) 0.64622 0.23557 2.74 0.0061 **
educ 0.06646 0.01657 4.01 0.000061 ***
exper 0.01197 0.00408 2.93 0.0034 **
Error terms:
Estimate Std. error t value Pr(> t)
sigma 0.8411 0.0430 19.6 <2e-16 ***
rho -0.8277 0.0391 -21.2 <2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
--

254 CHAPTER 16. QUALITATIVE AND LDV MODELS

References

255

256 CHAPTER 16. QUALITATIVE AND LDV MODELS

Bibliography

Adkins, L. (2014). Using gretl for Principles of Econometrics, 4th Edition. Number
1412.

Allaire, J., Cheng, J., Xie, Y., McPherson, J., Chang, W., Allen, J., Wickham, H.,
Atkins, A., and Hyndman, R. (2016). rmarkdown: Dynamic Documents for R. R
package version 1.1.

Colonescu, C. (2016). PoEdata: PoE data for R. R package version 0.1.0.

Croissant, Y. and Millo, G. (2015). plm: Linear Models for Panel Data. R package
version 1.5-12.

Dahl, D. B. (2016). xtable: Export Tables to LaTeX or HTML. R package version
1.8-2.

Fox, J. and Weisberg, S. (2016). car: Companion to Applied Regression. R package
version 2.1-3.

Fox, J., Weisberg, S., Friendly, M., and Hong, J. (2016). effects: Effect Displays for
Linear, Generalized Linear, and Other Models. R package version 3.1-2.

Ghalanos, A. (2015). rugarch: Univariate GARCH Models. R package version 1.3-6.

Graves, S. (2014). FinTS: Companion to Tsay (2005) Analysis of Financial Time
Series. R package version 0.4-5.

Grolemund, G. and Wickham, H. (2016). R for Data Science.

Henningsen, A. and Hamann, J. D. (2015). systemfit: Estimating Systems of Simul-
taneous Equations. R package version 1.1-18.

Hill, R., Griffiths, W., and Lim, G. (2011). Principles of Econometrics. Wiley.

Hlavac, M. (2015). stargazer: Well-Formatted Regression and Summary Statistics
Tables. R package version 5.2.

257

258 BIBLIOGRAPHY

Hothorn, T., Zeileis, A., Farebrother, R. W., and Cummins, C. (2015). lmtest:
Testing Linear Regression Models. R package version 0.9-34.

Hyndman, R. (2016). forecast: Forecasting Functions for Time Series and Linear
Models. R package version 7.3.

Kleiber, C. and Zeileis, A. (2015). AER: Applied Econometrics with R. R package
version 1.2-4.

Komashko, O. (2016). nlWaldTest: Wald Test of Nonlinear Restrictions and Non-
linear CI. R package version 1.1.3.

Lander, J. P. (2013). R for Everyone: Advanced Analytics and Graphics. Addison-
Wesley Professional, 1st edition.

Lumley, T. and Zeileis, A. (2015). sandwich: Robust Covariance Matrix Estimators.
R package version 2.3-4.

Pfaff, B. (2013). vars: VAR Modelling. R package version 1.5-2.

R Development Core Team (2008). R: A Language and Environment for Statistical
Computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN
3-900051-07-0.

Reinhart, A. (2015). pdfetch: Fetch Economic and Financial Time Series Data from
Public Sources. R package version 0.1.7.

Robinson, D. (2016). broom: Convert Statistical Analysis Objects into Tidy Data
Frames. R package version 0.4.1.

RStudio Team (2015). RStudio: Integrated Development Environment for R. RStu-
dio, Inc., Boston, MA.

Spada, S., Quartagno, M., and Tamburini, M. (2012). orcutt: Estimate procedure
in case of first order autocorrelation. R package version 1.1.

Trapletti, A. and Hornik, K. (2016). tseries: Time Series Analysis and Computa-
tional Finance. R package version 0.10-35.

Wickham, H. and Chang, W. (2016). devtools: Tools to Make Developing R Packages
Easier. R package version 1.12.0.

