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Abstract

In this thesis, we shall look at symbolic dynamical systems and operator

algebras that are associated with these systems. We shall focus on minimal

shift dynamical systems generated by symbolic substitutions. By first char-

acterizing the shift spaces associated to primitive substitutions, we shall see

that all minimal dynamical systems generated by symbolic substitutions are

conjugate to proper primitive substitutions. In doing this, we will look at

ordered Bratteli diagrams and strongly maximal TAF-algebras and we will

see how we can associate these to a type of dynamical system called a Can-

tor minimal system, of which infinite minimal shift spaces are an example.

We also shall see how we can associate a semi-crossed product algebra to

a topological dynamical system and how isomorphism of two semi-crossed

product algebras is equivalent to conjugacy of their associated dynamical

systems. The semi-crossed product algebra is more general in that it can

be associated to any dynamical system, whereas TAF-algebras can only be

associated to Cantor minimal systems.
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1. Introduction

The study of dynamical systems is fundamentally the study of how things

change over time. Dynamical systems emerged as a sub-discipline of physics

in the 1600s when Newton used differential equations to describe the motion

of the planets. It has since become a sizeable mathematical discipline with

applications in almost all areas of science. Applications include, but are

not limited to, modelling how physical systems change over time, modelling

chemical reactions, modelling changes in population, pricing of financial

instruments, fractals and data storage in computers, to name a few. Dy-

namical systems unsurprisingly are mathematically vibrant and have many

connections to other areas of mathematics. This includes, but again is not

limited to, topology, measure theory, functional analysis, differential geome-

try and operator algebras. Dynamical systems fit into two main categories.

Systems where we assume that time is continuous (such as differential equa-

tions) and systems where we assume time is discrete (iterated maps). Note

that when we say time, this is a result of the dynamical systems originat-

ing as a way to model physical systems. In an abstract dynamical system,

“time” may be measured by other objects, such as the complex numbers,

causing time to lose its typical physical meaning. Additionally, in general-

izations of dynamical systems, such as multivariable dynamical systems, a

notion of time may not make sense.

This thesis will explore a type of discrete system called a symbolic dy-

namical system and its relationship to operator algebras. In particular, we

shall focus on minimal symbolic dynamical systems. For us, a dynamical

system consists of a pair (X,ϕ) where X is a locally compact Hausdorff

space and ϕ is a proper continuous map. A symbolic dynamical system is

a space consisting of either infinite or bi-infinite sequences of letters from a

finite alphabet and a shift map that “shifts” elements of the sequence to the

left by one position. Symbolic dynamical systems were introduced in the

late 1800s to study continuous dynamical systems, with the first successful

application being credited to Hadamard in 1898 [16]. To obtain a symbolic

system from a continuous system, one would partition the space into a finite

number of pieces and then associate to each piece a symbol. One would then

get a “symbolic trajectory” by looking at how a point moves between these

different pieces over time [33]. For a simple example of this, we can look at

the motion of a pendulum swinging back and forth. We could assign the

symbols L, C, and R, where L denotes when the pendulum swung to the

left, C for when it is in the center and R for when it is swung to the right.

If we assume no loss of energy, then a potential symbolic trajectory could

look like ...LCRCL.CRCLCR... or ...LLCRRC.CLLCRR... where the “.”
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keeps track of the symbol at position zero. The shift map would then de-

scribe how the pendulum’s position changes over discrete jumps in time.

The first paper studying symbolic systems for their own sake was in [18]

by Morse and Hedlund. Here they also coined the name. Since then, they

have been studied extensively, finding many applications. Some of these

applications outside of dynamical systems include computer science (think

sequences of 0’s and 1’s), linear algebra, graph theory, and operator algebras

[22].

A symbolic substitution is a function from a finite set of letters into the

set of all finite words made from these letters. This function can naturally

be extended to sequences of letters by applying the function to the individ-

ual letters and then concatenating the resulting words together to create a

new sequence. Symbolic substitutions appear naturally in various areas of

mathematics. Some examples include the study of formal languages (here,

substitutions are typically called iterated morphisms. The name comes from

the fact that we can think of substitutions as morphisms on a free monoid

generated by a finite number of elements), automata theory, aperiodic or-

der and fractal geometry [11]. To these substitutions, we can associate a

symbolic dynamical system based on the words that appear by applying the

substitution repeatedly to the letters in the alphabet. These systems tell us

information about the substitution and vice-versa. The focus of this paper

will be on systems generated from what are called primitive substitutions.

Primitive substitutions are by far the most well-studied type of substitution.

This, in part, is because the primitive substitutions have nice properties, al-

lowing us to better characterize their shift spaces and providing extra tools

for determining conjugacy between two shift spaces. Additionally, primitive

substitutions are the easiest way to generate minimal shift spaces.

Operator algebras have been used extensively to study dynamical systems.

To a dynamical system, there are various ways that one can associate an op-

erator algebra, then using this algebra, one can determine properties of the

dynamical system and vice-versa. Typically, one is interested in associating

an algebra such that two algebras are isomorphic if and only if the associated

dynamical systems are equivalent up to some notion of conjugacy (isomor-

phism for dynamical systems). The study of associating operator algebras to

dynamical systems began with work done by F. J. Murray and J. von Neu-

mann in [24]. Since then, it has grown substantially, with a large amount of

research being devoted to studying C∗-algebras associated with dynamical

systems. In more recent decades, the study of associating non-selfadjoint

operator algebras such as tensor algebras has also seen much research. Non-

selfadjoint operator algebras, tend to be able to encode more information

about the dynamical system, as we shall see in an upcoming section. This
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thesis will focus on two types of algebras: semi-crossed product algebras and

the strongly maximal TAF-algebras. J. Peters introduced the semi-crossed

product algebra in [27], and he was able to show that the algebras associated

to (X,ϕ), (Y,ψ) were isomorphic (as algebras) if and only if the dynamical

systems were conjugate assuming the spaces were compact and there were

no fixed points. This result was extended in [9] to all topological dynamical

systems (X,ϕ), (Y,ψ). Strongly maximal TAF-algebras is a particular type

of AF-subalgebra. Bratteli introduced AF-algebras in [4] and are defined

as the inductive limit of finite-dimensional C∗-algebras. A strongly maxi-

mal TAF-algebra can only be associated with systems conjugate to Cantor

minimal systems (minimal dynamical systems on a Cantor set) where the

system’s map is invertible. However for these dynamical systems, they can

determine conjugacy. As we shall see, all minimal symbolic shifts that are

not finite end up being conjugate to Cantor minimal systems.

This thesis has three main aims. First, we will introduce shift dynamical

systems and symbolic substitutions. We will see how we can associate to a

symbolic substitution a shift system. The focus here will be on primitive

substitutions and characterizing their shift spaces. Second, we will see how

we can associate to a dynamical system an operator algebra that can tell

apart conjugacy. This will be done for both a general dynamical system

and Cantor minimal systems, shift spaces of primitive substitutions being

an example of the latter. Third, we shall show that all minimal shift spaces

defined by a substitution are conjugate to the shift spaces defined by proper

primitive substitutions (a special type of primitive substitution).

2. Shift Space

In this section, we shall briefly introduce topological dynamical systems.

We shall then go on to introduce the concept of a shift space and shift

dynamical systems. We will see how we can characterize shift spaces by

looking at the list of all finite words which do occur or which do not occur

inside the shift space. We will then look at the basic structure of conjugacies

between shift spaces as well as some conjugacy invariants. We will end this

section by looking at a few generalizations of shift spaces. Namely, we

shall look at higher dimensional shift spaces and shift spaces defined over a

countable alphabet, and we shall see some of the difficulties that occur in

these situations.

2.1. Dynamical Systems and Shift Spaces.

Definition 2.1. A one-variable (topological) dynamical system (X,ϕ)
is a locally compact Hausdorff space X with a proper continuous map ϕ ∶
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X → X, where proper means that the inverse image of a compact set is

compact.

Definition 2.2. Two one-variable dynamical systems (X1, ϕ1), (X2, ϕ2) are
said to be conjugate if there exists a homeomorphism τ ∶X2 →X1 such that

τ ○ ϕ2 = ϕ1 ○ τ

This is just the dynamical system version of isomorphic. Unsurprisingly,

there is no general decision algorithm to determine if two dynamical systems

are conjugate or not. To determine if two systems are conjugate, one often

does this by finding an explicit conjugacy. If they are not conjugate, one is

often forced to instead look at invariants of the system, where an invariant

is any property that is preserved under conjugacy. One then concludes that

the systems are not conjugate if they can find an invariant that differs. Later

we shall briefly mention some of the common invariants that one uses for

shift spaces, but for us, the invariants of focus will be the operator algebras

mentioned in the previous section.

The primary type of dynamical system that we shall be concerned with

in this thesis are minimal dynamical systems.

Definition 2.3. A topological dynamical system (X,ϕ) is said to be min-

imal if for all closed subsets A of X, ϕ(A) ⊆ A implies that A = X or

A = ∅.

The definition of minimality is quite intuitive. A dynamical system (X,ϕ)
is minimal precisely when it has no proper subset that is also a dynamical

system with respect to ϕ. Note that (X,ϕ) being minimal does not imply

that (X,ϕn) is minimal for all n ∈ N. If this second condition is satisfied,

then (X,ϕ) is called totally minimal. A simple example of a minimal system

that is not totally minimal is the pair (Z2, ϕ), where ϕ(a) = a + 1 (mod 2).

Clearly ϕn is minimal for all odd n, but not minimal for all even n

Also, note that for minimal dynamical systems where ϕ is a homeomor-

phism, it does not follow that ϕ and ϕ−1 are conjugate. For instance, it was

shown in [17] that if we let K = {z ∈ C ∶ ∣z∣ = 1}, X = K3, and ϕ be the

map ϕ(z1, z2, z3) = a ⋅ (z1, z31z2, z1z32z3), were a ∈K3 and the first component

of a is not a root of unity, then (X,ϕ) defines a minimal dynamical system

and (X,ϕ), (X,ϕ−1) are not conjugate. In this paper, the authors came up

with necessary and sufficient conditions for a totally minimal homeomor-

phism of a compact abelian group with quasi-discrete spectrum to define a

dynamical system conjugate to its inverse. Using this, they concluded that

no conjugacy can exist between maps of the type described above.

Definition 2.4. Let A be a set consisting of n letters {a1, . . . , an}. The set

A∗ consists of all finite words made from the alphabet A. By convention,



7

we call ϵ ∈ A∗ the empty word and say that it has length zero. A+ denotes

the set of finite words minus the empty word ϵ. The set AZ, consists of all

bi-infinite sequences of letters from A.

For a finite word u ∈ A+ of length n, ui denotes the i’th letter of u, where

0 ≤ i ≤ n − 1.
One can similarly define the space AN. This space will have many analo-

gous properties to AZ, but for us, we shall only be interested in AZ.

Definition 2.5 ([1]). Let w = . . .w−2w−1w0w1w2 ⋅ ⋅ ⋅ ∈ AZ and let w[k,l] be

the finite subword of w from position k to position l were k, l ∈ Z, l ≤ k.
Denote the number of letters in w[k,l] by ∣w[k,l]∣ = m. A cylinder set of a

finite word u of length m is defined to by Zk(u) = {w ∈ AZ ∣ w[k,k+m−1] = u}.

Similarly, for w ∈ AZ, w[k,l) denotes the finite subword of w from position

k to position l − 1 were k < l and w[k,∞) denotes the infinite subword of w

from position k on wards.

