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Model based clustering of functional data via

mixtures of t distributions

Abstract

We propose a procedure, called T-funHDDC, for clustering multivariate
functional data with outliers which extends the functional high dimen-
sional data clustering (funHDDC) method (Schmutz et al, 2020) by
considering a mixture of multivariate t distributions. We define a family
of latent mixture models following the approach used for the parsi-
monious models considered in funHDDC and also constraining or not
the degrees of freedom of the multivariate t distributions to be equal
across the mixture components. The parameters of these models are esti-
mated using an expectation maximization (EM) algorithm. In addition
to proposing the T-funHDDC method, we add a family of parsimonious
models to C-funHDDC, which is an alternative method for clustering
multivariate functional data with outliers based on a mixture of contam-
inated normal distributions (Amovin-Assagba et al, 2022). We compare
T-funHDDC, C-funHDDC, and other existing methods on simulated
functional data with outliers and for real-world data. T-funHDDC out-
performs funHDDC when applied to functional data with outliers, and its
good performance makes it an alternative to C-funHDDC. We also apply
the T-funHDDC method to the analysis of traffic flow in Edmonton,
Canada.

MSC Classification: 62H30 , 68T10 , 62F35

1 Introduction

Recently, with the rise of the internet of things (IoT), we use significantly
more sensors and have access to frequently recorded functional data (Ramsay
and Silverman, 2006). For example, in Section 4.4 we present an application
regarding analyzing traffic data and finding trends in traffic flow related to
speed differences and weather conditions (see Fig. 1).

In Fig. 1 we plot three observations from this four-dimensional functional
data set. The data in the first two dimensions represent the number of cars
having a speed 5-10 km/h under the speed limit (see Fig. 1 a), and the number
of cars having a speed 0-5 km/h over the speed limit (see Fig. 1 b). They were
recorded when the cars passed through a road section in Edmonton, Canada on
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2 Model-based clustering of functional data via mixtures of t distributions

August 14, 15, and 20, 2018 for the green, red, and black curves respectively.
Weather conditions for these different dates are illustrated by temperature (see
Fig. 1 c) and visibility (see Fig. 1 d), and they are included in the third and
the fourth dimensions.

The city of Edmonton collects a huge amount of traffic data that inevitably
includes atypical observations (outliers) due to holidays, various events, and
extreme weather conditions. To analyze these data, it is useful to separate the
observations into groups, but to account for contamination with outliers we
need to apply robust methods. Here we propose a model-based method for
clustering functional data with outliers. We relax the normality assumption
and consider mixtures of t distributions.
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Fig. 1 Traffic data from Edmonton recorded on August 14 (green -.- lines), 15 (red - -
lines) and 20 (black - lines), 2018. a. Number of cars having a speed 5-10 km/h under the
speed limit b. Number of cars having a speed 0-5 km/h over the speed limit c. Temperature
(Celsius) by hour. d. Visibility (km) by hour.

Several methods for clustering functional data have been proposed (see
Jacques and Preda (2014a) for a survey). Model-based methods are not directly
available for functional data because functional data live in an infinite dimen-
sional space and the notion of probability density function generally does not
exist for these data (Delaigle and Hall, 2010). There are many model-based
methods for clustering multivariate data (see, for example, McLachlan and
Peel, 2004, Celeux and Govaert, 1995, Bouveyron et al, 2007, Punzo and McNi-
cholas, 2016, Punzo et al, 2020, Farcomeni and Punzo, 2020, Andrews and
McNicholas, 2011, Andrews and McNicholas, 2012, Dang et al, 2015, Peel and
McLachlan, 2000, Tomarchio et al, 2022, Bagnato et al, 2017), and a first
approach, called the raw-data clustering (Jacques and Preda, 2014a), consists
of directly applying multivariate clustering techniques to the finite discretiza-
tions of the functions. A second approach is to use a two-step method and
first do a decomposition of the functional data in a basis of functions (such
as Fourier basis, B-splines, etc.), and then directly apply multivariate clus-
tering methods to the basis coefficients. A third approach, which allows the
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interaction between the discretization and the clustering steps, is based on a
probabilistic model for the basis coefficients (Bouveyron and Jacques, 2011,
Jacques and Preda, 2013, Schmutz et al, 2020,Amovin-Assagba et al, 2022).
We use this approach, and we propose a robust model-based method, called
T-funHDDC, which extends the functional high dimensional data clustering
(funHDDC) (Bouveyron and Jacques, 2011, Schmutz et al, 2020) to clustering
functional data with outliers.

In Chapter 2 in Ritter (2014) outliers are separated into two types. The
first type of outliers, called mild outliers, are usually sampled from a popula-
tion different from the assumed model, so we need to choose a model flexible
enough to accommodate them. The second type of outliers, called gross out-
liers, are unpredictable and incalculable observations that cannot be modeled
by a distribution, so it is recommended to suppress gross outliers by trimming
them. The methods presented in this paper are designed for dealing with mild
outliers.

Outlier detection for functional data is studied in several papers based on
functional depths, which measure the centrality of a given curve within a group
of trajectories. Depth measures were originally introduced in multivariate data
analysis to provide a way to order points in the Euclidean space from center
to outward, such that points near the center should have higher depth and
points far from the center should have lower depth. Functional outliers are
curves that are expected to be far away from the center of the data, so they
will correspond to curves of significantly low depth. The first functional data
depth was introduced in Fraiman and Muniz (2001). The performance of five
notions of data depth is analyzed in Cuevas et al (2007). In Febrero-Bande
et al (2008) a procedure is proposed to detect functional outliers that avoids
masking. Masking appears when true outliers mask the presence of others, so
if a set of outliers is masked in one iteration, they may be found in a later
iteration after removing detected outliers.

In addition to the methods based on functional depths, several robust
methods based on trimming an a priori known proportion of outliers were
also proposed. The trimmed k-means method (Cuesta-Albertos et al, 1997)
is extended to functional data in Garćıa-Escudero and Gordaliza (2005). In
Rivera-Garćıa et al (2019) a robust model-based functional clustering method
is proposed. This approach is based on the ideas in Delaigle and Hall (2010)
and Jacques and Preda (2013) for an approximation of the “density” for func-
tional data, together with the simultaneous use of trimming and constraints.
Our approach does not involve trimming the outliers and it is inspired by
the method teigen (Andrews and McNicholas, 2012, Andrews et al, 2018) for
clustering multivariate data with outliers.

The method C-funHDDC was proposed in Amovin-Assagba et al (2022)
(see also Anton and Smith (2023) for the univariate case) and it is an extension
of the method CNmixt (Punzo and McNicholas, 2016, Punzo et al, 2018) to the
functional setting. Multivariate functional data are modeled into a functional
subspace using multivariate functional principal component analysis (Jacques
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and Preda, 2013) and a model for the basis coefficients based on a mixture of
contaminated multivariate normal distributions. A multivariate contaminated
normal distribution (Punzo and McNicholas, 2016) is a two-component normal
mixture in which the abnormal observations (outliers) are represented by a
component with a small prior probability and an inflated covariance matrix.
Here we extend the method C-funHDDC to include five more parsimonious
models.

We also propose the new robust model-based method T-funHDDC. We
follow the approach used by the model-based clustering procedure funHDDC
proposed in Bouveyron and Jacques (2011), and extended to multivariate
functional data in Schmutz et al (2020). To fit the outliers well, instead of
multivariate normal distributions we consider within-cluster multivariate t dis-
tributions that have heavier tails. This method allows us to consider model
selection criteria for finding the number of clusters, and it does not include
trimming, so we do not need to know a priori the proportion of outliers.

The paper is organized as follows. In the next section we introduce notation
and mixture models for the T-funHDDC method. In Section 3 we present
parameters estimation, proposed criteria for selecting the number of clusters,
and computational details. Comparisons between C-funHDDC, T-funHDDC,
and other existing methods on simulated and real data sets are presented in
Section 4. In Section 5 we include a discussion and final conclusions.

2 Multivariate functional data

We assume that the n p-variate curves {X1, . . . ,Xn} are independent
realizations of a L2- continuous stochastic process Y = {Y (t)}t∈[0,T ] =
{(Y 1(t), . . . , Y p(t))}t∈[0,T ] for which the sample paths (i.e. the curves Xi =
(X1

i , . . . , X
p
i ) ) are such that Xs

i ∈ L2[0, T ] = {f : [0, T ] → R,
∫

[0,T ]
f2(t)dt <

∞}, i = 1, . . . , n, s = 1, . . . , p (Jacques and Preda, 2014b). For each curve Xi

we have access to a finite set of values xsi (ti1) . . . , xsi (timi), where 0 ≤ ti1 <
ti2 < · · · < timi ≤ T , s = 1, . . . , p, i = 1, . . . , n. To reconstruct the functional
form of the data we assume that the curves belong to a finite dimensional
space, and we have:

Xs
i (t) =

Rs∑
r=1

csirξ
s
r(t) (1)

where {ξsr}1≤r≤Rs is the basis for the sth component of the multivariate curves,
csir are the coefficients, and Rs is the number of basis functions. Gathering the
coefficients and the basis functions we rewrite (1) as

X(t) = Cξ>(t), X(t) = (X1(t), . . . ,Xn(t))>, (2)
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with

C =

c
1
11 . . . c11R1

c211 . . . c21R2
. . . cp11 . . . cp1Rp

...
. . .

