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Abstract
Consider a positive Borel measure on a locally compact group. We define a notion of
uniform density for such a measure, which is based on a group invariant introduced
by Leptin in 1966. We then restrict to unimodular amenable groups and to translation
bounded measures. In that case our density notion coincides with the well-known
Beurling density from Fourier analysis, also known as Banach density from dynamical
systems theory. We use Leptin densities for a geometric proof of the model set density
formula, which expresses the density of a uniform regular model set in terms of the
volume of its window, and for a proof of uniform mean almost periodicity of such
model sets.
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1 Introduction

This article addresses asymptotic frequencies of point sets in locally compact groups
G that are amenable [50].1 We introduce a canonical notion of uniform density, which
is intimately related to the group invariant I (G) introduced by Horst Leptin in [38],
and we thus call it the Leptin density of a locally finite point set or more generally
of a positive Borel measure on G. Let us restrict to amenable locally compact groups
that are unimodular. This setting encompasses locally compact groups that are expo-
nentially bounded [50, Proposition 6.8], such as locally compact abelian groups. Let
us further restrict to translation bounded positive Borel measures, as defined below.
In that case, a main result of our article asserts that our notion of Leptin density coin-
cides with the classical notion of Banach density, also known as Beurling density or
Beurling-Landau density. The latter densitiesmay be evaluated on any so-called strong
Følner or van Hove net. We will show that such nets can be obtained from any Følner
net by a simple thickening procedure.

Our result might be useful for sampling and interpolation problems on such groups,
as necessary conditions for sampling and interpolation are usually formulated in terms
of the Beurling density of the underlying point set. Our definition of Leptin density
is in fact inspired by work of Gröchenig, Kutyniok and Seip [24] in that direction,
compare [52, Lemma 9.3]. In Euclidean space, it was already noted by Landau that
the Beurling density can be defined on averaging sets beyond boxes [34, Lemma 4],
and Gabardo [21] gave a definition of Beurling density which does not resort to any
averaging sequence. Due to its connection to amenability, our observation clarifies
why the Beurling density is independent of the chosen averaging sets. Making proper
use of Leptin densities might streamline existing proofs, as one does not have to resort
to particular averaging sets. The notion of Leptin density might also provide insight
as how to extend the notion of Beurling density beyond the group setting, compare
[20, 44].

A further focus of this article is on applications to mathematical diffraction theory
[4, 28, 54]. In that field, it is common toworkwith vanHove (strong Følner) sequences,
which restricts the analysis to σ -compact amenable groups. However one might drop
the assumption of σ -compactness and use van Hove (strong Følner) nets, at least if one
does not use dynamical arguments such as the pointwise ergodic theorem. In fact one
might avoid nets at all, using Leptin densities. As a prominent example, consider the
class of model sets in σ -compact locally compact abelian groups. Such point sets are
obtained from a cut-and-project construction, originating in Meyer’s ground breaking
work during the 70s [41–43, 57, 58]. Further investigation had been advocated by
Moody in the 90s [45, 46], motivated by the experimental discovery of quasicrystals.
In fact the cut-and-project construction had been re-developed independently in that
context, see e.g. the historical discussion in [53, Section 2]. By now the class of model
sets constitutes the most important example of pure point diffractive structures, see
e.g., the monograph [2] and references therein. Moreover, the last couple of years
has seen an emerging theory of aperiodic order beyond the abelian situation, see
[11–13] for regular model sets in general locally compact second countable groups

1 We will implicitly assume that such groups always satisfy the Hausdorff property.
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and homogeneous spaces, as well as [9, 10, 40] for foundations of a new theory on
approximate lattices.