The collection of all cylinder sets is a basis for AZ. Moreover, the topology

defined by this basis coincides with the product topology on AZ, were A is

given the discrete topology. As a result, by Tychonov’s theorem, AZ is

compact. There are two standard metrics that one can associate with this

topology:

Theorem 2.6. Let T be the topology defined above. Then the topologies

defined by the following two metrics coincide with T .
1. dF (u, v) ∶= ∑m∈N d(u[−m,m],v[−m,m])

2m where d(u[−m,m], v[−m,m]) =
∣{i ∶ ui ≠ vi}∣

2. d(u, v) ∶= 2−min{∣n∣∈Z∶un≠vn}

T and the metric in (1.) coinciding is explained in [1]. (1.) and (2.)

coinciding follows almost immediately from their definitions. Intuitively,

one can see these metrics coincide because two sequences are “close” to each

other in these metrics if and only if they agree with each-other in a large

region around the zero index. These metrics also provide a simple direct

way to show that AZ is compact. AZ being complete with respect to either

metric is essentially a proof by definition. Choosing the second metric, a

sequence {xm}m∈N being Cauchy in AZ means that for any N ∈ N, the

tails of the sequence will agree for the first N letters around the zero index

for sufficiently large m. Using this, we can construct our limit point. For

compactness, note that the collection of all the cylinder sets Z−n(u) for all
the finite words u of length 2n + 1 form a finite partition of AZ. By letting

ϵ > 0 and choosing n so that 2−n < ϵ, we get a covering of AZ by finitely

many ϵ balls. Since AZ is complete and totally bounded, it is compact.
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Definition 2.7 ([1]). The operator S ∶ AZ → AZ, S(w) = u were wi+1 = ui
is called the shift operator.

The shift operator is plainly continuous and proper in our topology and

it is the mapping that will be used to generate our dynamical system. The

dynamical systems that we will be interested in are subsets AZ which are

also closed with respect to the shift action.

Definition 2.8 ([1]). Let X ⊂ AZ. We say that X is a shift space if it is a

closed subset of AZ and it is invariant under the shift operator. Shift spaces

are also called subshifts.

A set that is invariant under the shift operator need not be closed in

general. For instance, taking A = {a, b}, if we let X = {xi ∈ AZ ∶ xi
[i,i] =

a, and xi
[j,j] = b, ∀j ≠ i ∈ Z}, this is a shift invariant set, but it is not closed

as the sequence ...bbb.bbb... ∉ X, but ...bbb.bbb... is clearly in its closure.

2.2. Characterization of Shift Spaces and Shift Space Conjugacies.

Definition 2.9 ([22]). Let F be a collection of words over A. Define XF to

be the subset of AZ whose elements contains no finite subwords from F . F
is called the forbidden words list of XF .

XF is a shift space. It is clearly shift invariant and it can be seen to

be closed since any sequence x ∈ AZ which contains a forbidden word, say

x[i,j] = u ∈ F will be a distance of at least 2−max{∣i∣,∣j∣} from any element in

X. These forbidden words lists can be at most countably infinite. Note that

these lists are not unique. For instance, if A = {0,1} was our alphabet, and
F1 = {1}, F2 = {01,10,11}, F1 and F2 would both define the one element

shift space X = {...000.000...}. Alternatively, we can define a shift space

based on the allowed words instead.

Definition 2.10 ([22]). Let X ⊆ AZ be any subset. Let Bn(X) denote the

set of all words of length n inside X. The language of X, L(X), is defined

to be ⋃∞i=1Bn(X). Lc(X) is defined to be the set of all words which do not

appear in L(X).

If X was already a shift space, then the shift space defined by L(X),
namely XLc(X) is again X. Not all languages define a shift space, but the

following proposition characterizes the relationship between the two.

Proposition 2.11 ([22]). Let A be an alphabet of n-letters and X,Y ⊆ AZ.

Then the following are true:

1. If X is a shift space and w ∈ L(X) then:
a. Every subword of w also belongs to L(X).
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b. There are nonempty words u, v ∈ L(X) such that uwv ∈ L(X).
2. If L(Y) is a language that satisfies conditions (a) and (b) in (1),

then Y is a shift space.

3. X = XLc(X).

4. Lc(X) is the largest forbidden words list that determines X.

This proposition allows us to define shift spaces directly from languages

L that satisfy (1). Here elements of the associated shift space are all the

sequences such that the finite words that make up those sequences all belong

to L. Any shift space can be characterized by its language or its forbidden

words list. There are other ways to characterize shift spaces that are less

universal but more useful when available. We shall see an example of this

using a fixed point criteria in an upcoming section.

We end this subsection by discussing the basic structure of conjugacy

maps between shift spaces.

Definition 2.12 ([22]). Let x = ...x−1x0x1... be an element in a shift space

X over a finite alphabet A and let y = ...y−1y0y1 be another sequence over

a finite alphabet B. Let Bm+n+1(X) denote the set of all words from X of

the form x[i−m,i+n] where x ∈ X. A function Φ ∶ Bm+n+1(X) → B defined by

Φ(x[i−m,i+n]) = yi where y ∈ B is called a fixed block map (or just block

map).

These fixed block maps will be the building blocks for conjugacy maps

between shift spaces. We can extend block maps to maps into BZ with the

following definition.

Definition 2.13 ([22]). Let X be a shift space over a finite alphabet A and

Φ ∶ Bm+n+1(X) → B as before. Then ϕ ∶ X → BZ defined by y = ϕ(x) where
ϕ is induced by Φ is called a sliding block code with memory m and

anticipation n.

If m = n = 0, then we call it a 1-block code. Note that the terminology

block code, memory, anticipation elude to the application of shift space to

computer science and data storage.

Proposition 2.14 ([22]). Let X,Y be shift spaces and let Sx, Sy denote their

respective shift maps. If ϕ ∶ X→ Y is a sliding block code, then ϕ○Sx = Sy ○ϕ.
i.e., the following diagram commutes:

X X

Y Y

Sx

ϕ ϕ

Sy
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The proof of the above proposition is immediate by doing a direct compu-

tation. Sliding block codes are easily seen to be continuous maps. Moreover,

they are closed maps in the case of finite alphabets, and if X is a shift space,

the image of a sliding block code is again a shift space [22].

When sliding block codes are invertible, their inverses are also sliding

block codes. As a result invertible sliding block codes between shift spaces

are conjugacies. In fact, all conjugacies between shift spaces are invertible

sliding block codes.

Proposition 2.15 ([12]). Let X and Y be shift spaces. A map ϕ ∶ X→ Y is

a conjugacy if and only if it is an invertible sliding block code.

While helpful, the characterization of conjugacy maps by sliding block

codes does not make the problem of determining conjugacy easy. While

there are methods for determining conjugacy for special types of shift spaces,

there is no general method. However, there are many conjugacy invariants

that one can compute to determine if two spaces are not conjugate. We will

list a few examples or some of the common invariants for shift spaces here

but will not go into great detail as these particular invariants are not the

focus of the thesis.

Definition 2.16. Let X be a shift space. The entropy of X is defined as

follows:

lim
n→∞

1

n
log ∣Bn(X)∣

where ∣Bn(X)∣ denotes the number of unique words of length n that occur

inside the shift space X.

Entropy can be thought of as a measure of how complex the shift space is

and is a conjugacy invariant. ∣Bn(X)∣ is often denoted as pϕ(n) = ∣Lnϕ∣, where
pϕ(n) is called the complexity function. Entropy can be defined for a general

topological dynamical system (X,ϕ), assuming that X is compact. We will

not explain it here. Just note that the general definition of entropy and our

above definition coincide for shift spaces and that entropy is a conjugacy

invariant in general. In the case of minimal shift spaces, entropy is always

equal to zero, so this invariant is not particularly useful for the spaces we

will be looking at. Despite this, the complexity function itself, or more

specifically its asymptotic rate of growth can still give information about

minimal shift spaces. For more information about this see [2].

Definition 2.17. Let (X,ϕ) be a dynamical system. For n ≥ 1, define

qn(ϕ) = ∣{x ∈ X ∶ ϕn(x) = x}∣. If qn(ϕ) < ∞ for all n ∈ N, we define the zeta

function:

ζϕ(t) = exp(
∞

∑
i=1

qn(ϕ)
n

tn)
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where exp(x) = ∑∞n=0 x
n

n! .

One can also define what is called the periodic point generating function

gϕ(t) as:

gϕ(t) =
∞

∑
n=1

qn(ϕ)tn

Both functions contain the same information about the periodic points

of the dynamical system, however, the zeta function tends to be used more

frequently as for certain types of shift spaces, the zeta function ends up

having nicer properties (for instance, with a class of shift spaces called Sofic

shifts, which show up naturally in automata theory, the zeta function ends

up being a rational function [22]). Like the first invariant, this one isn’t

overly useful for the shift spaces that we will be looking at as infinite minimal

shift spaces do not contain fixed points with respect to the shift map.

2.3. Generalizations of Shift Spaces. First, we shall look at the full

shift over a countable alphabet A, i.e AZ = {x = (xi) ∶ xi ∈ A,∀i ∈ Z} where
∣A∣ = ∣N∣. In this case, if we choose the same metric as before, our space

is no longer compact [22]. Moreover, the space is not even locally compact

[25]. Additionally, sliding block codes are no longer closed maps in general

[22]. We also lose some of the conjugacy invariants that we had in the finite

alphabet case. For instance, because our space is no longer compact, we no

longer have a notion of entropy. While there are ways to define entropy for

non-compact dynamical systems, these notions come with extra issues that

the compact case does not have. As an example, sliding block codes preserve

entropy for finite alphabets, but there are multiple notions of entropy in the

countable case that are not preserved by sliding block codes [22].

One of the ways to get around some of the issues described above is to

change the topology to something else that is still compatible with the ques-

tions that you are interested in. For instance, in [25], the authors, looking

at one-sided shift spaces over a countable alphabet, endowed A with the

discrete topology and took the one-point compactification A∞ = A⋃{∞}.
They then defined an equivalence relation ∼ on AN

∞ by identifying sequences

which contained ∞ with finite sequences based on the first occurrence of

∞. By letting ∑A denote the set of all finite and infinite sequences, and

by identifying elements of ∑A with elements of XA/∼, based on the first

occurrence of ∞ in the sequence, the authors got a topology on ∑A that

was compact, Hausdorff and that made the shift map on ∑A continuous

on all sequences except for the empty sequence. These ideas were further

extended to two-sided shift spaces in [15].

The next generalization that we shall discuss is higher-dimensional shift

spaces. Here, we define the full d-dimensional shift to be AZd
. Here, to each
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point in Zd we associate to it a symbol from A. More information about

higher-dimensional shift spaces and further resources can be found in [22].

We define the metric, in this case, to be ρ(x, y) = 2−k where k ∈ Z is the

largest integer such that x[−k,k]d = y[−k,k]d if x ≠ y and zero otherwise. In

higher dimensions, there are multiple shift maps that one can choose. By

choosing any vector in Zd, we can define a shift map based on that vector.

As an example, if we let d = 2 and choose the vector v = (2,3), then the

symbol associated with the point (i, j) in the integer lattice Z2, would be

shifted to the point (i+2, j+3). Similar to the one-dimensional shift spaces,

higher-dimensional shift spaces are defined by a forbidden patterns list where

patterns are the high-dimensional version of words. As an example, the

forbidden patterns list F = {11, 1
1
} over the alphabet A = {0,1} generates

what is called the 2-Dimensional Golden Mean Shift. The set of all patterns

inside a shift space creates a higher-dimensional analogue of the language of

a shift that we saw before.

Higher-dimensional shift spaces are significantly more difficult to deal

with. For instance, in the one dimensional case, given a finite list L, it is

always possible to know if XLc is non-empty and if a word occurs inside XLc .

For dimensions two and greater, these problems end up being undecidable

i.e. there is no algorithm that works in all cases [5, 31]. A second issue is that

many of the tools that one can use in the one-dimensional case either don’t

have higher-dimensional analogues or their higher-dimensional versions are

far more difficult to compute. As an example, given a d-dimensional shift

space X, the entropy h(X) is defined to be:

h(X) lim
n→∞

1

nd
log ∣X[0,n−1]d ∣

where ∣X[0,n−1]d ∣ denotes the the number of patterns on [0, n−1]d that occur
in X. Like before, this can be thought of as a measure of how complex the

shift space is and is a conjugacy invariant. Unlike in the one-dimensional

case however, the entropy of very few shift spaces is exactly known [22].

Many other invariants in the one-dimensional case can be computed using

basic linear algebra (for example, in shifts with a finite forbidden words

list, one can associate a positive definite matrix to it and calculate what

is called its PF -eigenvalue. This PF -eigenvalue ends up being a conjugacy

invariant), but in higher-dimensional spaces, there are not analogous results.

3. Symbolic Substitutions and Their Shift Spaces

In this section, we shall introduce symbolic substitutions and see how one

can associate a shift space to a substitution using a legal word characteri-

zation. We shall then focus on the case of primitive substitutions and see



13

how we can characterize their shift spaces using a fixed point criteria. Note

that this fixed point will be with respect to the substitution map and not

the shift map.