...
...

. . .
... . . .

...
. . .

...
c1n1 . . . c

1
nR1

c2n1 . . . c
2
nR2

. . . cpn1 . . . c
p
nRp

 ,

ξ(t) =


ξ1
1(t) . . . ξ1

R1
0 . . . 0 . . . 0 . . . 0

0 . . . 0 ξ2
1(t) . . . ξ2

R2
(t) . . . 0 . . . 0

...
. . .

...
...

. . .
... . . .

...
. . .

...
0 . . . 0 0 . . . 0 . . . ξp1(t) . . . ξpRp(t)

 .

Supposing that the curves are observed with noise, we use least square smooth-
ing to get the expansion for each curve (Ramsay and Silverman, 2006). The
choice and the number of the basis functions depends on the data. Fourier bases
are usually used for data with a repetitive pattern and B-splines functions for
smooth curves (Schmutz et al, 2020).

The notion of probability density function does not generally exist for
functional data (Delaigle and Hall, 2010), but it can be approximated with
the probability density of the functional principal components (FPCA) scores
(Ramsay and Silverman, 2006). Using (2) the FPCA scores can be obtained
directly from a PCA of the coefficients C with a metric based on the inner
products between the basis functions.

2.1 The functional latent mixture models

We want to cluster the n observed curves {x1, . . . ,xn} in K homogeneous
groups. We suppose that there exists a latent variable Zi = (Zi1, . . . , ZiK)>,
associated to each observation xi, where Zik = 1 if the observation xi belongs
to the cluster k and Zik = 0 otherwise.

We assume that for every k ∈ {1, . . . ,K} the stochastic process associ-
ated with the kth cluster can be described in a lower dimensional subspace
Ek[0, T ] ⊂ L2[0, T ] with dimension dk ≤ R =

∑p
s=1Rs and spanned by the

first dk elements of a group specific basis of functions {ζkr, r = 1, . . . , R} that
can be obtained from {ξsr , s = 1, . . . , p, r = 1, . . . , R} by a linear transforma-
tion using a multivariate functional principal component analysis (MFPCA)
such that we have

ζkr(t) =

R∑
l=1

qkrlξl(t), r = 1, . . . , R,

where Qk = (qkrl)r,l=1,...,R is the orthogonal R × R matrix containing the
coefficients of the eigenfunctions expressed in the initial basis ξ. We suppose
that the first dk eigenfunctions contain the main information of the MFPCA
of cluster k and we split Qk = [Uk,Vk] such that Uk is of size R× dk, Vk is of
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size R× (R− dk) and we have

Q>kQk = IR, U>k Uk = Idk , V >k Vk = IR−dk , U>k Vk = 0.

The relationship between the coefficients ci in the ith row of the matrix C
and the score δi is

ci = W−1/2Ukδi + εi, W =

∫ T

0

ξ(t)>ξ(t)dt,

where W is the symmetric block-diagonal R × R matrix of inner products
between the basis functions and εi is the noise. We can make distribu-
tion assumptions on the scores δi (Delaigle and Hall, 2010), such that the
coefficients ci, i = 1, . . . , n arise from a parametric mixture distribution

p(ci; θ) =

K∑
k=1

πkfk(ci; θk),

K∑
k=1

πk = 1, (3)

where πk ∈ [0, 1] are the mixing proportions, θ =
⋃k
k=1(θk ∪ {πk}) is the set

formed with the parameters, and fk(ci; θk) are the component densities.
For the model associated with the funHDDC method (Schmutz et al, 2020),

we assume that independently for i = 1, . . . , n

εi | Zik = 1 ∼ N(0,Λk), and δi | Zik = 1 ∼ N(mk,∆k).

Thus p(ci; θ) is the density of a mixture of Gaussian distributions with
fk(ci; θk) = φ(ci; µk,Σk), the density for the R−variate normal distribution
N(µk,Σk)

φ(ci; µk,Σk) = (2π)−R/2 | Σk |−1/2 exp

(
−1

2
(ci − µk)>Σ−1

k (ci − µk)

)
.

(4)
Here | Σk | denotes the determinant of Σk, and

µk = W−1/2Ukmk, Σk = W−1/2Uk∆kU
>
k W

−1/2 + Λk, (5)

where the noise covariance Λk is such that the covariance Dk of the data in
the space generated by the eigenfunctions ζkr is a diagonal matrix given by

Dk = Q>kW
1/2ΣkW

1/2Qk = diag(ak1, . . . , akdk , bk, . . . , bk), (6)

with ak1 > ak2 > · · · > akdk > bk.
For C-funHDDC (Amovin-Assagba et al, 2022) we consider also a latent

variable Υi = (Υi1, . . . ,ΥiK) ∈ {0, 1}K where Υik = 0 if the observation xi in
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cluster k is an outlier and Υik = 1 if the observation xi in cluster k is not an
outlier. We assume that (Amovin-Assagba et al, 2022)

εi | Zik = 1 ∼ N(0,Λk),

δi | Zik = 1, vik = 1 ∼ N(mk,∆k),

δi | Zik = 1, vik = 0 ∼ N(mk, ηk∆k),

with ηk > 1 an inflation parameter measuring the increase in variability due
to outliers. Consequently

ci | zik = 1, vik = 1 ∼ N(µk,Σk), ci | zik = 1, vik = 0 ∼ N(µk, ηkΣk)

with µk, Σk as in (5) and Λk such that we have (6).
Thus ci arise from a mixture of contaminated Gaussians with fk(ci; θk) =

fc(ci; θk), the density of a multivariate contaminated normal distribution

fc(ci; θk) = αkφ(ci; µk,Σk) + (1− αk)φ(ci; µk, ηkΣk),

where αk ∈ (0.5, 1), ηk > 1, θk = {αk,µk,Σk, ηk}, and φ(ci; µk,Σk) is given
in (4). Here αk defines the proportion of uncontaminated data in the kth
cluster. Conditions for the identifiability of this model are given in Amovin-
Assagba et al (2022) (see also Punzo and McNicholas, 2016, Propositions 1
and 2).

We refer to this model as FCLM[akj , bk,Qk, dk, αk, ηk] (functional contam-
inated latent mixture) and we consider the parsimonious sub-models:

� FCLM[akj , b,Qk, dk, αk, ηk]: the parameters bk are common between the
clusters

� FCLM[ak, bk,Qk, dk, αk, ηk]: the first dk diagonal elements of Dk are
common within each class

� FCLM[a, bk,Qk, dk, αk, ηk]: the first dk diagonal elements ofDk are common
within each class and between the clusters

� FCLM[ak, b,Qk, dk, αk, ηk]: the parameters bk are common between the clus-
ters and the first dk diagonal elements of Dk are common within each
class

� FCLM[a, b,Qk, dk, αk, ηk]: the parameters bk are common between the clus-
ters and the first dk diagonal elements of Dk are common within each class
and between the clusters

A different way to account for the presence of outliers is to assume that for
the kth cluster, ci arises from the multivariate t distribution with νk degrees
of freedom and density (McLachlan and Peel, 2004, Section 7.5)

ft(ci; θk) =
Γ(νk+R

2 ) | Σk |−1/2

(πνk)R/2Γ(νk2 )
(

1 +
(ci−µk)>Σ−1

k (ci−µk)

νk

) νk+R

2

, (7)
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where Γ(·) is the gamma function and θk = {νk,µk,Σk, k = 1, . . . ,K}. We
proceed as in Section 7.5 in McLachlan and Peel (2004) and we characterize
the multivariate t distributions by introducing latent variable Hi, i = 1, . . . , n
such that we have

δi | Hi = hi, Zik = 1 ∼ N(mk,∆k/hi),

εi | Hi = hi, Zik = 1 ∼ N(0,Λk/hi),

independently for i = 1, . . . , n, and Hi | Zik = 1 ∼ Gamma(νk/2, νk/2),
independently for i = 1, . . . , n. Here the density of a gamma distribution
Gamma(α1, α2) with parameters α1 > 0, α2 > 0 is

g(y; α1, α2) =
αα1

2 yα1−1e−α2y

Γ(α1)
Iy>0.

Hence

ci | Hi = hi, Zik = 1 ∼ N(µk,Σk/hi),

with µk, Σk as in (5) and Λk such that we have (6).
Each curve Xi has a basis expansion with coefficient ci whose distribution

(3) is a mixture of multivariate t distributions with density fk(ci; θk) =
ft(ci; θk) given in (7).