Xie, Y. (2016a). bookdown: Authoring Books and Technical Documents with R
Markdown. R package version 0.2.

Xie, Y. (2016b). knitr: A General-Purpose Package for Dynamic Report Generation
in R. R package version 1.15.

Zeileis, A. (2016). dynlm: Dynamic Linear Regression. R package version 0.3-5.

	.
	Introduction
	The RStudio Screen
	How to Open a Data File
	Creating Graphs
	An R Cheat Sheet

	The Simple Linear Regression Model
	The General Model
	Example: Food Expenditure versus Income
	Estimating a Linear Regression
	Prediction with the Linear Regression Model
	Repeated Samples to Assess Regression Coefficients
	Estimated Variances and Covariance of Regression Coefficients
	Non-Linear Relationships
	Using Indicator Variables in a Regression
	Monte Carlo Simulation

	Interval Estimation and Hypothesis Testing
	The Estimated Distribution of Regression Coefficients
	Confidence Interval in General
	Example: Confidence Intervals in the food Model
	Confidence Intervals in Repeated Samples
	Hypothesis Tests
	The p-Value
	Testing Linear Combinations of Parameters

	Prediction, R-squared, and Modeling
	Forecasting (Predicting a Particular Value)
	Goodness-of-Fit
	Linear-Log Models
	Residuals and Diagnostics
	Polynomial Models
	Log-Linear Models
	The Log-Log Model

	The Multiple Regression Model
	The General Model
	Example: Big Andy's Hamburger Sales
	Interval Estimation in Multiple Regression
	Hypothesis Testing in Multiple Regression
	Polynomial Regression Models
	Interaction Terms in Linear Regression
	Goodness-of-Fit in Multiple Regression

	Further Inference in Multiple Regression
	Joint Hypotheses and the F-statistic
	Testing Simultaneous Hypotheses
	Omitted Variable Bias
	Irrelevant Variables
	Model Selection Criteria
	Collinearity
	Prediction and Forecasting

	Using Indicator Variables
	Factor Variables
	Examples
	Comparing Two Regressions: the Chow Test
	Indicator Variables in Log-Linear Models
	The Linear Probability Model
	Treatment Effects
	The Difference-in-Differences Estimator
	Using Panel Data
	R Practicum

	Heteroskedasticity
	Spotting Heteroskedasticity in Scatter Plots
	Heteroskedasticity Tests
	Heteroskedasticity-Consistent Standard Errors
	GLS: Known Form of Variance
	Grouped Data
	GLS: Unknown Form of Variance
	Heteroskedasticity in the Linear Probability Model

	Time-Series: Stationary Variables
	An Overview of Time Series Tools in R
	Finite Distributed Lags
	Serial Correlation
	Estimation with Serially Correlated Errors
	Nonlinear Least Squares Estimation
	A More General Model
	Autoregressive Models
	Forecasting
	Multiplier Analysis

	Random Regressors
	The Instrumental Variables (IV) Method
	Specification Tests

	Simultaneous Equations Models
	Time Series: Nonstationarity
	AR(1), the First-Order Autoregressive Model
	Spurious Regression
	Unit Root Tests for Stationarity
	Cointegration
	The Error Correction Model

	VEC and VAR Models
	VAR and VEC Models
	Estimating a VEC Model
	Estimating a VAR Model
	Impulse Responses and Variance Decompositions

	Time-Varying Volatility and ARCH Models
	The ARCH Model
	The GARCH Model

	Panel Data Models
	Organizing the Data as a Panel
	The Pooled Model
	The Fixed Effects Model
	The Random Effects Model
	Grunfeld's Investment Example

	Qualitative and LDV Models
	The Linear Probability Model
	The Probit Model
	The Transportation Example
	The Logit Model for Binary Choice
	Multinomial Logit
	The Conditional Logit Model
	Ordered Choice Models
	Models for Count Data
	The Tobit, or Censored Data Model
	The Heckit, or Sample Selection Model

	References