3.1. Shift Spaces of Symbolic Substitutions Using Legal Words

Characterization.

Definition 3.1 ([1]). Let A be a set consisting of n-letters a1, a2, . . . , an. A

substitution rule ϕ on A is a function σ ∶ A → A+, where A+ is the set of

all finite words generated by A. σ can be extended to a function on A+ or

AZ by applying it to the individual letters of a word and then concatenating

the resulting words together.

As an example, consider the substitution σ on two letters A = {a, b} given
by:

σ(a) = ab
σ(b) = ba

and the infinite word ...abab.abab... ∈ AZ, then by applying σ to this word,

we get:

...σ(a)σ(b)σ(a)σ(b).σ(a)σ(b)σ(a)σ(b)... = ...abbaabba.abbaabba... ∈ AZ

More generally, one can define a substitution as an endomorphism from

the free group generated by a1, a2, . . . , an into itself [1]. One would then have

formal inverses of each letter a−1i and the empty word ϵ corresponding to the

identity. One would then get a symbolic substitution by requiring the image

of σ(ai) to contain no negative powers of any of the generators. Alternatively

we could define our symbolic substitutions as an endomorphism from the free

monoid generated by a1, a2, . . . , an [13]. These more general substitutions

defined from a free group will not be of interest to us however. In our

topology, symbolic substitutions are continuous. To see this, let ϵ > 0 and

let w,w′ ∈ AZ be two words such that d(w,w′) < ϵ. Then there exists n ∈ N
and a finite word u of length 2n+1 such that w[−n,n] = w′[−n,n] = u and 2−n < ϵ.
Then σ(w[−n,n]) = σ(w′[−n,n]) = σ(u). Since σ(u) must have a length of at

least 2n + 1, d(σ(w), σ(w′)) ≤ 2−n < ϵ. Therefore σ is continuous.

Definition 3.2 ([1]). Let σ be a substitution on n letters a1, ..., an. The

substitution matrix Mσ associated to σ is an n × n matrix whose (i, j)
entry equals the number of copies of ai that appear in σ(aj).

It is easy to check that if Mσ,Mϱ are the substitution matrices associated

with the substitution σ, ϱ, then the substitution matrix associated to ϱ ○ σ
is Mϱ○σ = MϱMσ. Substitution matrices are one of the most basic tools
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used in studying symbolic substitutions as one is able to determine various

properties of the substitution based on the associated matrix.

Definition 3.3 ([1]). A non-negative substitution rule σ on a finite alphabet

A is called irreducible when for each index pair (i, j), there exists some

n ∈ N such that aj is a subword of σn(ai). σ is called primitive when some

k ∈ N exists such that aj is a subword of σk(ai) for all index pairs (i, j).

Definition 3.4 ([1]). A matrix M with non-negative entries is called irre-

ducible if for each index pair (i,j), there exists n ∈ N such that (Mn)i,j > 0.
A matrix M with non-negative entries is called primitive if there exists

k ∈ N such that (Mk)i,j > 0 for every index pair (i, j).

A substitution is irreducible (respectively primitive) if and only if its sub-

stitution matrix is irreducible (primitive). A substitution being irreducible

prevents two things from occurring. First, it means that a substitution

cannot be broken up into two or more smaller substitutions. For example,

looking at the substitution on 3 letters {a, b, c} given by:

σ(a) = bb
σ(b) = aa
σ(c) = cc

This would not be irreducible as a and b are never a subword of σn(c) and
vice versa. Second, it disallows substitutions where one of the letters does

not appear in the image of any σ(ai). For instance the substitution given

on two letters by {a, b} given by:

σ(a) = aa
σ(b) = a

is also not irreducible.

A simple example of a irreducible, but not primitive substitution would

be:

σi(a) = bb
σi(b) = aa

The most well known example of a primitive substitution is the Fibonacci

substitution, which is a substitution on two letters {a, b} given by:

σ(a) = ab
σ(b) = a

It is clear from the definition that a substitution is primitive if and only

if there exists N ∈ N such that every ai is in the image of every σN(aj) for
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all 1 ≤ i, j ≤ n. We will primarily be interested in substitutions that are

primitive. As stated before, the reason is that we can nicely characterize

the shift space of primitive substitutions using a fixed point criteria. After

introducing strongly maximal TAF-algebras in an upcoming section, we shall

look at substitutions that are not primitive, but which lead to minimal shift

spaces.

The general procedure for generating a shift space from a symbolic sub-

stitution comes from the following definition.

Definition 3.5 ([2]). Let σ be a substitution. The language of σ, L(σ), is
defined to be the set of all words occurring in σn(a), for some a ∈ A. The

set X(σ) denotes the set of all sequences y ∈ AZ such that all the subwords

of y belong to L(σ)

L(σ) is readily seen to be a language which satisfies the conditions of

Proposition 2.10 and X(σ) is readily seen to be the shift space associated to

L(σ). Note that L(σn) ⊆ L(X(σ)) ⊆ L(σ) and X(σn) ⊆ X(σ) for n ≥ 1, but
equality does not hold in general.

3.2. Tiling Spaces. Shift spaces defined by symbolic substitutions have

new invariants that are not available for more general shift spaces. One of

these invariants is the tiling space associated with a given substitution.

Definition 3.6 ([1]). A tiling of R is a partition of R into sets called tiles

such that these tiles can only intersect on their boundary. A tiling of R is

called simple if there are a finite number of tiles up to translation and each

tile is a closed interval.

A tiling and simple tiling of Rd is defined analogously, except we replace

closed interval by a polytope. Famous examples of tilings in the plane in-

clude the Penrose tiling and pinwheel tiling. Note that these tilings can be

generated by a geometric analogue of our symbolic substitution called an

inflation rule. More details about this can be found in [1].

Definition 3.7 ([2]). Let σ be a substitution of the alphabet A with asso-

ciated shift space X(σ). The tiling space associated to σ, denoted Ωσ, is

defined to be:

Ωσ = (X(σ) × [0,1])/∼
where ∼ is the relation (w,0) ∼ (σ(w),1).

Points in the tiling space can be thought of as partitions R into unit

intervals, where each unit interval is associated with or “labelled” by a letter

in the word w. Adopting this second view, we can describe Ωσ as follows:

For each letter in A, associate to ai a tile which is a unit interval in R. Then
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Ωσ is the set of all tilings of R such that every patch is can be found inside

the patch corresponding to σ(ai)m for some 1 ≤ i ≤ n and m ∈ N.

Definition 3.8 ([2]). Two tilings T,T ′ are said to be ϵ-close if after a trans-

lation of at most ϵ, the tilings agree on a ball of radius 1
ϵ around the origin.

This concept of closeness defines what is called the local topology for our

tiling space. From the definition of our tilings spaces, we get the following

proposition.

Proposition 3.9 ([2]). Let ϕ, η be two symbolic substitutions such that they

define conjugate shift spaces. Then Ωϕ and Ωη are homeomorphic.

The converse of this proposition is false. For a simple counterexample,

we can take the substitutions σ1 ∶ a → ab, σ1 ∶ b → ab and σ2 ∶ a → aab,

σ2 ∶ b → aab. Both define homeomorphic tiling spaces, but they are not

conjugate as their associated shift spaces have different cardinalities [2].

Note that while this is not a complete invariant, these tiling spaces are

still quite useful as determining conjugacy between shift spaces defined by

substitutions is quite hard in general. For example, in [23], tiling spaces were

used to study non-minimal shift spaces’ structure associated with symbolic

substitutions.

3.3. Shift Spaces Associated to Primitive Symbolic Substitutions.

In this subsection, we shall focus on characterizing the shift spaces of prim-

itive substitutions. To do this, we shall first introduce the concept of a

hull.

Definition 3.10 ([1]). Let w ∈ AZ. The two-sided (or symbolic) hull of

w is define X(w) ∶= {Si(w) ∶ i ∈ Z}

X(w) is by definition a shift space. More specifically, it is the smallest

shift space containing w. If z ∈ X(w), it may not be the smallest shift space

containing z however. An example of this is seen later.

Definition 3.11 ([1]). Let σ be a substitution rule on a finite alphabet A.
A finite word is called legal for σ if it occurs as a subword of σk(ai) for

some 1 ≤ i ≤ n, k ∈ N

Clearly legal words are mapped to legal words by the substitution.

Definition 3.12 ([1]). A bi-infinite word w is called a fixed point of a

primitive substitution σ if σ(w) = w and w−1∣w0 is a legal two-letter word of

σ.

Equivalently we can say that w is a fixed point if and only if w−1∣w0 is

a legal two-letter word and σ(w0)[0,0] = w0 and σ(w−1)[∣σ(∣w−1∣−1,∣σ(w−1∣−1) =
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w−1. These definitions are equivalent as σ(w0)[0,0] = w0 implies that the

sequence (σn(w0))n∈N will converge to an infinite word w in AN with the

property that σ(w) = w. Using compactness as well as the fact σn(w0)
will agree with σn−1(w0) on the first ∣σn−1(w0)∣ − 1 positions implies that

(σn(w0))n∈N is convergent. The same idea can be used for σ(w−1). Clearly
not all primitive substitutions have fixed points. For example:

σ(a) = ba
σ(b) = aba

has no fixed points. Despite this all substitutions raised to an appropriate

power will have a fixed point.

Proposition 3.13 ([1]). If σ is a primitive substitution on a finite alphabet

A with n ≥ 2, there exists some k ∈ N and some w ∈ AZ such that w is a

fixed point of σk (i.e. w−1w0 is a legal word and σk(w) = w)

Proof. Assume without loss of generality that ∣σ(ai)∣ > 1 for all 1 ≤ i ≤ n (if

this is not the case take an appropriate power of σ) and define g ∶ A2 → A2

by g(xy) = σ(x)∣σ(a)∣−1σ(y)0. Select any legal two-letter word and iterate it.

By the pigeonhole principle, there exists at least one legal two-letter word

which repeats after enough iterations of g. i.e., there exists a legal word x′y′

and k ∈ N such that gk(x′y′) = x′y′. Note that this may not be the initial

legal word. Choosing this legal two-letter word as our seed and iterating it

under σk, we get our result. □

Definition 3.14 ([1]). Let w be bi-infinite fixed point of σ (or an appro-

priate power of σ if σ has no fixed points). We call X(w) the hull of the

substitution.

With this, there is an obvious question of uniqueness. If σ has multiple

fixed points, do the different fixed points lead to different hulls? Addition-

ally, do the fixed points of σk and σl with k ≠ l lead to different hulls? The

answer to all these questions is no and the results rely on the fact that σ is

primitive. For a substitution that is not primitive, one could not associate a

unique hull based on fixed points in general. As an example, with the irre-

ducible but not primitive substitution σi defined in the previous subsection,

w1 = ...aaaa.aaaa... and w2 = ...bbbb.bbbb... are both fixed points of σ2i , and

clearly X(w1) ≠ X(w2). To show that the hull of a primitive substitution is

unique, we first need to introduce the concept of local indistinguishably.

Definition 3.15 ([1]). Two words u, v in the same alphabet are called lo-

cally indistinguishable (LI) (denoted u
LI∼ v) if each finite subword of u

is also a subword of v and vice versa.
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Two finite words are locally indistinguishable if and only if they are equal.

The LI class of a word w ∈ AZ is denoted as LI(w) ∶= {z ∈ AZ ∶ z LI∼ w}. It

is easy to see that local indistinguishably defines an equivalence relation.

Proposition 3.16 ([1]). If w is a bi-infinite word, its LI class is contained

in the hull of w and X(w) = LI(w). In particular u
LI∼ v → X(u) = X(v).

The sketch of the proof for the above proposition goes as follows. If a word

u is locally indistinguishable from w, then for all n ∈ N, u[−n,n] is a subword

of w. As a result we can find a k ∈ Z such that Sk(w)[−n,n] = u[−n,n].
As a result, we can construct a sequence in X(w) which converges to u.

To show that LI(w) is dense, we only need to note that all words of the

form Sk(w), k ∈ Z are locally indistinguishable from w. In general, the LI

class of a word need not be closed. For a simple counter-example, consider

w = ...aaaa.baaa.... Then w′ = ...aaaa.aaaa... ∈ X(w) but it is not locally

indistinguishable from w.