We refer to this model as FTLM[akj , bk,Qk, dk, νk](functional t latent
mixture), and we also consider the parsimonious sub-models:

� FTLM[akj , b,Qk, dk, νk]: the parameters bk are common between the clusters
� FTLM[ak, bk,Qk, dk, νk]: the first dk diagonal elements of Dk are common

within each class
� FTLM[a, bk,Qk, dk, νk]: the first dk diagonal elements of Dk are common

within each class and between the clusters
� FTLM[ak, b,Qk, dk, νk]: the parameters bk are common between the clusters

and the first dk diagonal elements of Dk are common within each class
� FTLM[a, b,Qk, dk, νk]: the parameters bk are common between the clusters

and the first dk diagonal elements of Dk are common within each class and
between the clusters

If we constrain the degrees of freedom νk = ν, k = 1, . . . ,K to be the same for
all the K groups we obtain six more parsimonious sub-models.

In Holzmann et al (2006) it is shown that finite location-scatter mixtures
from the multivariate t distribution, even with variable degree of freedom, are
identifiable. Consequently, in the space of coefficients ci we can deduce the
identifiability of the the model (3) with density fk(ci; θk) given by the density
of the multivariate t distribution ft(ci; θk).

Next we analyze the complexity (i.e. the number of free parameters to be
estimated) of the FTLM[akj , bk,Qk, dk, νk] model. Let τ1 = KR + K − 1 be
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the number of parameters required for the estimation of the means µk and the

proportions πk; τ2 =
∑K

k=1 dk[R − (dk + 1)/2] be the number of parameters

required for the estimation of the matrices Qk; τ3 = K+
∑K

k=1 dk be the num-
ber of parameters required for the estimation of bk, akj . Then, after we add
K more parameters for estimating the degrees of freedom νk, the total num-
ber of parameters to be estimated for the model FTLM[akj , bk,Qk, dk, νk] is
τ = τ1 + τ2 + τ3 +K. Thus, this model has K more parameters than the fun-
HDDC model FLM[akj , bk,Qk, dk] (Bouveyron and Jacques, 2011), and K less
parameters than C-funHDDC model FCLM[akj , bk,Qk, dk, αk, ηk] (Amovin-
Assagba et al, 2022). If instead of a functional approach we follow a raw-data
clustering approach and we apply the teigen (Andrews and McNicholas, 2012)
or the CNmixt (Punzo and McNicholas, 2016) methods directly to the dis-
cretized data we obtain a larger complexity because we have to work with very
high dimensional vectors (Amovin-Assagba et al, 2022).

3 Model inference

In model-based clustering the parameters estimation is usually done using
the expectation-maximization (EM) algorithm (Dempster et al, 1977). In the
expectation (E) step the conditional expectation of the complete log-likelihood
is computed using the current estimates of the parameters. Then in the maxi-
mization (M) step the estimates of the parameters are updated with the values
that maximize the expected complete log-likelihood. The algorithm consists of
successive iterations of the E and the M steps until convergence is achieved.
For the models associated with the funHDDC method an EM algorithm is
constructed in Schmutz et al (2020).

3.1 Inference for the C-funHDDC models

The parameters of the C-funHDDC models are estimated using an expectation-
conditional maximization (ECM) algorithm (Amovin-Assagba et al, 2022,
Anton and Smith, 2023). The ECM algorithm (Meng and Rubin, 1993) is
a variant of the EM algorithm in which we replace the M-step by two sim-
pler CM-steps given by a partition of the set of parameters. For C-funHDDC
the partition is θ = {Ψ1,Ψ2}, where Ψ1 = {πk, αk,µk, akj , bk, qkj , k =
1, . . . ,K, j = 1, . . . , dk} and Ψ2 = {ηk, k = 1, . . . ,K}.

The detailed presentation of the ECM algorithm for the
FCLM[akj , bk,Qk, dk, αk, ηk] model is given in Amovin-Assagba et al (2022).
Here we consider a slight modification for the estimation of αk and we extend
the method to the other five parsimonious sub-models presented in Section 2.1.

On the mth iteration in the E-step we calculate t
(m)
ik := E[Zik |

c1, . . . , cn,θ
(m−1)] and ν

(m)
ik := E[Υik | Z1, c1, . . . ,Zn, cn,θ

(m−1)] (Amovin-
Assagba et al, 2022). In the first CM-step on the mth iteration of the ECM

algorithm we calculate the values in Ψ
(m)
1 with Ψ2 fixed at Ψ

(m−1)
2 . We have
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(Amovin-Assagba et al, 2022)

π
(m)
k =

∑n
i=1 t

(m)
ik

n
, α

(m)
k =

∑n
i=1 t

(m)
ik ν

(m)
ik∑n

i=1 t
(m)
ik

(8)

µ
(m)
k =

∑n
i=1 t

(m)
ik

(
ν

(m)
ik +

1−ν(m)
ik

η
(m−1)
k

)
ci∑n

i=1 t
(m)
ik

(
ν

(m)
ik +

1−ν(m)
ik

η
(m−1)
k

)
As in Punzo and McNicholas (2016), we introduce a value α∗ and we con-

strain αk ∈ (α∗, 1). If α
(m)
k in (8) is less than α∗, we use the optimize() function

in the stats package in R to do a numerical search for α
(m)
k that gives the

maximum of

n∑
i=1

t
(m)
ik

(
ν

(m)
ik log(αk) + (1− ν(m)

ik ) log(1− αk)
)

with respect to αk over the interval (α∗, 1). In the applications presented in
Section 4 we consider that less than half of the observations are outliers, and
we empirically fix α∗ ∈ (0.5, 1).

Let us define the sample covariance matrix of the cluster k by

H
(m)
k =

1∑n
i=1 t

(m)
ik

n∑
i=1

t
(m)
ik

(
ν

(m)
ik +

1− ν(m)
ik

η
(m−1)
k

)
(ci − µ(m)

k )(ci − µ(m)
k )>

For the model FCLM[akj , bk,Qk, dk, αk, ηk] we get the updated values

a
(q)
kj , b

(q)
k , q

(q)
kj , k = 1, . . . ,K, j = 1, . . . , dk using the sample covariance matrix

H
(m)
k of cluster k and the matrix of inner products between the basis functions

W (Amovin-Assagba et al, 2022)

� q
(m)
kj , k = 1, . . . ,K, j = 1, . . . , dk are updated as the eigenfunctions

associated with the dk largest eigenvalues of W 1/2H
(m)
k W 1/2;

� a
(m)
kj , k = 1, . . . ,K, j = 1, . . . , dk are updated by the dk largest eigenvalues

of W 1/2H
(m)
k W 1/2;

� b
(m)
k , k = 1, . . . ,K are updated by

b
(m)
k =

1

R− dk

(
trace

(
W 1/2H

(m)
k W 1/2

)
−

dk∑
j=1

a
(m)
kj

)
(9)

Proceeding as in Bouveyron et al (2007) we extend these results for the
simplified models:



Springer Nature 2021 LATEX template

Model-based clustering of functional data via mixtures of t distributions 11

� FCLM[akj , b,Qk, dk, αk, ηk]: the estimator of b is

b(m) =
trace

(∑K
k=1 π

(m)
k W 1/2H

(m)
k W 1/2

)
−
∑K

k=1 π
(m)
k

∑dk
j=1 a

(m)
kj

R−
∑K

k=1 π
(m)
k dk

(10)

� FCLM[ak, bk,Qk, dk, αk, ηk]: the estimator of ak is

a
(m)
k =

∑dk
j=1 a

(m)
kj

dk
(11)

and the estimator of bk is given by (9).
� FCLM[a, bk,Qk, dk, αk, ηk]: the estimator of a is

a(m) =

∑K
k=1 π

(m)
k

∑dk
j=1 a

(m)
kj∑K

k=1 π
(m)
k dk

(12)

and the estimator of bk is given by (9).
� FCLM[ak, b,Qk, dk, αk, ηk]: the estimator of ak is given by (11) and the

estimator of b is given by (10).
� FCLM[a, b,Qk, dk, αk, ηk]: the estimator of a is given by (12) and the

estimator of b is given by (10).

In the second CM-step on the mth iteration we calculate the values η
(m)
k

with Ψ1 fixed at Ψ
(m)
1 (Amovin-Assagba et al, 2022):

η
(m)
k = max

1,

∑n
i=1 t

(m)
ik (1− ν(m)

ik )(ci − µ(m)
k )>

(
Σ

(m)
k

)−1

(ci − µ(m)
k )

R
∑n

i=1 t
(m)
ik (1− ν(m)

ik )

 ,

(
Σ

(m)
k

)−1

= W 1/2Q
(m)
k

(
D

(m)
k

)−1 (
Q

(m)
k

)>
W 1/2.