The so-called density formula expresses the density of a regularmodel set in termsof
the volume of its window.Afirst proof for Euclidean space, which relies on the Poisson
summation formula, goes back to Meyer [42, 43], compare [54] for a recent account.
In varying degrees of generality, alternative proofs have been given by geometric
methods [55], dynamical methods [47], and by methods based on almost periodicity,
see e.g., [4, 22]. We refer to [29, Section 3] for a detailed account of the history of the
density formula until 2015. For non-abelian regular model sets as defined in [11], a
variant of density formula can be deduced using dynamical methods, see Remark 7.3
below.This subsumes results for the non-abelian setting from [29,Remark 3.3] and [30,
Section 9.3]. In the present paper we use Leptin densities in order to give a geometric
proof of the density formula for uniform regular model sets in amenable groups.
The method is via tilings with disjoint copies of translates of a relatively compact
fundamental domain arising from a uniform lattice. In Euclidean space, a similar
combinatorial proof was given by Schlottmann in [55]. We emphasize at this point
that the lattice in the cut-and-project scheme being cocompact is a crucial ingredient
in the line of argumentation. In particular, the density formula presented here is not
the most general version. We will also use Leptin densities in order to analyse almost
periodicity of a regularmodel set. This complements previous results in the σ -compact
abelian case [4, 25, 26, 36, 37].

The article is structured as follows. In the following section, we fix the class of
point sets, using ameasure-theoretic description. Our setting is that of right-translation
bounded measures. Section 3 is devoted to the notion of Leptin density and discusses
some of its properties. In Section. 4 we prove that Leptin densities coincide with
Beurling densities, when defined without resorting to an averaging net. In Section.
5, we discuss various notions of boundary and how they characterise averaging nets.
Moreover, we describe Beurling and Leptin densities via approximation by certain
Følner nets. In Section. 6, we compute the Leptin density of a cocompact lattice in
a locally compact amenable group via a tiling argument for fundamental domains.
The same strategy is used in Section. 7, where we give a geometric proof of the
density formula for (regular) model sets in amenable groups. In Section. 8, we discuss
uniform versions of almost periodicity with focus on a description avoiding nets. We
prove uniformmean almost periodicity of regularmodel sets using the notion of Leptin
density. For the convenience of the reader, Appendix A collects basic facts about nets,
Appendix B explains box decomposition arguments that are useful for monotilable
groups, instead of our more general approach. Appendix C describes the relation
between Leptin densities and the density notion in [24], which has inspired our work.

2 DeloneMeasures

Instead of counting the number of points in locally finite sets, we use the more general
setting of (positive) Borel measures. For some of our results we restrict to translation
bounded measures, a notion which encompasses uniformly discrete point sets. See the
discussion below.
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2.1 Left Translations Versus Right Translations

It is somewhat common in works on non-abelian aperiodic order to define uniform
discreteness and relative denseness for point sets via left translations, cf. e.g., [7, 9,
11, 12, 29, 48]. The same remark holds for works on sampling and interpolation, see
e.g., [20, 44], where uniform discreteness is called separatedness.

On the other hand, central aspects of classical dynamical systems theory around
amenable groups build on the Ornstein–Weiss quasi-tiling theory [49]. The latter is
based on left-invariant Følner sequences and almost tessellations by right translates
of Følner sets. Here, in the presence of a metric, tiles are isometric when dealing with
a right-invariant metric. Moreover, counting quantities defined via approximation by
left-asymptotically invariant (left-Følner) sets show desirable uniformity properties
with respect to translations from the right. This phenomenon has also been observed
in the theory of aperiodic order, see e.g., [6, 48, 51].

We thus have to make a choice whether we work with asymptotic invariance from
the left and uniformity of translations from the right, or with asymptotic invariance
from the right and uniformity of translations from the left. We decided to go with the
former since in classical dynamical systems theory, densities are often defined via left
Følner sequences. Moreover the classical theory about Følner sets and amenability,
which we use in our article, is traditionally formulated for left-Følner sets, see e.g.,
[50].