Proposition 3.17 ([1]). Let σ be a primitive substitution rule on a finite

alphabet. Then, any two bi-infinite fixed points u,v of σ are locally indistin-

guishable. The same conclusion holds if u and v are fixed points of possibly

different positive powers of σ.

The above proposition follows from three key observations:

1. If u is a fixed point of σ with seed u−1∣u0, and w is a finite subword

of u, then w will be a subword of σn(u−1u0) for a large enough n.

2. Since σ is primitive for any letter a in the alphabet, u−1u0 will be

a subword of σm(a) for a large enough m.

3. If u is a fixed point of σk and v is fixed point of σl, then both u

and v are fixed points of σlcm(k,l).

From this proposition, it follows that our symbolic hulls are well defined

for primitive substitutions. For the case of primitive substitutions, X(w)
and X(σ) clearly coincide as any u ∈ X(σ) will be in the LI class of w and

any v ∈ X(w) will only be composed of words allowed by L(σ). Due to our

fixed point characterization, we end up with the following proposition.

Proposition 3.18. Let σ be a primitive substitution. Then L(σ) = L(σk)
and X(σ) = X(σk) for all k ≥ 1.

There still is one obvious question related to uniqueness. If X(w) is a

symbolic hull for some substitution σ and z ∈ X(w), is it the case that

X(z) = X(w)? For a general hull the answer is no. In the above example

where we showed that the LI class is not always closed, it is clear that

X(w) ≠ X(w′), despite w′ ∈ X(w). For our primitive substitutions however,
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the answer is yes. To show that this is the case, we will need the following

well known proposition on minimal dynamical systems.

Proposition 3.19 ([20]). Let (X,ψ) be a topological dynamical system such

that X is a compact metric space. Then following are equivalent:

1. (X,ψ) is minimal.

2. Every orbit of X is dense.

3. ψ is surjective and every backwards orbit is dense.

Note that (1.) if and only if (2.) does not require X to be compact nor a

metric space. From (2.) and (3.), we get the following immediate corollary.

Corollary 3.20. A two-sided shift space X ⊆ AZ is minimal if and only if

for all w ∈ X, the shift orbit {Siw ∣ i ∈ Z} is dense in X.

For symbolic hulls, we are able to characterize minimality by the LI class.

Proposition 3.21 ([1]). If w is a bi-infinite word in the finite alphabet A,
with LI class LI(w) and hull X(w), then the following are equivalent:

1. X(w) is minimal

2. LI(w) is closed

3. X(w) = LI(w)

Using the concept of repetitivity we get a second characterization.

Definition 3.22 ([1]). A bi-infinite word w over a finite alphabet is called

repetitive when every finite subword of w reappears in w with bounded gaps.

For a bi-infinite word w and a finite subword u of w, define Tu = {i ∶
Si(w)[0,∣u∣−1] = u}. Saying that w is repetitive is equivalent to saying that

for every finite subword u of w there exists a finite set Iu ⊆ Z such that

Tu + Iu = Z.

Proposition 3.23 ([1]). If w is a bi-infinite word in the finite alphabet A,
the hull X(w) is minimal if and only if w is repetitive.

Proposition 3.24 ([1]). Any bi-infinite fixed point of a primitive substitu-

tion on a finite alphabet is repetitive.

Proof. Let w be a bi-infinite fixed point. Since the associated substitution is

primitive, there exists k ∈ N such that a1 will appear as a subword in σk(aj)
for all j. As a result a1 will appear with bounded gaps. Additionally, for

each finite subword u of w there will exist l ∈ N such that u appears in σl(a1).
As a result all finite subwords of w repeat with bounded gaps. Therefore w

is bounded. □



20

Bi-infinite fixed points of primitive substitutions actually satisfy a stronger

condition called linear repetitivity (or linear recurrent). Due to w being

defined over a finite alphabet, for every n ∈ N, there exists Nn ∈ N such that

all finite subwords u of length n in w will be contained in any subword v in

w of length at least Nn. A word w ∈ AZ is said to be linearly repetitive if

Nn=O(n), i.e. Nn grows at an asymptotically linear rate. Moreover, if σ is

any substitution such that X(σ) is minimal, then its elements are linearly

repetitive [6]. This property turns out be quite useful as it implies important

dynamical system properties of X(σ). We shall see a couple of examples of

this later.

Minimality is not unique to the shift spaces of primitive substitutions.

Example 3.25 (A minimal shift space generated by a non-primitive sub-

stitution). The substitution σ(0) → 0010, σ(1) → 1 is an example of a non-

primitive substitution that defines a minimal shift space [13].

We will see later that despite this, for any non-primitive substitution

with a minimal shift space, we can always construct a primitive substitution

whose shift space is conjugate to the non-primitive one. We do have the

following proposition for irreducible substitutions however.

Proposition 3.26. Let σ be an irreducible substitution over a finite alphabet

A such that (X(σ), S) is minimal and for all a ∈ A, limn→∞ ∣σn(a)∣ = ∞.

Then σ is primitive.

Proof. By copying the method in the proof of Proposition 3.13, we are able

to generate a fixed point w of σk where k ∈ N. By definition, w ∈ X(σ).
By minimality X(w) = X(σ). By irreducibility, all letters ai ∈ A must oc-

cur inside w. Therefore σk(ai) is a subword of w for all k ∈ N,1 ≤ i ≤ n.
By our previous proposition, w is repetitive, therefore all letters a ∈ A ap-

pear in w with bounded gaps. Since σk(ai) is a subword of w and since

limk→∞ ∣σk(ai)∣ = ∞, all letters a ∈ A must be in a subword of σk(ai) for a

sufficiently large k. Therefore, σ is primitive. □

There are two more natural questions that we will look at for our symbolic

hulls:

1. How large is a given hull? Are they finite, countably infinite, or

uncountable?

2. How many disjoint orbits are in a given hull?

To answer these questions depends on the particular nature of the primi-

tive substitution. Namely, whether or not it is aperiodic.

Definition 3.27 ([1]). Let w be a bi-infinite word. w is said to be peri-

odic if there exists k ∈ Z such that Sk(w) = w. A primitive substitution
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is called periodic if its shift space only consists of periodic elements. w is

called (topologically) aperiodic when X(w) contains no periodic words

(i.e. there does not exist any u ∈ X(w) such that Sk(u) = u for some k ∈ Z.
A primitive substitution is called aperiodic if its shift space contains no pe-

riodic elements.

There are bi-infinite words which are neither periodic nor aperiodic. In

this case, we simply say that they are non-periodic. An example of such a

word is w = ...aaaaa.baaaa.... For the case of primitive substitutions, the

minimality of the hull implies that the hull will either only contain periodic

words or aperiodic words. As a result we only need to worry about aperiodic

words. Also note that we say w is topologically aperiodic because there are

other notions of aperiodicity.

If a primitive substitution has a periodic hull, then it clearly only has a

finite number of elements and a single orbit. To deal with the aperiodic case

we need to introduce a few measure-theoretic concepts.

Definition 3.28 ([1]). Let X be a two-sided shift space. The set PZ(X)
denotes the set of all shift-invariant probability measures on X. i.e. the set

of all measures µ such that for any measurable set A ⊆ X, µ(A) = µ(S(A)),
where S(A) is the image of A under the shift operator.

Proposition 3.29 ([1]). Let X be a two-sided shift space. Then PZ(X) is
nonempty.

PZ(X) being nonempty follows from the fact that P(X), the set of proba-

bility measures on X is nonempty (it at least contains the point measures)

and that P(X) is compact. Using this, one can construct a sequence of prob-

ability measures which converges to a shift-invariant probability measure.

Also note that PZ(X) is convex.

Definition 3.30 ([1]). We say that a Borel set A ⊆ X is an invariant set

if S−1(A) = A

Definition 3.31 ([1]). A shift-invariant probability measure µ on a two-

sided shift space X is said to be ergodic if for any Borel invariant set A,

µ(A) equals 0 or 1.

A dynamical system having an ergodic measure just means that up to

measure zero sets, nothing remains invariant with respect to the homeomor-

phism that defines the dynamical system

Proposition 3.32 ([1]). A shift-invariant probability measure µ is ergodic

if and only if it is extremal.
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Definition 3.33 ([1]). Let X be a two-sided shift space. If PZ(X) consists of
a single element, we say that X is uniquely ergodic. If X is also minimal,

we say that it is strictly ergodic.

Proposition 3.34 ([1]). Let σ be a primitive substitution. Then its symbolic

hull X is strictly ergodic.

This proposition follows from the fact that linear repetitivity implies

uniquely ergodic and the fact that the hull of a symbolic substitution is

minimal.

Proposition 3.35 ([1]). Let w be a repetitive, aperiodic word in a finite al-

phabet. Then X(w) is uncountable and contains uncountably many pairwise

disjoint orbits.

Proof. Let µ be any invariant probability measure. Then X = ⋃u∈X{u}
and µ({Si(u)}) = µ({u}) for any i ∈ Z. Since w is repetitive, X is minimal

which implies that u is also non-periodic as it has a dense orbit. Therefore

Si(u) = Sj(u) if and only if i = j. Therefore by σ-additivity, µ(u) = 0 for all

u ∈ X(w). Since X is a set of measure 1, and it is the union of measures zero

sets, the union must be uncountable. Additionally as each orbit is countable,

there must be uncountably many orbits. □

An alternative proof to the above is to show that X(w) is a Cantor set.

With everything done so far, we would only need to show that X(w) is

perfect. This is implied by repetitivity and the definition of the cylinder

sets. Since X(w) is homeomorphic to an uncountable set, it too must be

uncountable.

We shall go over three ways that one can differentiate between periodic

and aperiodic hulls. The first method can be used for any hull so long as

the word defining this hull is repetitive, while the second and third can only

be used when that hull is defined by a primitive substitution.

Definition 3.36 ([1]). Two elements u, v in a hull X(w) u ≠ v are called

a proximal pair if limn(Sn(u), Sn(v)) = 0 as n tends to plus or minus

infinity

Proposition 3.37 ([1]). Let w be a repetitive bi-infinite word. Then X(w)
is aperiodic if and only if it contains a proximal pair.

For the second criteria, we need the following theorem

Theorem 3.38 (Perron-Frobenius theorem [1]). If M is a primitive matrix,

then M has a real eigenvalue that has multiplicity one and has modulus

greater than any other eigenvalue of M . This eigenvalue is called the PF-

eigenvalue, and is denoted λPF .
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Proposition 3.39 ([1]). Let σ be a primitive substitution and let Mσ be the

associated substitution matrix. If Mσ has an irrational PF-eigenvalue, then

σ is aperiodic.

Unfortunately, the converse of the above proposition is false. Note that

one can normalize the right PF-eigenvalue to get the asymptotic frequencies

of the different letters in the substitution.

To determine if any primitive substitution is periodic or aperiodic, we refer

the interested reader to [26]. This paper answers a more general question

of if a sequence generated by a morphism on a free monoid is eventually

periodic, where eventually periodic means the sequence is of the form uv

where v is a finite word and v an infinite repetitive word. Using ideas from

formal language systems, the author provides an algorithm for determining

if any sequence generated in this way is periodic or not.

4. Semi-Crossed Product Algebras

In this section, we shall introduce what is called the semi-crossed product

algebra. We will see how the properties of these algebras are related to their

associated dynamical systems and we shall get a nice characterization of

these algebras in terms of their 2 × 2 upper triangular representations. At

the end of this section, we will also look at a natural extension of the ideas

below to multivariable dynamical systems.

4.1. Topological Conjugacy Algebras.

Definition 4.1 ([9]). Let X be a compact Hausdorff space and let ψ ∶ X →
X be a continuous function. The skew polynomial algebra, denoted

P(X,ψ), is all polynomials of the form:

n

∑
i=1

fiU
i, fi ∈ C(X)

in the variable U where multiplication is defined by

Uf = (f ○ ψ)U

Now let A be any Banach algebra such that the following conditions hold:

1. P(X,ψ) is a dense subalgebra of A such that the units are the

same.