3.2 Inference for the T-funHDDC models

To fit the models, we use the EM algorithm. We have two sources of missing
data: the clusters’ labels Zi and the un-observed values Hi. Thus, the complete
data are given by {ci, zik, hi, i = 1, . . . , n, k = 1, . . . ,K}.

Proposition 1 The complete data log-likelihood of the observed curves under the
FTLM[akj , bk,Qk, dk] model can be written as

lc(θ) = l1c(π) + l2c(ν) + l3c(ϑ) (13)

where

l1c(π) =

n∑
i=1

K∑
k=1

zik log(πk), (14)
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l2c(ν) =

n∑
i=1

K∑
k=1

zik

(
− log

(
Γ
(νk

2

))
+
νk
2

log(
νk
2

) +
νk
2

(log(hi)− hi)− log(hi)

)
,

(15)

l3c(ϑ) = −nR log(2π)

2
+
n

2
log(|W |)− 1

2

K∑
k=1

nk

dk∑
l=1

log(akl)−
1

2

K∑
k=1

nk

R∑
l=dk+1

log(bk)− 1

2

K∑
k=1

( dk∑
l=1

q>klW
1/2SkW

1/2qkl
akl

+

R∑
l=dk+1

q>klW
1/2SkW

1/2qkl
bk

)
,

(16)

where ϑ = {µk, akj , bk, qkj}, k = 1, . . . ,K, j = 1, . . . , dk, with qkj the jth column
of Qk, nk =

∑n
i=1 zik, and Sk is defined by

Sk :=

n∑
i=1

zikhi(ci − µk)(ci − µk)>. (17)

Next we present the EM algorithm for the most general model
FTLM[akj , bk,Qk, dk, νk].

3.2.1 The E-step

At the mth iteration of the EM algorithm we calculate E[lc(θ
(m−1)) |

c1, . . . , cn,θ
(m−1)], given the current values of the parameters θ(m−1). As

in Section 7.5 in McLachlan and Peel (2004), this reduces to the calcula-

tion of E[Zik | c1, . . . , cn,θ
(m−1)], E[Hi | Zik = 1, c1, . . . , cn,θ

(m−1)] and

E[log(Hi) | Zik = 1, c1, . . . , cn,θ
(m−1)].

Proposition 2 For the model FTLM[akj , bk,Qk, dk] the density of the multivariate
t distribution (7) for the kth cluster can be written as

ft(ci; θk) =
Γ(νk+p

2 )
(∏dk

l=1 akl
∏p
l=dk+1 bk

)−1/2
|W |1/2

(πνk)R/2Γ(νk2 )
(

1 +
δ(ci; µk,Qk,a,b,dk)

νk

) νk+R

2

(18)

where we denote

δ(ci; µk,Qk, a, b, dk) :=

dk∑
l=1

q>klW
1/2(ci − µk)(ci − µk)>W 1/2qkl

akl

+

p∑
l=dk+1

q>klW
1/2(ci − µk)(ci − µk)>W 1/2qkl

bk
(19)

We also have

t
(m)
ik := E[Zik | c1, . . . , cn,θ

(m−1)] =
πkft

(
ci; θ

(m−1)
k

)
∑K
l=1 πlft

(
ci; θ

(m−1)
l

) (20)

h
(m)
ik := E[Hi | Zik = 1, c1, . . . , cn,θ

(m−1)]
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=
ν

(m−1)
k +R

ν
(m−1)
k + δ(ci; µ

(m−1)
k ,Q

(m−1)
k , a(m−1), b(m−1), dk)

(21)

log(hik)(m) := E[log(Hi) | Zik = 1, c1, . . . , cn,θ
(m−1)]

= log(h
(m)
ik ) + Ψ

(
ν

(m−1)
k +R

2

)
− log

(
ν

(m−1)
k +R

2

)
, (22)

where Ψ(·) is the digamma function:

Ψ(s) =
d(log Γ(s))

ds
=
dΓ(s)/ds

Γ(s)
. (23)

Based on the current values of the parameters θ(m−1) the log-likelihood is
given by

log(L(m−1)) = log

(
n∏
i=1

p(ci; θ
(m−1))

)
=

n∑
i=1

log

(
K∑
k=1

π
(m−1)
k ft(ci; θ

(m−1)
k )

)

3.2.2 The M-step

In the M-step at the mth iteration of the EM algorithm we estimate the
parameters by maximizing the conditional expectation of the complete data
log likelihood Q(θ | θ(m−1)) := E[log(lc(θ

(m−1))) | c1, . . . , cn,θ
(m−1)].

Proposition 3 For the model FTLM[akj , bk,Qk, dk, νk] we have the following
updates for the parameters, k = 1, . . . ,K

π
(m)
k =

∑n
i=1 t

(m)
ik

n
=
n

(m)
k

n
, n

(m)
k =

n∑
i=1

t
(m)
ik (24)

µ
(m)
k =

∑n
i=1 t

(m)
ik h

(m)
ik ci∑n

i=1 t
(m)
ik h

(m)
ik

(25)

ν
(m)
k is a solution of the equation

1−Ψ

(
ν

(m)
k

2

)
+

1

n
(m)
k

n∑
i=1

t
(m)
ik (log(h

(m)
ik )− h(m)

ik )

+ log

(
ν

(m)
k

2

)
+ Ψ

(
ν

(m−1)
k +R

2

)
− log

(
ν

(m−1)
k +R

2

)
= 0 (26)

If we consider the degrees of freedom to be the same for all groups, then an update
for ν(m) can be found by solving numerically the equation

1−Ψ

(
ν(m)

2

)
+

1

n

n∑
i=1

K∑
k=1

t
(m)
ik (log(h

(m)
ik )− h(m)

ik )

+ log

(
ν(m)

2

)
+ Ψ

(
ν(m−1) +R

2

)
− log

(
ν(m−1) +R

2

)
= 0 (27)
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Let

S
(m)
k =

∑n
i=1 t

(m)
ik h

(m)
ik (ci − µ

(m)
k )(ci − µ

(m)
k )>

n
(m)
k

. (28)

Then

� q
(m)
kj , k = 1, . . . ,K, j = 1, . . . , dk are updated as the eigenfunctions

associated with the dk largest eigenvalues of W 1/2S
(m)
k W 1/2;

� a
(m)
kj , k = 1, . . . ,K, j = 1, . . . , dk are updated by the dk largest eigenvalues

of W 1/2S
(m)
k W 1/2;

� b
(m)
k , k = 1, . . . ,K are updated by

b
(m)
k =

1

R− dk

(
trace

(
W 1/2S

(m)
k W 1/2

)
−

dk∑
j=1

a
(m)
kj

)
(29)

For the simplified models we have:

� FTLM[akj , b,Qk, dk, νk]: the estimator of b is

b(m) =
trace

(∑K
k=1 π

(m)
k W 1/2S

(m)
k W 1/2

)
−
∑K

k=1 π
(m)
k

∑dk
j=1 a

(m)
kj

R−
∑K

k=1 π
(m)
k dk

(30)

� FTLM[ak, bk,Qk, dk, νk]: the estimator of ak is

a
(m)
k =

∑dk
j=1 a

(m)
kj

dk
(31)

and the estimator of bk is given by (29).
� FTLM[a, bk,Qk, dk, νk]: the estimator of a is

a(m) =

∑K
k=1 π

(m)
k

∑dk
j=1 a

(m)
kj∑K

k=1 π
(m)
k dk

(32)

and the estimator of bk is given by (29).
� FTLM[ak, b,Qk, dk, νk]: the estimator of ak is given by (31) and the

estimator of b is given by (30).
� FTLM[a, b,Qk, dk, νk]: the estimator of a is given by (32) and the estimator

of b is given by (30).

In the implementation we use the uniroot function in the stats package in
R to solve for updates of νk numerically, and we restrict these values between
2 and 200.
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3.2.3 Initialization

To start the EM algorithm, we need initial values t
(0)
ik . As for funHDDC

(Schmutz et al, 2020), we have implemented an initialization with the kmeans
method available in the stats package in R. We also consider a second approach,
based on the function tkmeans from the R package tclust, which is an implemen-
tation of the trimmed k-means method in Cuesta-Albertos et al (1997). This
robust initialization method requires the proportion of data to be trimmed.
As in Amovin-Assagba et al (2022), to ensure that we are not contaminated
by the presence of outliers, we consider a large proportion, and we fix this
parameter to 0.2.

Initialization is critical for preventing the convergence of the EM algorithm
to a local maximum, so we execute the algorithm several times with different

initialization values for t
(0)
ik , and we keep the best result given by the EM algo-

rithm using the Bayesian information criterion (BIC; Schwarz, 1978) defined
below in (33). In the applications we consider the number of initializations to
be at least 20.