However, we point out that this choice is somewhat arbitrary, and we could likewise
have worked with asymptotic invariance from the right and uniformity properties from
the left. In fact, our results can be formulated and proven in the other realm as well.
To do so, point translations (e.g., in the definitions of Delone measures, Beurling
densities and Banach densities) have to be changed from right to left, while thickening
by compact sets must be changed from left to right (e.g., in the definitions of Leptin
densities, boundaries and Følner sets).

The alternate versions of many statements in the manuscript can be obtained by
passing from the measure ν to its inverse measure ν† defined by ν†(A) = ν(A−1),
using unimodularity. This will be indicated throughout themanuscript, see Remark 2.2
(iii), Remark 3.4 (iii) and Remark 5.7. For example, our main result on comparison
of densities (cf. Proposition 5.14) shows that the uniform densities of a (right) Delone
measure ν, see Definition 2.1, coincide with the corresponding uniform densities of
its inverse measure ν†, which is a left Delone measure, see Remark 2.2 (iii).

2.2 Definition of DeloneMeasures

Throughout the paper, we denote by G a locally compact topological group. When we
speak of a locally compact groupG in this work, we will implicitly assume thatG also
satisfies the Hausdorff property, i.e., any two points in G can be separated by disjoint
open neighborhoods. For simplicity we will call a positive Borel measure a measure
in the following. Recall that we decided to use right translations in our definitions.

Definition 2.1 (Delone measure) Let ν be a measure on a locally compact group G.
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(a) We call ν upper translation bounded if there exist Cu < ∞ and a compact
symmetric unit neighborhood Bu ⊆ G such that supx∈G ν(Bux) ≤ Cu .

(b) We call ν lower translation bounded if there exist Cl > 0 and a compact sym-
metric unit neighborhood Bl ⊆ G such that inf x∈G ν(Bl x) ≥ Cl .

(c) We call ν a Delone measure if ν is both upper and lower translation bounded.

Remark 2.2 (i) In the above definition, by convenience we restricted to compact
symmetric unit neighborhoods. Using covering arguments, it is readily seen
that ν is upper translation bounded iff supx∈G ν(Kx) < ∞ for every compact
K ⊆ G. In particular, upper translation boundedness implies local finiteness,
i.e., ν(A) is finite for every compact A. For a complex measure, upper and lower
translation boundedness can be defined via its (positive) variation measure.

(ii) Upper translation boundedness is traditionally called translation boundedness
[1]. The name Delone measure is motivated from weak Delone sets [33], i.e.,
from point sets that are weakly uniformly discrete and relatively dense. For point
sets�, weak uniform discreteness is equivalent to upper translation boundedness
of the associated point measure defined via ν(A) = card(� ∩ A). Relative
denseness is equivalent to lower translation boundedness of the associated point
measure. For point sets, uniform discreteness is also called separatedness, and
weak uniform discreteness is also called relative separatedness, see e.g., [20,
44].

(iii) As discussed in Section. 2.1, one might also consider versions of upper/lower
translation boundedness based on left translation. Then ν is left upper/lower
translation bounded if and only if ν† is (right) upper/lower translation bounded,
where ν†(A) = ν(A−1). In our applications in Section. 6, 7 and 8 we consider
Delone measures built from point sets � ⊆ G, i.e., ν(A) = card(� ∩ A), such
that ν is both left and right upper/lower translation bounded.

In this article, we will analyse various notions of density of a measure. Upper trans-
lation boundedness will result in finite upper density. Lower translation boundedness
will result in positive lower density. Examples of Delone measures are any (left or
right) Haar measure on a unimodular locally compact group G and, for a uniform
lattice L in G, the Haar measure on L viewed as a measure on G.