2. C(X) ⊆ P (X,ψ) ⊆ A is closed

3. There exists an algebra homomorphism E0 ∶ A → C(X) such that

E0(f) = f for all f ∈ C(X) and kerE0 = AU
4. U is not a right divisor of 0
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To any element a ∈ A, we can associate to it a formal power series of the

form ∑nEn(a)Un ∈ P∞(X,ψ) where En is constructed to be the coefficient

map. We do this by noting that C(X) being closed in A implies that E0 is

continuous, which in turn implies that AU is a closed subset ofA. Therefore,
by the inverse mapping theorem, the map S(a) = aU where a ∈ A has a

bounded left inverse which we shall denote as T . Using T and a simple

induction, we can construct the coefficient maps En = En−1T (I − E0) =
E0(T (I −E0))n. To see why this map is defined this way, for n=1, the fact

that a − E0(a) ∈ kerE0, implies that there exists a unique b ∈ A such that

a = E0(a)+ bU . As a result (I −E0) sends a to bU . T by definition sends bU

to b and finally, evaluating E0(b) gives us our coefficient for U . Note that

the coefficient maps are bounded. As a result, we can associate any a ∈ A a

formal power series via the mapping ∆ ∶ a→ ∑nEn(a)Un ∈ P∞(X,ψ). Also
note that ∆ is an algebra homomorphism.

Definition 4.2 ([9]). Let (X,ψ) be a one-variable dynamical system where

X is compact. Then a topological conjugacy algebra for (X,ψ) is an

algebra A such that the above four conditions are satisfied and

lim sup
n
(∥En∥∥Un∥)

1
n ≤ 1

Imposing this norm condition is important as it means that our power

series will be Cesaro summable (i.e. the sequence of arithmetic means of

the partial sums converges). This fact will play an important role later on

when we look at the characters of our algebra. With this we can define

a topological conjugacy algebra for a non-compact locally compact set X.

If we take its one-point compactification X̃ = X ⋃{w}, we can extend all

proper continuous maps from X to X̃, by having {w} be a fixed point.

We then define the topological conjugacy algebra A for (X,ψ) as the norm

closed subalgebra of the topological conjugacy algebra Ã for (X̃, ψ̃) obtained
by restricting the polynomial coefficients to elements of C0(X) (continuous
functions which vanish at {w}).

By imposing appropriate restrictions on the norm of U , both P(X,ψ) and
P∞(X,ψ), are almost topological conjugacy algebras minus issues of com-

pleteness/being a Banach algebra. Neither of these are very interesting for

the purposes of dynamical systems however. Of particular interest to us will

be the semi-crossed product algebra. This algebra itself is not a topological

conjugacy algebra, but to it, we are able to associate a topological conju-

gacy algebra such that two semi-crossed product algebras are isomorphic as
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algebras if and only if there associated topological conjugacy algebras are

isomorphic as algebras.

Example 4.3 (The semi-crossed product algebra C0(X) ×ψ Z+ associated

to a dynamical system (X,ψ) [9] ). Let X be a locally compact Hausdorff

space, ψ a proper continuous map on X, H = l2(N). Let ξ = (ξn)n∈N ∈ l2(N).
For x ∈X,f ∈ C0(X), define πx(f) ∶ l2(N) → l2(N) as

πx(f)(ξ0, ξ1, ξ2, . . . ) = (f(x)ξ0, f ○ ψ(x)ξ1, f ○ ψ2(x)ξ2, . . . )

Let U be the forward shift map. i.e.

U(ξ0, ξ1, ξ2, . . . ) = (0, ξ0, ξ1, . . . )

C0(X) ×ψ Z+ is defined to be the norm closed operator algebra acting on

⊕x∈XH generated by the operators ⊕x∈Xπx(f) and ⊕x∈XUπx(g) where f, g ∈
C0(X)

Viewed as matrices

πx(f) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

f(x) 0 0 0 . . .

0 f ○ ψ(x) 0 0 . . .

0 0 f ○ ψ2(x) 0 . . .

0 0 0 f ○ ψ3(x) . . .

⋮ ⋮ ⋮ ⋮ ⋱

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, U =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 . . .

1 0 0 0 . . .

0 1 0 0 . . .

0 0 1 0 . . .

⋮ ⋮ ⋮ ⋮ ⋱

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
The semi-crossed product algebra is not a topological conjugacy algebra

as the relation that it satisfies is πx(f)U = Uπx(f ○ψ). This is remedied by

defining the “opposite” algebra (C0(X) ×ψ Z+)op. This algebra is the same

as the semi-crossed product algebra, except we define a new multiplication ∗
to be a∗b ∶= ba. It is easy to check that the opposite algebra is a topological

conjugacy algebra and that two semi-crossed product algebras are isomor-

phic (as algebras) if and only if their opposite algebras are isomorphic. One

can also consider the algebra generated by using a left shift instead of a

right shift. In this case, one ends up with a topological conjugacy algebra.

One can also define the semi-crossed product algebra as the universal object

where certain relations hold. One then can then show that this is equivalent

to our definition above. The details of this alternate construction can be

found in [27]. We will talk more about this universal construction at the

end of the section when we touch on multivariable dynamical systems.

Similarly, one is also able to associate to a dynamical system a C∗-crossed

product [21]. These crossed products are not as powerful however as there

are examples of dynamical systems which are not conjugate but have iso-

morphic associated C∗−algebras [21].
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4.2. Characters and Representations of Topological Conjugacy Al-

gebras. Before we can discuss the main results related to the semi-crossed

product algebras, we first need to discuss some results about the characters

and representations of topological conjugacy algebras.

Definition 4.4. Let A be a algebra over a field F. A character of A, ρ, is
a homomorphism from A into F. i.e. a character is a multiplicative linear

functional on A.
For elements f ∈ C0(X), characters act as point evaluation maps (i.e.

if ρ is a character, then for all f ∈ C0(X), there exists x ∈ X such that

ρ(f) = f(x). As a result, for a topological conjugacy algebra, the space

of all characters on A, MA can be partitioned as MA = ⋃x∈XMA,x, where
MA,x = {ρ ∈MA ∶ ρ(f) = f(x),∀f ∈ C0(x)}. What MA,x looks like depends

on if x is a fixed point of the dynamical system. For the case when x is not

a fixed point, we need the following proposition.

Proposition 4.5 ([9]). Let X be a locally compact Hausdorff space, A a

topological conjugacy algebra, B an algebra and ρ ∶ A → B an algebra homo-

morphism. If C0(X)U ⊆ kerρ, then ρ(a) = ρ(E0(a)) for all a ∈ A
If x is not a fixed point and ρ ∈ MA,x, then a simple argument with the

skew relation gives us ρ(fUg) = ρ(fU)g(x) = ρ(fU)g(ψ(x)) for all f, g ∈
C0(X), which implies that C0(X)U ⊆ kerρ which by our above proposition

implies that ρ(a) = ρ(E0(a)) = E0(a)(x) for all a ∈ A. Thus MA,x consists

of a single character. We shall denote this character as θx,0. The case when

x is a fixed point is quite different. In this case MA,x is isomorphic to a

closed unit disk Dr. Let r = limn→∞ ∣∣Un∣∣
1
n . Since the mapping S(a) = aU is

bounded below, r > ∣∣T ∣∣−1 > 0. By our definition of a topological conjugacy

algebra, ∑nEn(a)zn will converge for all complex numbers ∣z∣ < r with

respect to its Cesaro mean. As a result for each z ∈ C, ∣z∣ < r, we have

a character θx,z ∈ MA,x such that θx,z(U) = z. Using this, we can define

a map between MA,x and Dr that is continuous, dense and injective by

sending θx,z to z. Since both spaces are compact, this map is automatically

a homeomorphism.

We shall now discuss the 2×2 upper triangular representations of a topo-

logical conjugacy algebra.

Definition 4.6 ([9]). Let A be an algebra. Denote the collection of repre-

sentations of A onto T2, the upper-triangular 2×2 matrices, as repT2A and

let

θπ,i(a) = ⟨π(a)ξi, ξi⟩, a ∈ A, i = 1,2
be characters that correspond to compressions on the (1,1) and (2,2) en-

tries where {ξ1, ξ2} is the canonical basis of C2 and where ⟨, ⟩ is the standard
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complex inner product.

Important for these characters and representations is the fact that if

A1,A2 are algebras, {ξ1, ξ2} is the canonical basis of C2 and γ ∶ A1 → A2 is

an algebra isomorphism, then γ induces the isomorphisms

1. γc ∶MA1 →MA2 by γc = θ ○ γ−1
2. γr ∶ repT2A1 → repT2A2 by γr(π) = π ○ γ−1

These isomorphisms are “compatible” in that γc(θπ,i) = θγr(π),i. We can

essentially think of the 2×2 upper triangular representations as taking matrix

representations of our operators and ignoring all entries outside the upper

left corner. For example, if we consider the algebra generated by

πx(f) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

f(x) 0 0 0 . . .

0 f ○ ψ(x) 0 0 . . .

0 0 f ○ ψ2(x) 0 . . .

0 0 0 f ○ ψ3(x) . . .

⋮ ⋮ ⋮ ⋮ ⋱

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
and the left shift

V =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 . . .

0 0 1 0 . . .

0 0 0 1 . . .

0 0 0 0 . . .

⋮ ⋮ ⋮ ⋮ ⋱

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
then the 2 × 2 representations of these operators would be

π(πx(f)) = [
f(x) 0

0 f ○ ψ(x)]

and

π(V ) = [0 1

0 0
]

Using these representations, we will show that if A is a topological conju-

gacy algebra, then we will be able to completely recover said algebra from

these representations alone. To do this, we first need to consider a number

of cases based on whether or not we have a fixed point. To this end, suppose

that A is a topological conjugacy algebra for the dynamical system (X,ψ)
and define:

repx1,x2A = {π ∈ repT2A ∶ θπ,1 ∈MA,xi , i = 1,2}
Then repT2A = ⋃x,y repx,yA. Note that not all repx,yA will be nonempty.

The structure of these sets will be based on the relationship between x and y
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in our dynamical system. We shall first deal with the situation where neither

x nor y is a fixed point. The proof will be included as it helps illustrate how

the dynamics of our system get encoded into our algebra.

Proposition 4.7 ([9]). Let A be a topological conjugacy algebra for the

dynamical system (X,ψ). If x, y ∈ X with ψ(x) ≠ x and ψ(y) ≠ y and

π ∈ repx,yA, then y = ψ(x)

Proof. By our hypothesis, θπ,1 = θx,0 and θπ,2 = θy,0. Therefore, for all

g ∈ C0(X), we get that θπ,1(gU) = θπ,2(gU) = 0. As a result π(gU) = [
0 cg
0 0

].

There will be at least one g ∈ C0(X) such that cg ≠ 0. If this was not the

case, then the range of our algebra would be commutative, contradicting the

skew relation. For this g, using the skew relation we get the following:

[0 cg
0 0

] [f(x) t

0 f(y)] = [
f(ψ(x)) t′

0 f(ψ(y))] [
0 cg
0 0

] → f(ψ(x)) = f(y)

□

Next, we shall deal with the case were x is not a fixed point, but y is. To

do this, we need the following definition.

Definition 4.8 ([9]). Let X be a locally compact Hausdorff space, and ψ

a proper continuous map on X and A a topological conjugacy algebra for

(X,ψ). Let x, y ∈ X and assume that ψ(x) ≠ x but ψ(y) = y. A pencil of

nest representations for A is a set Px,y ⊆ repx,yA such that {θπ,2 ∶ π ∈
Px,y} = (MA,y)○

Proposition 4.9 ([9]). Let A be a topological conjugacy algebra for the

dynamical system (X,ψ) and let Px,y be a pencil of representations for A.
Then y = ψ(x)

The proof of the above proposition is identical to the proof of the previous

one. The reason why we need to define a pencil of representations is that if

π were discontinuous, then it is possible to have a situation where π(U) =

[0 0

0 z
] and for a ∈ A, π(a) = [0 1

0 0
]. Such a representation may not exist,

but we cannot assume that it does not either. The purpose of the pencil

definition is to side-step this difficulty by defining a global object. For a

fixed point x, it is not known if repx,xA is non-empty. This will not be an

issue for us however as repx,xA will not play a role in the proof.

Theorem 4.10 ([9]). Let (X,ψ), (Y, τ) be one-variable dynamical systems.