The degrees of freedom are initialized as ν
(0)
k = 50 (Andrews and McNi-

cholas, 2011), and the rest of the parameters and h
(0)
ik are initialized as per the

updates in Propositions 2 and 3.

3.2.4 Estimation of the hyper-parameters

The hyper-parameters K and dk, k = 1, . . . ,K are not estimated by the EM
algorithm. As in Bouveyron and Jacques (2011), the group specific dimension
dk is selected through the Cattell scree-test by comparison of the difference
between eigenvalues with a given threshold. Alternatively, we can do a grid
search and choose dk as the positive integer from the grid that corresponds to
the maximum value of the BIC (Amovin-Assagba et al, 2022). We have tried
both methods for the applications presented here, and we have not obtained
a major improvement using the grid search, but the computational time was
substantially larger. In the next section we present the results obtained with
the Cattell scree-test.

The number of clusters K as well as the parsimonious model are selected
using the BIC criterion: we maximize the BIC defined as

BIC = L(mf ) − τ

2
log n, (33)

where τ is the overall number of the free parameters, n is the number of
observations, L(mf ) is the maximum log-likelihood value, and mf is the last
iteration of the algorithm before convergence.
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3.2.5 Convergence criterion and the classification step

After initialization, the E and M steps are alternated until convergence. The
EM algorithm is considered to have converged if a maximum number of iter-

ations is reached or L
(m+2)
∞ − L(m+1) < ε, provided that this difference is

positive (McNicholas et al, 2010). We choose 200 for the maximum number
of iterations and ε = 10−6. Here L(m+1) is the log-likelihood value from itera-

tion m+ 1 and L
(m+2)
∞ is the asymptotic estimate of log-likelihood at iteration

m+ 2 (Andrews et al, 2011) given by

L(m+2)
∞ = L(m+1) +

L(m+2) − L(m+1)

1− a(m+1)
,

where a(m+1) is the Aitken acceleration (Aitken, 1927) at iteration m+ 1:

a(m+1) =
L(m+2) − L(m+1)

L(m+1) − L(m)

At the end of the EM algorithm, we do a classification step to provide the
expected clustering. We determine the cluster using the maximum a posteri-
ori (MAP) rule: an observation ci is assigned to the cluster k ∈ {1, . . . ,K}
with the largest t

(mf )
ik , where mf is the last iteration of the algorithm before

convergence.

4 Applications

We first apply T-funHDDC, C-funHDDC, and funHDDC methods to clus-
tering simulated functional data with outliers. We consider one- and two-
dimensional curves with various outlier contamination scenarios. Next we
compare T-funHDDC with competing algorithms for clustering the NOx data
representing daily curves of Nitrogen Oxides (NOx) emissions in the neigh-
borhood of the industrial area of Poblenou, Barcelona (Spain). Finally, we use
T-funHDDC for clustering traffic flow data in Edmonton, Canada.

Although analyses for the simulated data are conducted as clustering
examples, the true classifications are actually known. In these examples, the
Adjusted Rand Index (ARI; Hubert and Arabie, 1985) is used to measure the
accuracy of the classification. The expected value of the adjusted Rand index
is 0, and for a perfect classification its value is 1.

4.1 Simulation Study-Univariate curves

Similarly with Anton and Smith (2023) we simulate 1000 curves based on the
model FCLM [ak, bk,Qk, dk, αk, ηk]. The number of clusters is fixed to K = 3
and the mixing proportions are equal π1 = π2 = π3 = 1/3. We consider the
following values of the parameters

Group 1: d = 5, a = 150, b = 5, µ = (1, 0, 50, 100, 0, . . . , 0)
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Fig. 2 Smooth data simulated without oultiers (a) according to scenario A (b), scenario B
(c), and scenario C (d), colored by group for one simulation.

Group 2: d = 20, a = 15, b = 8, µ = (0, 0, 80, 0, 40, 2, 0, . . . , 0)
Group 3: d = 10, a = 30, b = 10, µ = (0, . . . , 0, 20, 0, 80, 0, 0, 100),

where d is the intrinsic dimension of the subgroups, µ is the mean vector of
size 70, a is the values of the d-first diagonal elements of D, and b the value of
the last 70−d- elements. Curves as smoothed using 35 Fourier basis functions.
We repeat the simulation setting 100 times. A sample of these data is plotted
in Fig. 2 a.

We consider the following contamination schemes.

Scenario A: Very little contamination. Scores are simulated from con-
taminated normal distributions with the previous parameters, αi = 0.9,
i = 1, . . . , 3, and η1 = 10, η2 = 7, η3 = 17.
Scenario B: Medium contamination. Scores are simulated from contam-
inated normal distributions with the previous parameters, αi = 0.9, i =
1, . . . , 3, and η1 = 5, η2 = 50, η3 = 15.
Scenario C: High contamination. Scores are simulated from contaminated
normal distributions with the previous parameters, αi = 0.9, i = 1, . . . , 3,
and η1 = 100, η2 = 70, η3 = 170.

Samples for data generated according to scenarios A, B, C are plotted in
Figs. 2 b, c, d, respectively. We notice that the clustering problem becomes
more difficult when we increase the values of η, such as scenario C where we
have a lot of overlapping between the 3 groups due to outliers.
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Table 1 Mean (and standard deviation) of ARI for BIC best model on 100 simulations.
Bold values indicate the highest value for each method.

Scenario Method ε ARI ARI Outliers

A FunHDDC 0.05 0.519 (0.11) -
A FunHDDC 0.1 0.499(0.05) -
A FunHDDC 0.2 0.494 (0.01) -
A C-funHDDC 0.05 0.769 (0.23) 0.959(0.04)
A C-funHDDC 0.1 0.986(0.08) 0.998(0.01)
A C-funHDDC 0.2 0.9995 (0.001) 1 (0)
A tfunHDDC 0.05 0.964 (0.120) -
A tfunHDDC 0.1 0.995(0.0438) -
A tfunHDDC 0.2 0.9996(0.001) -

B FunHDDC 0.05 0.861 (0.23) -
B FunHDDC 0.1 0.754(0.25) -
B FunHDDC 0.2 0.52 (0.09) -
B C-funHDDC 0.05 0.807 (0.22) 0.961(0.05)
B C-funHDDC 0.1 0.948 (0.14) 0.99(0.03)
B C-funHDDC 0.2 0.990 (0.062) 0.971 (0.149)
B tfunHDDC 0.05 0.892 (0.188) -
B tfunHDDC 0.1 0.97(0.111) -
B tfunHDDC 0.2 0.991 (0.06) -

C FunHDDC 0.05 0.490 (0.02) -
C FunHDDC 0.1 0.491(0.02) -
C FunHDDC 0.2 0.494 (0.01) -
C C-funHDDC 0.05 0.736 (0.23) 0.928(0.10)
C C-funHDDC 0.1 0.911 (0.18) 0.958(0.15)
C C-funHDDC 0.2 0.965 (0.11) 0.994 (0.03)
C tfunHDDC 0.05 0.588 (0.137) -
C tfunHDDC 0.1 0.678(0.205) -
C tfunHDDC 0.2 0.892 (0.18) -

The quality of the estimated partitions obtained using funHDDC, C-
funHDDC, and T-funHDDC is evaluated using the ARI, and the results are
included in Table 1. For funHDDC we use the package funHDDC in R. We
run the three algorithms for K = 3 with all 6 sub-models, and the best solu-
tion in terms of the highest BIC value for all those sub-models is returned.
The initialization is done with the kmeans strategy with 50 repetitions, and
the maximum number of iterations is 200 for the stopping criterion. We use
ε ∈ {0.05, 0.1, 0.2} in the Cattell test. For C-funHDDC we use α∗ = 0.75,
and for T-funHDDC we do not constrain the degrees of freedom for different
groups to be equal.

We notice that C-funHDDC and T-funHDDC give similar results, and they
give excellent results even for Scenario C. They both outperform funHDDC.
C-funHDDC also precisely identifies the outliers, and in Table 2 we report
the means, medians, and standard deviations for estimations of ηi and αi,
i = 1, 2, 3 for the 100 tests done with ε = 0.2 for each scenario. The accuracy
of these estimates decreases when the accuracy of the classification decreases,
but we get good results for the medians even for Scenario C.
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Table 2 Medians, means, and standard deviations for estimations for ηi and αi, i = 1, 2, 3
for 100 simulations for BIC best model with ε = 0.2 in the Cattell test.