Then they are conjugate if and only if there exists topological conjugacy

algebras of (X,ψ) and (Y, τ) that are isomorphic algebras.
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The full proof of the above above theorem is relatively long, so we will

only highlight the key points.

The forward implication is trivial. If (X,ψ), (Y, τ) are conjugate systems,

take the topological conjugacy algebra generated by the πx maps and the

left shift map V . These algebras will clearly be isomorphic.

Conversely, let A,B be topological conjugacy algebras for (X,ψ), (Y, τ)
which are isomorphic. Let γ be the isomorphism and γc be as before. γc will

biject the maximal analytic disks of A and B. This bijection extends to a

bijection between {MA,x ∶ x ∈X} and {MB,y ∶ y ∈ Y } i.e., there is a bijection

γs ∶ X → Y such that γc(MA,x) = MB,γs(x). By the above γs maps fixed

points to fixed point and satisfies the relation f(γs(x)) = (θx,0 ○ γ−1)(f).
Using nets, one can show that γs is a homeomorphism. To show that γs
implements conjugacy, we have to check three cases:

1. x is a fixed point

2. ψ(x) ≠ x and ψ2(x) ≠ ψ(x)
3. ψ(x) ≠ x, but ψ2(x) = ψ(x)

The first case is trivial as fixed points are mapped to fixed points. Case 2

follows immediately from Proposition 2.9. Finally case 3 follows Proposition

2.11 and the fact that γc preserving maximal analytic disks implies that γr
must preserve pencils of representations.

Corollary 4.11 ([9]). Let (X,ψ), (Y, τ) be one-variable dynamical systems.

Then they are conjugate if and only if C0(X) ×ψ Z+ and C0(Y ) ×τ Z+ are

isomorphic as algebras.

The semicrossed product algebra essentially works by encoding the infor-

mation of the forward orbits into the algebra structure, so in the case of

shift spaces, if we understand the structure of the forward shift of all of our

points, then we should be able to determine conjugacy. However, there are

many redundancies regarding how this information gets encoded, particu-

larly for minimal shift spaces. With a minimal system, we can essentially

determine everything about the system by looking at a single orbit. As a

result, encoding the information of the orbit of every point in the space is

very likely unnecessary.

4.3. Generalization to Multivariable Dynamical Systems. We shall

end this section by briefly touching on multivariable dynamical systems and

two natural generalizations of semi-crossed product algebras to this setting.

Definition 4.12. A multivariable dynamical system (X,ψi), 1 ≤ i ≤ n
is a locally compact Hausdorff space X together with n proper continuous

maps ψi.
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When talking about multivariable dynamical systems, we shall denote

(X,ψi) 1 ≤ i ≤ n simply by (X,ψ). There is a natural extension of conjugacy

from dynamical system to multivariable dynamical systems.

Definition 4.13. Two multivariable dynamical systems (X,ψ), (Y, τ) are

said to be conjugate if there exists a homeomorphism γ of X onto Y and

a permutation α ∈ Sn such that τi ○ γ = γ ○ ψα(i) for all 1 ≤ i ≤ n

For multivariable dynamical systems, we have a second natural extension

of conjugacy that is weaker then conjugacy.

Definition 4.14 ([8]). Two multivariable dynamical systems (X,ψ), (Y, τ)
are said to be piecewise conjugate if there is a homeomorphism γ of X

onto Y and an open cover {Uα ∶ α ∈ Sn} of X such that for each α ∈ Sn,
γ−1 ○ τi ○ γ∣Uα = ψα(i)∣Uα for all 1 ≤ i ≤ n

This second version of conjugacy is weaker in that the permutations de-

pend on the particular open set and in general, more than one permutation

is needed. There are cases where conjugacy and piecewise conjugacy do co-

incide, but this definitely does not hold in general. As an example, consider

the multivariable dynamical systems (Z2, ψi), (Z2, τi), i = 1,2 defined by:

ψ1(1) = 1 ψ1(2) = 2
ψ2(1) = 2 ψ2(2) = 1
τ1(1) = 1 τ1(2) = 1
τ2(1) = 2 τ2(2) = 2

Where Z2 is given the discrete topology. Let our open cover be UId = {1},
Uα = {2}, where Id denotes the identity permutation in S2 and α the swap

permutation in S2. Taking γ to be the identity transformation, we get

γ−1 ○ τ1 ○ γ∣UId
(1) = ψ1∣UId

(1) = 1
γ−1 ○ τ1 ○ γ∣Uα(2) = ψα(1)∣Uα(2) = ψ2∣Uα(2) = 1
γ−1 ○ τ2 ○ γ∣UId

(1) = ψ2∣UId
(1) = 2

γ−1 ○ τ2 ○ γ∣Uα(2) = ψα(2)∣Uα(2) = ψ1∣Uα(2) = 2

Thus, the systems are piecewise conjugate, but they are clearly not conju-

gate. Piecewise conjugacy can in a sense be thought of as a local conjugacy.

In the case of these multivariable systems, [8] looks at two operator alge-

bras. These operator algebras are natural generalizations of the semi-crossed
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product algebra in the one-variable case, as there definitions both coincide

with it for n = 1. These algebras are defined by a universal property. It

is universal in that it is the largest algebra generated by these relations

subject to some reasonable constraints such as a cardinalitity constraint,

a constraint on the norms of the generators, and the constraint that the

algebra is realizable as operators on a Hilbert space. The importance of

these constraints is that they guarantee that the universal algebra is a well-

defined object. A brief introduction to universal operator algebras (more

specifically, universal C∗-algebras) can be found in [3].

Definition 4.15 ([8]). Let (X,ψi) 1 ≤ i ≤ n be a multivariable dynamical

system.

1. The tensor algebra is defined to be the universal operator algebra

A(X,ψ) generated by C0(X) and generators s1, ..., sn satisfying

the covariance relations fsi = si(f○ψi) for f ∈ C0(X) and 1 ≤ i ≤ n
and satisfying the row contractive condition ∣∣[s1 s2 ... sn]∣∣ ≤ 1

2. The semicrossed product algebra is defined to be the universal

algebra C0(X)×ψ F+n generated by C0(X) and generators s1, ..., sn
satisfying ∣∣si∣∣ ≤ 1 for 1 ≤ i ≤ n

It is clear that these algebras coincide with the n = 1 case.

Proposition 4.16 ([8]). Let (X,ψ), (Y, τ) be two multivariable dynamical

systems and let A,B denote either the tensor algebras and semi-crossed prod-

uct algebras of (X,ψ) and (Y, τ) respectively. If A and B are isomorphic as

algebras, then (X,ψ) and (Y, τ) are piecewise conjugate.

The converse has been shown to hold for n = 2,3 and 4 and special types

of systems [8, 30]. For instance, if we assume that X is totally disconnected,

then the converse holds at least for the tensor algebra. It is suspected

by the authors that the converse is true and in the paper, they provide a

technical conjecture about U(n) which if true would imply the converse in

full generality.

5. Strongly Maximal TAF-Algebras

In this section, we shall introduce what are called strongly maximal tri-

angular approximately finite (TAF) algebras. By necessity we shall also

introduce approximately finite (AF) algebras, but these will not be the fo-

cus. Strongly maximal TAF-algebras are more specific in that we can use

them to tell apart conjugacy for a type of dynamical system called a Can-

tor minimal systems, of which infinite minimal shift spaces are an example

of. We shall only focus on infinite minimal shift spaces in this section are

we already addressed how to tell apart periodic and aperiodic substitution
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rules. At the end of this section, we will also show that all minimal shift

spaces defined by a substitution are conjugate to a shift space defined by a

primitive substitution.

5.1. AF-Algebras, TAF-Algebras, and Bratteli Diagrams.

Definition 5.1. Suppose we have a sequence of algebras An, and homomor-

phisms ϕn ∶ An → An+1.
(An, ϕn) is called an algebraic chain system and ϕn are called connecting

homomorphisms.

Definition 5.2 ([4]). An algebra A is said to be a AF-algebra if there

exists a sequence of finite dimensional C∗-algebras {An} and a sequence of

∗-homomorphisms {ϕn} such that A is the closure of the algebraic direct

limit of the chain system (Ai, ϕi)i∈N. i.e. we can write A = ⋃∞i=1Ai.

Finite-dimensional C∗-algebras have a nice characterization which gives

a natural way to associate AF-algebras, and by extension TAF-algebras to

a given substitution.

Theorem 5.3 ([7]). Let A be a finite dimensional C∗-Algebra. Then there

exist positive integers K,N1, ...,NK such that:

A ≅MN1(C)⊕, ...,⊕MNK
(C)

Furthermore, K is uniquely determined, and N1, ...,NK are unique up to

permutation.

Proposition 5.4 ([7]). Let A ≅MN1(C)⊕, ...,⊕MNK
(C), B ≅MN ′1

(C)⊕, ...,⊕MN ′
l
(C)

be finite-dimensional C∗-algebras and let ϕ ∶ A → B be a ∗-homomorphism.

Then ϕ is inner equivalent to the embedding of copies of the full matrix al-

gebras of A into the full matrix algebras of B as block diagonal entries along

with zero matrices when needed. ∗-homomorphisms of this form are said to

be canonical.

Going forward, we will assume that all ∗-homomorphisms are canonical.

A simple example of a canonical ∗-homomorphism would be ϕ(C ⊕M2) →
M2 ⊕M4 given by:

ϕ(C⊕M2) =M2 ⊕
⎡⎢⎢⎢⎢⎢⎣

M2 0 0

0 C 0

0 0 C

⎤⎥⎥⎥⎥⎥⎦
where the 0’s represent zero matrices of appropriate sizes.

Definition 5.5. Let A1 ≅ ⊕n1
i=1Mmi and A2 ≅ ⊕n2

i=1Mm′i
be two finite-

dimensional C∗-algebras and let ϕ be a canonical ∗-homomorphism from
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A1 into A2. We define the transition matrix B to be an n1 × n2 matrix

where the (i, j)-entry denotes the number of copies of Mmi inside of Mm′j
.

Definition 5.6 ([4]). A labelled Bratteli diagram is an infinite directed

graph which satisfies the following properties:

1. . The vertex set V and edge set E can be written as the dis-

joint countable union of nonempty finite sets V = ⋃∞n=0Vn. and

E = ⋃∞n=0En respectively.

2. r(En) ⊆ Vn and s(En) ⊆ Vn−1 were r and s are the range and

source map respectively. Additionally, for all v ∈ V s−1(v) ≠ ∅

3. d, the “labelling” of the Bratteli diagram is a mapping d ∶ V → N
such that d(v) ≥ ∑

r(e)=v

d(s(e)) for all v ∈ V /V0

To every Bratteli diagram, we can associate an AF-algebra and to every

AF-algebra we can associate a Bratteli diagram. IfAn ≅MN1(C)⊕, ...,⊕MNK
(C)

and An+1 ≅MN ′1
(C)⊕, ...,⊕MN ′

l
(C), and ϕn is a ∗-homomorphism, Then we

can build a Bratteli diagram by associating to each MNi and each MN ′j
a

vertex. Then the number of edges betweenMNi andMN ′j
equals the number

of copies of MNi that get embedded inside MNj . As a result, to each level

of the Bratteli diagram, we can associate a transition matrix which is de-

fined in the same way as above. Also note that by convention, it is typically

assumed that A1 = C.
To associate a Bratteli diagram to a symbolic substitution, we can sim-

ply let the transition matrix equal the substitution matrix at each level.

Equivalently, at each level, we can associate to each vertex a letter from our

alphabet. Then the number of edges between the vertex corresponding to

a on level n and b on level n + 1 is equal to the number of copies of a that

occur in b. So long as we are consistent with our labeling, the transition

matrices at each level will equal the substitution matrices

Example 5.7. The Bratteli Diagram associated to the Fibonacci substitu-

tion. Note that its substitution matrix is [1 1

0 1
]
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Note that Bratteli diagrams be convention are often drawn starting at the

top and going down. For the sake of saving space, we will use the convention

of going left to right.

Properties of the substitutions do get encoded into the AF-algebras. More

information about this and further resources can be found in [14]. Despite

this, they are not very useful for dynamical system purposes. As an exam-

ple, AF-algebras do not preserve aperiodicity. This is because many different

substitutions get associated to the same AF-algebra. Namely, every substi-

tution with the same transition matrix as well as many others. For instance

the famous Thue-Morse substitution given by:

a→ ab

b→ ba

and the substitution given by

a→ ab

b→ ab

both have the same substitution matrix. The first substitution is aperiodic

while the second is periodic, as a result the shift systems that they define

are not conjugate.

It is clear that this issues in part comes from the fact that AF-algebras do

not take into account the order of letters as they appear in the substitution

rule. To get around this, we shall introduce a partial order on the edges.

By extending this partial order to the set of infinite paths, we are able to

define a successor map which will turn our Bratteli diagram into a partial

dynamical system.

5.2. Bratteli Diagrams as Partial Dynamical Systems.

Definition 5.8 ([19]). An ordered Bratteli diagram (V,E, r, s, d,≤) is
a Bratteli diagram (V,E, r, s, d) with a partial order on the edges such that

two edges e, e′ are comparable if and only if r(e) = r(e′).

We can extend this to a partial order on the set of all finite paths where two

paths p1 = (ek, ek+1, ..., ek+l), p2 = (e′k, e′k+1, ..., e′k+n) are comparable if and

only if they are between the same levels of vertices and r(ek+n) = r(e′k+n).
In this case, we say that p1 < p2 if and only for some i with k + 1 ≤ i ≤ k +n,
we have

ei < e′i and ej = e′j , i < j ≤ k + n.
To these ordered Bratteli diagrams, we are able to associate what is called

a strongly maximal TAF-algebra, which is a subalgebra of the AF-algebra.
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Definition 5.9 ([29]). Let A be an AF-algebra. A subalgebra T of A is

said to be a TAF algebra if T ∩ T ∗ = D were D is a maximal abelian self-

adjoint subalgebra of A. T is said to be a maximal TAF algebra if it is

the only AF subalgebra containing T . T is said to be strongly maximal if

a sequence An can be chosen such that A =
∞

⋃
n=1
An and T ∩ An is maximal

triangular in every An.

Proposition 5.10 ([29]). Let T be a strongly maximal TAF subalgebra of

A =
∞

⋃
n=1
An such that T ∩An is maximal in every An. Then T ∩An ≅ ⊕m

k=1 Tnk

were ⊕m
k=1 Tnk

is a block upper triangular algebra and n1 + n2 + ...nm = n

This characterization of strongly maximal TAF-algebras allows us to as-

sign to it an ordered Bratteli diagram where the order of the number of

edges between levels is based on the number of copies of Tni that get em-

bedded into Tmj and the order on the edges is determined by the order

of the embeddings of Tn1 , ...Tnk
into Tmi . For example, if we had an em-

bedding of T2n⊕T2n into T2n+1⊕T2n+1 defined by a⊕ b → (a⊕ b)⊕(a⊕ b)
where a, b ∈ T2n , then the ordered Bratteli diagram that corresponds to this

embedding would be:

Naively, we can associate an ordered Bratteli diagram to a substitution

by letting the order of the edges correspond to the order of the letters as

they appear in the substitution. For instance, if we had the substitution

given by

a→ ab

b→ ab

Then this would correspond to the above ordered Bratteli diagram.

Note that in the above diagram, we are assuming that the edge labeled

one is greater than the edge labeled two and so on. This is done to emphasize

the lexicographic order. This type of association does not actually preserve

conjugacy however except for in special circumstances. To show why this is

the case we first need to turn the path space of the ordered Bratteli diagram

into a partial dynamical system and then explain how this partial dynamical

system corresponds to the TAF-algebra.



36

Definition 5.11 ([19]). Let B be an ordered Bratteli diagram and let XB =
{(e1, e2, ...) ∶ ei ∈ E, r(ei) = ei+1} be the set of all infinite paths. Let (e1, e2, ..., ek)
be a finite path in our Bratteli diagram. The cylinder set of (e1, e2, ..., ek)
is defined to be U(e1, e2, ..., ek) = {(f1, f2, ...) ∶ fi ∈ E, r(fi) = fi+1, ei = fi∀1 ≤
i ≤ k}

The cylinder sets define a topological basis on the set of all infinite paths

and so long as XB is infinite, it is easy to see that this turns the set of all

infinite paths into a Cantor set.

Definition 5.12 ([19]). Let e = (e1, e2, ...) be an infinite path in an ordered

Bratteli diagram B. Let e(n) = en. The set of all infinite maximal paths

Xmax is defined to be the set of paths e such that e(n) is a maximal edge for

all n. The set of all minimal paths Xmin is defined similarly.

The set of maximal and minimal paths are always non-empty, but they

may not necessarily be disjoint.

Definition 5.13. Let (V,E, r, s, d) be a labeled Bratteli diagram and let m0 <
m1 < ... be an increasing sequence non-negative integers. The telescoping

(or contraction) of (V,E, r, s, d) with respect to mn is the labeled Bratteli

diagram (V ′,E′, r′, s′, d′) where V ′n = Vmn ,E
′
n = Emn−1+1 ○Emn−1+2 ○ ...○Emn,

d′ is the restriction of d to V ′. r′ and s′ are the extensions of r and s

restricted to the paths E′n.

Microscoping is the inverse of telescoping.

When (V,E, r, s, d) gets telescoped into (V ′,E′, r′, s′, d′), the incidence

matrices of (V ′,E′, r′, s′, d′) will correspond to the matrices of (V,E, r, s, d)
multiplied together. i.e., if A1,A2 were the incidence matrices of the first

two levels of (V,E, r, s, d), the incidence matrix (V ′,E′, r′, s′, d′) where the

first two levels are telescoped together would be A1A2 (or A2A1 we adopted

the convention of going top down).

Definition 5.14 ([11]). An ordered Bratteli diagram V is said to be simple

if there exists a telescoping V ′ of V such that the incidence matrices at each

level consist of strictly nonzero entries. V is said to be properly ordered if it

additionally has a unique minimal and maximal path.

It is easy to see that simple ordered Bratteli diagrams have disjoint min-

imal and maximal paths. Additionally, it is easy to see that a substitution

is primitive if and only if its associated ordered Bratteli diagram is simple.

Definition 5.15 (Successor (Vershik) map). Let (V,E ≤) be a properly

ordered Bratteli diagram. Define the following homeomorphism T on X:

Let T (xmax) = xmin. Let x = (e1, e2, ...) ∈ X not equal to xmax. Then
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T (x) = (f1, f2, ..., fk, ek+1, ...) were ek is the first non-maximal edge, fk is

the successor of ek and (f1, ..., fk−1) is the minimal path from v0 to s(fk).

The successor map was introduced by Vershik in [32], but the terminology

is different. Markov Partitions are Bratteli diagrams and adic transforma-

tions are the dynamics on those diagrams.

Properly ordered Bratteli diagrams are an example of Cantor minimal sys-

tems. In [19], it was shown that all Cantor minimal systems are conjugate to

a properly ordered Bratteli diagram. Since our aperiodic primitive substi-

tutions are examples of Cantor minimal systems, there will always exist an

ordered Bratteli diagram that it is conjugate to. This does not imply that

the hull associated to our substitution is conjugate to the ordered Bratteli

diagram associated to our substitution in the way that we did it above.

The successor map can be extended to non-properly ordered Bratteli di-

agrams by restricting the domain to no include the maximal paths and the

range to not include the minimal path. In the first case, this turns our path

space into a dynamical system and in the second a partial dynamical sys-

tem. The relationship between ordered Bratteli diagrams, partial dynamical

systems and TAF-algebras is summarized in the following theorem.

Proposition 5.16 ([28]). Let T1,T2 be two strongly maximal TAF-algebras

and let B1,B2 be ordered Bratteli diagrams that correspond to T1,T2 respec-

tively. Then the following are equivalent:

1. T1 is isometrically isomorphic to T2.
2. B1 is telescope equivalent to B2.

3. The partial dynamical system defined on the path space of B1 is

conjugate to the partial dynamical system defined on the path space

of B2.

From this characterization, we can introduce a simple invariant which

allows us to construct a counterexample.

Proposition 5.17. Let (V,E,≤) be an ordered stationary Bratteli diagram.

Let (V ′,E′,≤′) be a telescoping of (V,E,≤). Then (V,E,≤) and (V ′,E′,≤′)
have the same number of maximal and minimal infinite paths.

Proof. Let 0 < n1 < n2 < ... define the telescoping of (V ′,E′,≤′) Define the bi-

jection F ∶X(V,E) →X(V ′,E′) by F ∶ (e1, e2, ...) = ((e1, ..., en1), (en1+1, ..., en2), ...).
Clearly if (e1, e2, ...) is maximal or minimal, then so is ((e1, ..., en1), (en1+1, ..., en2), ...).
Conversely, if ((e1, ..., en1), (en1+1, ..., en2),...) is maximal or minimal then

each finite path (eni , eni+1, ...eni+1) must also be maximal or minimal, which

implies that (e1, e2, ...) is also maximal or minimal. □
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For our counter-example, consider the following substitutions:

σ1 ∶ a→ ab

σ1 ∶ b→ a

σ2 ∶ a→ ba

σ2 ∶ b→ a

These substitutions define the same hull. This follows from the following

proposition.

Proposition 5.18 ([1]). Let σ be a primitive substitution over an alphabet

{a1, ..., an} = A and let u ∈ A∗ be a finite word. Define σu as σu(ai) =
u−1σ(ai)u,1 ≤ i ≤ n, where u−1 is the formal inverse of u. If σu defines a

non-negative substitution, then σu is primitive and σ and σu define the same

hull.

Taking u = a, we can see that σ1, σ2 define the same hull and therefore

define conjugate systems. They do not have the same TAF-algebras however

and the number of maximal and minimal paths differ. Note that the maximal

paths are coloured red while the minimal paths are coloured green.

We can still use TAF-algebras to determine conjugacy. Using what are

called Kakutani-Rohlin partitions, to any Cantor minimal system we can

associate a conjugate ordered Bratteli diagram, so in principle, we can use

TAF-algebras to determine conjugacy of our shift space. More details about

these partitions can be found in [19, 28]. For our system defined by primitive

substitutions, we will use a different method for associating ordered Bratteli

diagrams. The advantage of this method is that it provides a simple way for

determining what is called the dimension group associated to our dynamical
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system. The dimension group of a dynamical system is a conjugacy invari-

ant. More details about this can be found in [11]. To do this, we shall now

introduce what are called proper substitutions.

5.3. Proper Substitutions and Properly Ordered Bratteli Diagrams.

Definition 5.19 ([11]). A substitution σ on an alphabet A is said to be

proper if there exists an integer p > 0 and letters r, l ∈ A such that for every

a ∈ A, r is the first letter of σp(a) and l is the last letter of σp(a).

The motivation for this definition comes from the following proposition.

Proposition 5.20 ([11]). A primitive substitution is proper if and only if

its associated ordered Bratteli diagram is properly ordered.

In the case of our properly ordered primitive substitutions our “naive”

association ends being able to determine conjugacy between proper primitive

substitutions.

Proposition 5.21 ([11]). Let σ be a proper primitive substitution and let

V be the associated ordered Bratteli diagram. If σ is aperiodic, its hull is

conjugate to the path space of the ordered Bratteli diagram

With the following proposition, we can extend this to all primitive sub-

stitutions.

Theorem 5.22 ([11]). Let σ be any primitive aperiodic substitution. Then

there exists a primitive proper aperiodic substitution τ such that they define

conjugate shift spaces.

The full proof of the above theorem while not overly challenging is long

and requires a lot of set up, so we shall only give an outline here. For

the reader interested in symbolic dynamics, reading through the full proof

and its setup will be of interest since it uses ideas important to the unique

decomposition of sequences in shift spaces. For this we need the following

definition.