Scenario A η1 = 10 η2 = 7 η3 = 17 α1 = 0.9 α2 = 0.9 α3 = 0.9

median 10.11 7.01 17.07 0.90 0.90 0.90
mean 10.09 7.00 17.05 0.90 0.90 0.90
st.dev 0.50 0.35 0.78 0.0003 0.0003 0.0003

Scenario B η1 = 5 η2 = 50 η3 = 15 α1 = 0.9 α2 = 0.9 α3 = 0.9

median 5.03 49.99 15.09 0.90 0.90 0.90
mean 5.06 68.70 15.23 0.90 0.90 0.90
st.dev 0.29 133.74 1.64 0.001 0.0005 0.0003

Scenario C η1 = 100 η2 = 70 η3 = 170 α1 = 0.9 α2 = 0.9 α3 = 0.9

median 98.26 69.14 175.76 0.90 0.90 0.90
mean 97.21 69.42 233.49 0.90 0.90 0.91
st.dev 20.79 18.32 195.95 0.0007 0.0007 0.0009

4.2 Simulation Study: Bivariate Curves

Using a triangle model inspired by Bouveyron and Jacques (2011), we simulate
400 bivariate curves according to the following model:

Group 1:
X1(t) = U + (0.6− U)H1(t) + ε1(t)
X2(t) = U + (0.5− U)H1(t) + ε1(t)
Contaminated X1(t) = sin(t) + (0.6− U)H1(t) + ε2(t)
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Fig. 3 Smooth data simulated for X1 (a) and X2 (b) . Group 1 (blue) and outliers (cyan),
group 2 (black), group 3 (red) and outliers (purple), and group 4 (green).
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Contaminated X2(t) = sin(t) + (0.5− U)H1(t) + ε2(t)
Group 2:
X1(t) = U + (0.6− U)H2(t) + ε1(t)
X2(t) = U + (0.5− U)H2(t) + ε1(t)

Group 3:
X1(t) = U + (0.5− U)H1(t) + ε1(t)
X2(t) = U + (0.6− U)H2(t) + ε1(t)
Contaminated X1(t) = sin(t) + (0.5− U)H1(t) + ε3(t)
Contaminated X2(t) = sin(t) + (0.6− U)H2(t) + ε3(t)

Group 4:
X1(t) = U + (0.5− U)H2(t) + ε1(t)
X2(t) = U + (0.6− U)H1(t) + ε1(t).

Here t ∈ [1, 21], H1(t) = (6 − |t − 7|)+, and H2(t) = (6 − |t − 15|)+, with
(·)+ representing the positive part. U ∼ U(0, 0.1), and ε1(t) ∼ N(0, 0.5),
ε2(t) ∼ N(0, 2), ε3(t) ∼ Cauchy(0, 4) are mutually independent white noises
and independent of U . We use sin(t) as a behavioral change that retains group
membership, and ε2(t) and ε3(t) represent noises that have larger variances in
contaminated groups. We simulate 100 curves for each group, groups 1 and
3 consisting of 80 ordinary curves and 20 contaminated curves. Curves are
smoothed using a 25 cubic B-spline basis, and we repeat the simulation 100
times. A single simulation of these data is plotted in Fig. 3. We can notice
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Fig. 4 ARI for T-funHDDC using kmeans (a) or tkmeans (b) initialization, and ARI for
C-funHDDC using kmeans (c) or tkmeans (d) initialization
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that any clustering method applied only to X1(t) should fail because groups 1
(blue) and 3 (red) are similar, and group 2 (black) is similar to group 4 (green).
For X2(t), groups 1 (blue) and 4 (green) are similar, and group 2 (black) is
similar to group 3 (red), so no univariate clustering method would succeed.
The results in Table 3 show that there is a clear improvement in the clustering

Table 3 Mean (and standard deviation) of ARI of all methods applied to simulated
triangles bivariate data for K = 4 and K = 5 clusters. Bold values indicate the highest
value for each method.

Method Initialization ε ARI for K = 4 ARI for K = 5

FunHDDC kmeans 0.05 0.690(0.044) 0.828 (0.099)
FunHDDC kmeans 0.1 0.691(0.044) 0.830 (0.083)
FunHDDC kmeans 0.2 0.682(0.051) 0.831 (0.117)

T-funHDDC kmeans 0.05 0.935 (0.068) 0.805 (0.058)
T-funHDDC kmeans 0.1 0.915 (0.073) 0.842 (0.063)
T-funHDDC kmeans 0.2 0.981 (0.043) 0.878 (0.037)
T-funHDDC tkmeans 0.05 0.971 (0.042) 0.840 (0.051)
T-funHDDC tkmeans 0.1 0.929 (0.064) 0.887 (0.055)
T-funHDDC tkmeans 0.2 0.987 (0.031) 0.886 (0.032)

C-funHDDC kmeans 0.05 0.616 (0.182) 0.971 (0.000)
C-funHDDC kmeans 0.1 0.504 (0.192) 0.941 (0.083)
C-funHDDC kmeans 0.2 0.556 (0.129) 0.735 (0.117)
C-funHDDC tkmeans 0.05 0.476 (0.128) 0.998 (0.015)
C-funHDDC tkmeans 0.1 0.466 (0.111) 0.977 (0.084)
C-funHDDC tkmeans 0.2 0.548 (0.083) 0.801 (0.158)

results of T-funHDDC over funHDDC. Consistently funHDDC miss-classifies
the outliers, mixing the separate groups of outliers into one group and cluster-
ing groups 1 and 3 together. We run the three algorithms for K = 4 with all
6 sub-models and the best solution in terms of the highest BIC value for all
those sub-models is returned. For C-funHDDC we use α∗ = 0.85, and for T-
funHDDC we do not constrain the degrees of freedom for different groups to be
equal. The initialization is done using kmeans with 20 repetitions, and for T-
funHDDC and C-funHDDC we also do the initialization using tkmeans. From
the boxplots in Fig. 4, we can see that the trimming used by tkmeans improves
T-funHDDC and C-funHDDC’s consistency. Although both are robust meth-
ods T-funHDDC clearly clusters the triangles correctly and more consistently
than C-funHDDC.

From Amovin-Assagba et al (2022) we know that when the proportion of
outliers is large, C-funHDDC tends to group all the outliers into an additional
cluster. To study the behavior of T-funHDDC, we consider that all the outliers
form a fifth cluster and we also run the three algorithms for K = 5 clusters
(the rest of the settings are the same as for K = 4). From the results in the
last column of Table 3 we can see that T-funHDDC has a better performance
for K = 4 clusters, so the heavy tailed multivariate t distribution is able to
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handle the outliers and we get a very accurate separation into four clusters. In
contrast, funHDDC and C-funHDDC put the outliers together in a separate
cluster and perform much better for K = 5 than for K = 4. C-funHDDC gives
excellent results for K = 5, better than funHDDC and T-funHDDC which
have similar mean values for ARI.

4.3 Benchmark study-NOx levels data

We consider the NOx data available in the fda.usc library in R (Febrero-
Bande and de la Fuente, 2012). The measurements of NOx (in µg/m3) were
taken hourly resulting in 76 curves for “working days” and 39 curves for “non-
working days” (see Fig. 5 a). Since NOx is a contaminant agent, the detection
of outlying emission is useful for environmental protection. This data set has
been used for testing methods for the detection of outliers in functional data
(Febrero-Bande et al, 2008, Sawant et al, 2012, Sguera et al, 2015) and to
illustrate robust clustering based on trimming for functional data (Rivera-
Garćıa et al, 2019).
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Fig. 5 a.DailyNOx curves for 115 days; b. c. Clustering obtained with T-funHDDC, ε = 0.6,
Non-working days (blue, plain line), working days (red, dashed line)

We apply T-funHDDC, C-funHDDC, funHDDC, CNmixt (Punzo and
McNicholas, 2016), and teigen (Andrews and McNicholas, 2012) to the NOx
data. Curves are smoothed using a B-spline basis of functions of order 3 with
15 basis elements, and we run the algorithms for K = 2 clusters. For T-
funHDDC, C-funHDDC, and funHDDC we use ε ∈ {0.05, 0.2, 0.4, 0.6} in the
Cattell test and we consider all 6 sub-models. The best solution in terms of
the highest BIC value for all those sub-models is returned. The initialization
is done with the kmeans strategy with 20 repetitions, and the maximum num-
ber of iterations is 200 for the stopping criterion. We run the CNmixt function
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from the ContaminatedMixt R package for all 14 models , based on the coeffi-
cients in the B-spline basis of functions of order 3. Initialization is done with
the kmeans function. We also run the teigen function from the teigen pack-
age in R based on the coefficients in the B-spline basis of functions of order
3, with models having constrained (CN) and unconstrained (UN) degrees of
freedom. Initialization for teigen is done with the kmeans function. Assuming,
as in Rivera-Garćıa et al (2019), that the correct groups were determined by
working and non-working days, the correct classification rates (CCR) obtained
with these five methods are reported in Table 4.

Table 4 Correct classification rates for each method for the NOx data

Method ε α∗ CCR Method ε CN/UN CCR

funHDDC 0.05 - 0.51 T-funHDDC 0.05 CN 0.52
funHDDC 0.2 - 0.71 T-funHDDC 0.2 CN 0.73
funHDDC 0.4 - 0.76 T-funHDDC 0.4 CN 0.78
funHDDC 0.6 - 0.70 T-funHDDC 0.6 CN 0.91
C-funHDDC 0.05 0.85 0.77 T-funHDDC 0.05 UN 0.52
C-funHDDC 0.2 0.85 0.86 T-funHDDC 0.2 UN 0.73
C-funHDDC 0.4 0.85 0.84 T-funHDDC 0.4 UN 0.78
C-funHDDC 0.6 0.85 0.84 T-funHDDC 0.6 UN 0.91
CNmixt - 0.5 0.64 teigen - CN 0.56
CNmixt - 0.85 0.64 teigen - UN 0.57

The CCRs for T-funHDDC and C-funHDDC are better than the ones
for funHDDC, and the best CCR is 0.91 obtained with T-funHDDC. These
results are comparable with the ones reported in Table 1 in Rivera-Garćıa
et al (2019) for Funclust, RFC, and TrimK, with the best CCR equal with
0.84 and obtained with Funclust and RFC. In Figs. 5 b, c, we present the clus-
ters obtained using T-funHDDC with ε = 0.6 and unconstrained degrees of
freedom.

We can notice that for the NOx data the two-steps methods CNmixt and
teigen applied on the coefficients in the B-spline basis of functions of order 3
give the lowest CCRs. We have also applied them directly to the sampled NOx
data, but the CCRs were even lower and there were convergence problems for
several models.

4.4 Real data example-Traffic Speeding and Weather
Conditions

We analyze traffic data from the City of Edmonton available from the Edmon-
ton open data portal at https://data.edmonton.ca/stories/s/Speed-Surveys/
kd7n-5iq3/, joined with historical weather data from the Edmonton Interna-
tional Airport available at https://climate.weather.gc.ca/climate data/. We
extract records for traffic counts going 5-10 km/h under the speed limit, and
records for traffic counts going 0-5km/h over the speed limit, such that we have

https://data.edmonton.ca/stories/s/Speed-Surveys/kd7n-5iq3/
https://data.edmonton.ca/stories/s/Speed-Surveys/kd7n-5iq3/
https://climate.weather.gc.ca/climate_data/
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a speeding differential of 5-15 km/h for analysis. We join temperature and vis-
ibility data by date as factors that affect the number of cars in each speeding
category. Thus, we work with multivariate functional data with four compo-
nents. The speeding data are organized in 15 minute intervals, so we have
96 time points for each curve in the two speeding components. The weather
data is recorded in hour intervals, so we have 24 time points for each curve
in the temperature and visibility components. Different trends in the amount
of travel and speeds can be distinguished based on the time of day and the
direction of the road (to or away from work areas). The data also have poten-
tial outliers from holidays, special events, and weather, all of which may cause
more or less cars to appear in each speeding interval.

A thousand records are randomly sampled using the sample function from
R and used for clustering with the T-funHDDC method. We use an hourly
descriptive weather column (clouds, rain, fog, etc.) for the final analysis of
clusters. The objective of this study is to find trends and explain how weather
conditions affect speeding differentials among road sections in Edmonton, with
clustering being the first step in a larger data mining analysis.

Data are fit with a Fourier basis with 12 basis functions. We use all the
models in the T-funHDDC method and consider 2 to 10 clusters. A model
with 10 clusters, unconstrained degrees of freedom, and the threshold for the
Cattell test ε = 0.05 was chosen based on BIC.
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Fig. 6 Group 1 (first row, black) and group 2 (second row, red) have similar traffic speeding
flow. Group 3 (third row, green) and group 9 (fourth row, blue) are unique groups affected
by other conditions.
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Table 5 Month distributions of the traffic/weather data clusters

Month Cluster 1 Cluster 2 Cluster 3 Cluster 9

April 0 2 5 0
May 0 11 60 1
June 0 23 119 0
July 8 22 90 0
August 60 27 57 0
September 2 25 57 6
October 0 13 34 37
November 0 0 0 2

Four clusters, shown in Fig. 6, are of particular interest. We found that
groups 1 and 2 reflect similar trends with the only difference being that group
1 has many low visibility ”smoky” days in August (see Table 5), when smoke
from wildfires moves through the region. The clustering indicates that while
visibility is lowered by smoke, there is no change in the speeding behavior.
Group 3 represents a different behavior with cloudy weather conditions, where
speeding spikes in the morning and afternoon (to and from work). Group 9
is composed of snowy days in September, October, and November when snow
starts to fall in the region.

The robust method T-funHDDC allowed for distinct patterns of visibility
and temperature to be extracted from the data which otherwise would have
low differences in comparison to speeding. These groups have low speeding
variation which brings into question how drivers react to changes in visibility.

5 Conclusions

In this paper we propose a model-based clustering method, called T-funHDDC,
for functional data with outliers. The method is based on a multivariate func-
tional principal component analysis and a functional latent multivariate t
distribution mixture model. This is an extension of the funHDDC (Schmutz
et al, 2020) algorithm for functional data with outliers, following the ideas
used for the teigen method in (Andrews and McNicholas, 2012). Parameter
estimation is carried out within the EM algorithm framework. Numerical opti-
mization is only used for fitting the degrees of freedom for the multivariate
t distributions, all the other parameters are available in closed form. Similar
with funHDDC, we consider a family of parsimonious models, including models
with constrained degrees of freedom for the t distributions.

We also extend the C-funHDDC method (Amovin-Assagba et al, 2022)
by adding five more parsimonious models. Similarly with the CNmixt algo-
rithm (Punzo and McNicholas, 2016), C-funHDDC is based on a contaminated
Gaussian mixture model.

We compare the performance of funHDDC, C-funHDDC, and T-funHDDC
for simulated univariate and bivariate curves with outliers. T-funHDDC always
outperforms funHDDC, for uni-variate curves it has a similar performance
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with C-funHDDC, and for bivariate curves it outperforms C-funHDDC. An
advantage of the C-funHDDC method is that it can also be used for outlier
detection.

For the NOx data, the C-funHDDC and T-funHDDC methods outperform
funHDDC, and they have a similar performance with Funclust and robust
functional clustering methods based on trimming, such as RFC and TrimK
(Rivera-Garćıa et al, 2019). They have better performance than two-step
methods based on CNmixt or teigen. Although there are several model-based
methods for multivariate data with outliers that can be used to construct
two-step methods for functional data, as observed in Bouveyron and Jacques
(2011), these two-step methods always suffer from the difficulty to choose the
best discretization.

For the real data application, the T-funHDDC method classifies the speed-
ing data into subsets that are interesting for a follow up analysis of traffic
patterns. Using a robust method, we were able to identify groups that show
how drivers adapt their speed to reduced visibility. Speeding differential is
a leading cause in traffic accidents, so finding conditions that increase speed
variance can help diagnose when weather conditions pose the greatest risk to
drivers and where the risk is greatest.

Both the contaminated Gaussian and the t distributions are well suited to
work with mild outliers, and, due to polynomial tails, a mixture of t distribu-
tions can deal even with very large or small values. To handle highly atypical
observations, as future work these methods can be extended as in Farcomeni
and Punzo (2020) such that a proportion of the observations is trimmed.

6 Appendix

Proof of Proposition 1 The complete-data likelihood can be written as the product
of the conditional densities of ci given that Zi = zi and Hi = hi, the conditional
densities of Hi given that Zi = zi, and the marginal densities of the Zi:

Lc(θ) =

n∏
i=1

K∏
k=1

{φ(ci; µk,Σk/hi)g(hi; νk/2, νk/2)πk}zik ,

where zik = 1 if ci belongs to the cluster k and zik = 0 otherwise. Thus, the
complete-data log-likelihood can be written as

lc(θ) = l1c(π) + l2c(ν) + l3c(ϑ)

where

l1c(π) =

n∑
i=1

K∑
k=1

zik log(πk)

l2c(ν) =

n∑
i=1

K∑
k=1

zik log (g(hi; νk/2, νk/2))

=

n∑
i=1

K∑
k=1

zik

(
− log

(
Γ
(νk

2

))
+
νk
2

log
(νk

2

)
+
νk
2

(log(hi)− hi)− log(hi)

)
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l3c(ϑ) = −1

2

n∑
i=1

K∑
k=1

zik

(
R log(2π) + log | Σk | +hi(ci − µk)>Σ−1

k (ci − µk)

)
.