Definition 5.23 ([11]). A word w of the alphabet A is said to be a return

word of u.v in x if there exists two consecutive occurrences j, k of u.v in x

such that w = x[j,k)
For any primitive substitution σ, there are only a finite number of return

words inside the hull. This follows from the linear recurrence of elements

inside the hull. Denote the set of return words for u.v as Ru.v. Let Ru.v =
{1, ..., card(Ru.v)}. Order these return words based on there first occurrence

inside x[0,∞) where x ∈ X(σ). Then we define ϕu.v ∶ Ru.v → Ru.v where

ϕu.v(i) equals the i’th return word. All elements of AZ can be uniquely
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decomposed into elements of Ru.v. This allows us to extend ϕu.v into a

bijective mapping from RZ
u.v into AZ. This leads to the following definition:

Definition 5.24 ([11]). Let x ∈ AZ. The u.v derivative of x, denoted

Du.v(x) is the unique sequence in Ru.v such that ϕu.v(Du.v(x)) = x

Finally, we defined our desired map τ as follows. For any return word

w ∈ Ru.v, there exists a unique word u ∈ R+u.v and a unique j ∈ Ru.v such

that σ(w) = ϕu.v(u) and ϕu.v = u. Therefore, we define τ as τ(j) = w. This

map is proper, primitive and aperiodic and defines a conjugate shift space.

While the focus of this section has been on primitive substitutions, due to

all Cantor minimal systems being conjugate to ordered Bratteli diagrams,

TAF-algebras can be used for any substitution that defines an infinite mini-

mal shift space. This leads to the obvious question of given a non-primitive

substitution that defines a minimal infinite shift space, does there exist a

primitive substitution such that the shift spaces that they define are con-

jugate? The answer to this question is yes. Moreover, we can explicitly

construct said substitution.

5.4. Non-Primitive Substitutions Associated to Minimal Shift Spaces.

We shall start of by introducing tame and wild substitutions. Substitutions

that define an infinite minimal shift space will end up being tame. This

tameness property will end up allowing us to define a primitive substitution

which will be conjugate to our original substitution.

Definition 5.25 ([23]). Let σ ∶ A → A∗. A word u ∈ A∗ is said to be

bounded with respect to σ if there exists M ∈ N such that ∣σn(u)∣ ≤ M for

all n ∈ N and expanding if it is not bounded. The set of all bounded letters

of σ is denoted AB and the set of expanding letters is denoted A∞.

Definition 5.26 ([23]). Let σ be a substitution and B the set of bounded

legal words for σ. If B is finite, we say that σ is tame. If B is infinite, we

say that σ is wild.

Note that tameness cannot be seen by looking at the shift space. For

instance the substitution given by:

a→ ab

b→ b
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and

a→ abb

b→ bbb

Both define the same subshift, namely the subshift containing only ...bbb.bbb....

The first substitution is wild while the second one is tame.

Definition 5.27 ([23]). Let Aright ⊆ A∞ denote the set of all expanding

letters such that for every a ∈ Aright, the rightmost letter of σ(a) is a bounded

letter. Define Aleft similarly.

As an example, if we had the substitution on the three letter alphabet

{a, b, c}:
σ(a) = cab
σ(b) = b
σ(c) = a

Then a ∈ Aright but not b or c
Definition 5.28 ([23]). Suppose there exists a letter a ∈ Aright and an

increasing sequence of integers Ni such that the rightmost expanding letter

appearing in σNi(a) is also in Aright for all i ≥ 1 or else there exists a letter

a ∈ Aleft and an increasing sequence of integers Ni such that the leftmost

expanding letter appearing in σNi(a) is also in Aleft for all i ≥ 1. Then we

say that σ has property (∗).
Lemma 5.29 ([23]). Let σ be a substitution on A with property (∗). Then

X(σ) contains a periodic sequence, the letters of which are bounded.

Proof. The proof will be for the case of Aright, but Aleft will follow similarly.

Let a ∈ Aright be a letter such that there exists a sequence of integers {Ni}i∈N
such that the rightmost expanding letter of σNi(a) is in Aright. Without

loss of generality, we can assume that there exists N ∈ N such that rightmost

expanding letter is also a. We can do this by noting that the right most

expanding letters of σNk(a) must also have the same property as a by taking

the shifted sequence Mi = Ni−k. Then we can write σN(a) = vau, where u is

a bounded word. Then by induction we can write:

σ(k+1)N(a) = σkN(v)...σN(V )vauσN(u)...σkN(u)
Since u is a bounded word, there existsK such that ∣σ(K+1)N(u)∣ = ∣σKN(u)∣.
Since there are only finitely many words of this length, by potentially re-

placing σ with an appropriate power, we can choose K so that σ(K+1)N(u) =
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σKN(u). Thus for all j ≥K, (σKN(u))j , where (σKN(u))j denotes (σKN(u))
concatenated to itself j times, appears as a subword of σn(a) for a large

enough n. Thus, the infinite periodic word ...σKN(u)σKN(u)σKN(u)... ap-
pears inside X(σ). □

Taking our above example and iterating σ on a, we see that ...bbb.bbb... ∈
X(σ)

a→ cab→ acabb→ cabacabbb→
acabbcabacabbbb→ cabacabbbacabbcabbcabacabbbbb→ ⋯

This lemma allows us characterize wild substitutions in terms of this (∗)
property.

Theorem 5.30 ([23]). Let σ be a substitution on an alphabet A. Then σ is

wild if and only if it has property (∗)

From this theorem, it is immediate that substitutions which define ape-

riodic shift spaces are tame. The following lemma on tame substitutions is

the last result that we shall need before we begin defining our primitive sub-

stitution. This lemma follows immediately from the definition of tameness.

Lemma 5.31 ([23]). Let σ be a tame substitution on A. If X(σ) is nonempty,

then it contains a bi-infinite sequence w ∈ X(w) with the property that there

exists M ∈ N such that every subword u of w of length greater than M

contains an expanding letter. In particular, w contains infinitely many ex-

panding letters.

We shall now define our substitution. To this end, let σ be a non-periodic

substitution such that X(σ) is minimal. Then σ is tame. By minimality and

tameness, there exists b ∈ A∞, w ∈ X(σ) and N ∈ N such that σN(w) = w
such that σN(b) will be a subword of w. By linear recurrence, for sufficiently

large N , and for any legal word u, there will exist ku ∈ N such that σN(b)
contains u and two copies of b. Define the return words of b as B ∶= {bu ∶ u
does not contain b and bub is legal}. Note that this definition coincides with

the definition given before. The return words are finite therefore we can

enumerate B/{b} = {v1, ..., vk}. where we denote v0 = b if b ∈ B. Using this,

we can decompose σN(b) as:

uv01...v0r0

Since we assumed that σN(b) contains at least two b’s, r0 ≥ 2. Since σN(b),
then for all j < r, v0jb is also legal, thus v0j ∈ B.
Then for all i ≥ 1, we can now write:

σN(vi) = σN(b)wivi1...viri , where wi does not contain b, vij is of the form

bv, where v does not contain b and ri ≥ 0. Similar to before, if ri > 0, then
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for j < r, vij ∈ B. While viri may not appear in B, it will be the case that

viriu ∈ B for i > 0. This follows from the fact that σN(vib) is a legal word

containing viriub. For the case of i = 0, by the form of σN(vi) shown above,

it follows that v0r0wi ∈ B if i > 0 and v0r0wiu ∈ B if i = 0. By denoting

viriu = v′iri for all i and v0r0wiu = w′i for i > 0, we can now define a new

substitution which will be primitive and define a hull conjugate to X(σ)

Definition 5.32 ([23]). Let C be an alphabet such that it is disjoint from A
and B and such that ∣C∣ = ∣B∣. Let α ∶ B → C be any bijection between B and

C. Denote the image of v ∈ B and ṽ. Then the substitution ψ ∶ C → C∗ is

defined by:

ψ(ṽ0) = ṽ01... ˜v0r0−1
˜v′0r0

if b ∈ B and

ψ((̃vi)) = ṽ01... ˜v0r0−1w̃i
′ṽi1... ˜viri−1

˜v′iri
if ri > 0 or

ψ(ṽi) = ṽ01... ˜v0r0−1w̃i
′

if ri = 0 for all i > 0

Proposition 5.33 ([23]). The substitution defined above is primitive.

Proof. For any v ∈ B, we can find nv ∈ N such that vb is a subword of

σnvN(b). Therefore choose l = maxv∈Bnv . Because all words of the form

vb where v ∈ B can be found in σlN(b) and because these words can only

overlap at most there first or last letters, all elements of B are subwords

of σlN(b) where no two share any common indices. Additionally, since for

all w ∈ B, σ(w) starts with uv01 where b is a subword of v01, σ
(l+1)N(w)

contains all v ∈ B, thus for all w ∈ B since ψ(w̃) starts with ṽ01, ψ
l+1 will

contain ṽ for all v ∈ B, therefore ψ is primitive. □

Theorem 5.34 ([23]). Let ϕ be a minimal substitution with non-empty min-

imal shift space X(ϕ). Then there exists an alphabet Z and a primitive

substitution σ on Z such that that X(σ) and X(ϕ) are conjugate.

This theorem relies on the following definition and proposition.

Definition 5.35 ([10]). A bi-infinite word w over an alphabet A is called

substitutive if there exists a substitution ψ on an alphabet B and a map

ϕ ∶ B → A such that ϕ(v) = w where v is a fixed point of ϕ. If ψ is primitive,

then w is called substitutive primitive.

Proposition 5.36 ([10]). Let ψ be a primitive substitution over an alphabet

C and let Xψ denote on of its fixed points (if no such fixed point exists,

pass to a appropriate power). Let g ∶ C → A+ be a map. Then g(Xψ) is

substitutive primitive.
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Proof. Let Z ∶= {(ṽ, k) ∶ Ṽ ∈ C,1 ≤ k ≤ ∣g(ṽ)∣} and define σ ∶ C → Z+ by

σ(ṽ) = (ṽ,1)...(ṽ, ∣g(ṽ)∣) Since ψ is primitive, we can assume without loss of

generality that ∣ψ(ṽ)∣ ≥ ∣g(ṽ)∣ Define θ ∶ Z → Z+ by:

θ((ṽ, k)) = σ(ψ(ṽ)[k,k])
for k < ∣g(ṽ)∣ and θ((ṽ, k)) = σ(ψ(ṽ)[∣g(a)∣,∣ψ(a)∣) for k = ∣g(a)∣ Then we get

for all ṽ ∈ C we get:

θ(σ(ṽ)) = σ(ψ(ṽ))
Therefore if w is a fixed point of ψ, σ(w) will be a fixed point of θ. Since

θnσ = σψn, the primitivity of ψ implies the primitivity of θ. Finally define:

h ∶ Z → A by h(g(ṽ)[k,k]) = (ṽ, k). Then h(σ(w)) = g(w) □

Corollary 5.37 ([23]). Let ψ ∶ C → C∗ be a primitive substitution and let

g be a map from C to A∗. Let Xg ⊂ AZ be defined as Xg ∶= {SnA(g(x)) ∶
x ∈ Xψ, n ∈ Z}. Then there exists a an alphabet Z, a primitive substitution

θ ∶ Z → Z+ and a map h ∶ Z → A such that h(Xθ) =Xg

Proof. Let ψ be defined as above and define g ∶ C → A+ to be g(ṽi) = vi
where vi ∈ A+. Then as all elements of Xϕ can be uniquely decomposed into

it return words, by the construction of ψ, it is easy to see that Xg = Xψ.

By our above proposition there exists a primitive substitution θ and a map

h such that h(σ(ṽ)) = g(ṽ). h is easily checked to be a factor map between

Xθ and Xϕ. More over, it is a conjugacy map. Elements of Z are the set

of all pairs (ṽ, k) where v ∈ B and 1 ≤ k ≤ ∣v∣. Every sequence in Xψ can be

uniquely represented as return words from B. The we define p ∶Xϕ → ZZ as

follows:

Let w ∈ Xϕ. If wj falls at position k in the return word vi, then p(w)j =
(ṽi, k). This is a sliding block code with block size maxv∈B∣v∣ and is the

inverse of h. Since h is an invertible factor map whose inverse is also a

factor map, it is a conjugacy. □

5.5. Conclusions. To summarize, we defined topological dynamical sys-

tems and shift dynamical systems. We then defined shift dynamical systems

associated to symbolic substitutions and then characterized the shift spaces

of primitive substitutions. Moving on to operator algebras, we saw how to

any topological dynamical system we can associate a semi-crossed product

algebra which was a complete conjugacy invariant. We then defined TAF-

algebras and showed that they were a complete conjugacy invariant for the

shift spaces defined by primitive substitutions and showed that all primitive

substitutions define shift spaces conjugate to proper primitive substitutions

in the process. Finally, we extended this result to all minimal shift spaces

defined by substitutions that are conjugate to the shift space of a primitive

substitution.
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