(34)

From (6) we have

Σ−1
k = W 1/2QkD

−1
k Q>kW

1/2,

and

| Σk |=|Dk ||W |−1|| Q>k Qk |=|Dk ||W |−1=|W |−1
dk∏
l=1

akl

R∏
l=dk+1

bk. (35)

Moreover, since (ci − µk)>Σ−1
k (ci − µk) is a scalar, we get

(ci − µk)>Σ−1
k (ci − µk) = trace((ci − µk)>W 1/2QkD

−1
k Q>kW

1/2(ci − µk))

= trace
((

(ci − µk)>W 1/2Qk

)(
D−1
k Q>kW

1/2(ci − µk)
))

= trace
((
D−1
k Q>kW

1/2(ci − µk)
)(

(ci − µk)>W 1/2Qk

))
(36)

Replacing in (34) we obtain

l3c(ϑ) = −nR log(2π)

2
+
n

2
log(|W |)− 1

2

K∑
k=1

nk

dk∑
l=1

log(akl)−
1

2

K∑
k=1

nk

R∑
l=dk+1

log(bk)

− 1

2

K∑
k=1

trace

((
D−1
k Q>kW

1/2
)( n∑

i=1

zikhi(ci − µk)(ci − µk)>
)(

W 1/2Qk

))
.

We can rewrite l3c(ϑ) as

l3c(ϑ) = −nR log(2π)

2
+
n

2
log(|W |)− 1

2

K∑
k=1

nk

dk∑
l=1

log(akl)

− 1

2

K∑
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R∑
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1/2SkW
1/2Qk
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= −nR log(2π)
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+
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K∑
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R∑
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− 1

2

K∑
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1/2SkW

1/2qkl
akl

+
R∑

l=dk+1

q>klW
1/2SkW

1/2qkl
bk

)
,

where qkl is the lth column of Qk, Sk is defined in (17), and ϑ = {µk, akj , bk, qkj},
k = 1, . . . , k, j = 1, . . . , dk. �

Proof of Proposition 2 From (36) we obtain

(ci − µk)>Σ−1
k (ci − µk) =

( dk∑
l=1

q>klW
1/2(ci − µk)(ci − µk)>W 1/2qkl

akl
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+

R∑
l=dk+1

q>klW
1/2(ci − µk)(ci − µk)>W 1/2qkl

bk

)
= δ(ci; µk,Qk, a, b, dk). (37)

Replacing in (7) and using also (35) we obtain (18).
From Section 7.5 in McLachlan and Peel (2004) we know that the distribution

of Hi given Zik = 1 and c1, . . . , cn is Gamma (m1k,m2k) where

m1k :=
ν

(m−1)
k +R

2
, m2k :=

ν
(m−1)
k + δ(ci; µ

(m−1)
k ,Q

(m−1)
k , a(m−1), b(m−1), dk)

2
.

This implies (21) and

E[log(Hi) | Zik = 1, c1, . . . , cn,θ
(m−1)] = Ψ(m1k)− log(m2k),

where Ψ(·) is defined in (23) (McLachlan and Peel, 2004, Section 7.5). Replacing the
formulas for m1k, m2k and using (21) we get (22). �

Proof of Proposition 3 Using (13)-(16) we have that Q(θ | θ(m−1)) is given by

Q(θ | θ(m−1)) = Q1(π | θ(m−1)) +Q2(ν | θ(m−1)) +Q3(ϑ | θ(m−1)),

were

Q1(π | θ(m−1)) =

n∑
i=1

K∑
k=1

t
(m)
ik log(πk)

Q2(ν | θ(m−1)) =

n∑
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t
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ik
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− log
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2

log(
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)
Q3(ϑ | θ(m−1)) = −nR log(2π)
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)
,

where S
(m)
k is defined in (28).

For the estimation of πk, k = 1, . . . ,K we introduce the Lagrange multiplier λ
and we maximize Q1 = Q1(π | θ(m−1)) − λ(

∑K
k=1 πk − 1). We get (24) solving the

system

∂Q1

∂πk
=

n∑
i=1

t
(m)
ik

πk
− λ = 0, k = 1, . . . ,K

∂Q1

∂λ
=

K∑
k=1

πk − 1 = 0.

Replacing log(hik)(m) from (22) we get

Q2(ν | θ(m−1)) =

n∑
i=1

K∑
k=1

t
(m)
ik

(
− log
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Γ
(νk

2
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+
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2

log(
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2
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+
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(38)

From the equation

∂Q2(ν | θ(m−1))

∂νk
= 0,

we get that ν
(m)
k is a solution of the equation (26).

If we consider the degrees of freedom to be the same for all groups, (38) becomes

Q2(ν | θ(m−1)) = n
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t
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ik log(h
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ik ),

and an update for ν(m) can be found by solving numerically the equation (27).

To get an update for µ
(m)
k we calculate Q3(ϑ | θ(m−1)) starting from the formula

(34) and we obtain

Q3(ϑ | θ(m−1)) = −n
2
R log(2π)− 1

2

K∑
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n
(m)
k log | Σk |

− 1

2

n∑
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K∑
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t
(m)
ik h

(m)
ik (ci − µk)>Σ−1

k (ci − µk).

The gradient of Q3 with respect to µk is

∇µkQ3(ϑ | θ(m−1)) = −
n∑
i=1

t
(m)
ik h

(m)
ik (ci − µk)Σ−1
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(m)
ik ci + µk

n∑
i=1

t
(m)
ik h

(m)
ik

)
Σ−1
k .

Thus, we can easily get (25) solving ∇µkQ3(ϑ | θ(m−1)) = 0.

To estimate Qk we have to maximize Q3(ϑ | θ(m−1)) with respect to qkl under

the constraint q>klqkl = 1. This is equivalent with minimizing −2Q3(ϑ | θ(m−1)) with
respect to qkl under this constraint, so we consider the function Q3c = −2Q3(ϑ |
θ(m−1)) −

∑R
l=1 ωkl(q

>
klqkl − 1), where ωkl are Lagrange multipliers. The gradient

of Q3c with respect to qkl is

∇qklQ3c = 2n
(m)
k

W 1/2S
(m)
k W 1/2qkl
Σkl

− 2ωklqkl,

Σkl =

{
akl if l = 1, . . . , dk

bk if l = dk + 1, . . . , R.
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From ∇qklQ3c = 0 we get W 1/2S
(m)
k W 1/2qkl = ωklΣkl

n
(m)
k

qkl, so qkl is an eigenfunc-

tion of W 1/2S
(m)
k W 1/2 and the associated eigenvalue is λ

(m)
kl = ωklΣkl

n
(m)
k

. Notice that

we also have q>klqkj = 0 if l 6= j, and λ
(m)
kl = q>klW

1/2S
(m)
k W 1/2qkl so we can write

− 2Q3(ϑ | θ(m−1)) = nR log(2π)− n log(|W |) +

K∑
k=1

n
(m)
k

( dk∑
l=1

log(akl)

+

R∑
l=dk+1

log(bk)

)
+

K∑
k=1

n
(m)
k

( dk∑
l=1

λ
(m)
kl

akl
+

R∑
l=dk+1

λ
(m)
kl

bk

)

= nR log(2π)− n log(|W |) +

K∑
k=1

n
(m)
k

( dk∑
l=1

log(akl) +

R∑
l=dk+1

log(bk)

)

+

K∑
k=1

n
(m)
k

( dk∑
l=1

λ
(m)
kl

(
1

akl
− 1

bk

)
+

1

bk
trace(W 1/2S

(m)
k W 1/2)

)
.

Here we have also used

trace(W 1/2S
(m)
k W 1/2) =

R∑
l=1

λ
(m)
kl =

dk∑
l=1

λ
(m)
kl +

R∑
l=dk+1

λ
(m)
kl . (39)

Since for any l = 1, . . . , dk we have akl ≥ bk, we get 1
akl
− 1

bk
≤ 0, so∑dk

l=1 λ
(m)
kl

(
1
akl
− 1
bk

)
is a decreasing function of λkl. Thus, we estimate qkl by the

eigenfunction associated with the lth highest eigenvalue of W 1/2S
(m)
k W 1/2.

To update akl we solve

∂Q3(ϑ | θ(m−1))

∂akl
= −

n
(m)
k

2akl
+
n

(m)
k q>klW

1/2S
(m)
k W 1/2qkl

2a2
kl

= 0,

and we get a
(m)
kl = q>klW

1/2S
(m)
k W 1/2qkl = λ

(m)
kl , the lth highest eigenvalue of

W 1/2S
(m)
k W 1/2.

From

∂Q3(ϑ | θ(m−1))

∂bk
= −

n
(m)
k

2

R∑
l=dk+1

1

bk
+
n

(m)
k

2

R∑
l=dk+1

q>klW
1/2S

(m)
k W 1/2qkl

b2k
= 0,

we obtain

b
(m)
k =

1

R− dk

R∑
l=dk+1

q>klW
1/2S

(m)
k W 1/2qkl =

1

R− dk

R∑
l=dk+1

λ
(m)
kl

Thus, using (39) we get

b
(m)
k =

1

R− dk

trace(W 1/2S
(m)
k W 1/2)−

dk∑
l=1

λ
(m)
kl

 .

�
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