2.3 Standard Estimates on Unimodular Groups

For later use, we provide standard estimates for Delone measures on unimodular
groups. These are based on the following observation from [49]. In the sequel, we
denote byK = K(G) the collection of nonempty compact subsets of G. We denote by
AB the Minkowski product of A, B ⊆ G, i.e., we have AB = {ab : a ∈ A, b ∈ B}.
Lemma 2.3 Let G be a unimodular locally compact group with Haar measure m.
Consider any compact A ∈ K and any unit neighborhood B. Take {a1, . . . , an} ⊆ A
maximal such that Bai ∩ Ba j = ∅ for i �= j . Then

n⋃

i=1

Bai ⊆ BA , A ⊆
n⋃

i=1

B−1Bai .
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where the union on the lhs is disjoint. In particular we have

n · m(B) ≤ m(BA) , m(A) ≤ n · m(B−1B) .

Proof The first inclusion is obvious. For the second inclusion, assume a ∈ A satisfies
a /∈ ⋃n

i=1 B
−1Bai . Then for arbitrary fixed i ∈ {1, . . . , n} we have a /∈ B−1Bai .

Hence ba �= b′ai for all b, b′ ∈ B, which implies Ba ∩ Bai = ∅. As i ∈ {1, . . . , n}
was arbitrary, this contradictsmaximality. The inequalities for theHaarmeasure follow
from unimodularity. 
�

For an upper translation bounded measure we have the following upper bound.

Lemma 2.4 Let G be a unimodular locally compact group with Haar measure m. Let
ν be an upper translation bounded measure on G. Take a compact symmetric unit
neighborhood Bu ⊆ G and a finite number Cu such that ν(B2

u x) ≤ Cu for all x ∈ G.
We then have for any A ∈ K the estimate

ν(A) ≤ Cu

m(Bu)
· m(Bu A) .

Proof Fix any A ∈ K and consider the setting of Lemma 2.3 with B = Bu . We then
have

ν(A) ≤ ν

(
n⋃

i=1

B2
uai

)
≤ n · max

1≤i≤n
ν(B2

uai ) ≤ Cu

m(Bu)
· m(Bu A) .


�
For ameasure that is lower translation bounded, we have the following lower bound.

Lemma 2.5 Let G be a unimodular locally compact group with Haar measure m.
Let ν be a lower translation bounded measure on G. Take a compact symmetric unit
neighborhood Bl ⊂ G and a positive number Cl such that ν(Bl x) ≥ Cl for all x ∈ G.
We then have for any compact set A ∈ K the estimate

ν(Bl A) ≥ Cl

m(B2
l )

· m(A) .

Proof Fix any A ∈ K and consider the setting of Lemma 2.3 with B = Bl . We then
have

ν(Bl A) ≥ ν

(
n⋃

i=1

Blai

)
=

n∑

i=1

ν(Blai ) ≥ n · Cl ≥ Cl

m(B2
l )

· m(A) .


�
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3 Leptin Density of a Measure

We will define a certain uniform density that is based on the group invariant I (G)

introduced by Leptin [38], see also [50, Cor. 4.14]. Our notion is inspired by the work
of Gröchenig, Kutyniok and Seip in [24], see Appendix C for a discussion of the
connection.

3.1 Definition

LetG be a locally compact group. Take any left Haarmeasurem onG. LetK denote the
collection of nonempty compact subsets of G, and let Kp ⊆ K denote the collection
of compact subsets of G of positive left Haar measure. Consider

I (G) = sup
K∈K

inf
A∈Kp

m(K A)

m(A)
.

Note that in the definition of I (G) we may restrict to K being a compact symmetric
unit neighborhood without loss of generality. The quantity I (G) is a group invariant
as it does not depend on the choice of the left Haar measure. It exhibits the following
dichotomy.

Lemma 3.1 Let G be a locally compact group with left Haar measure m. Then either
I (G) = 1 or I (G) = ∞.

Proof Note that I (G) ≥ 1 by definition. For any compact unit neighborhood K ∈ Kp

consider

C(K ) = inf
A∈Kp

m(K A)

m(A)

and note that C(K 2) ≥ C(K )2. Assume now that I (G) > 1. Then there exist a
compact unit neighborhood K0 ∈ Kp and ε0 > 0 such that C(K0) > 1 + ε0 > 1.
This implies I (G) ≥ C(Kn

0 ) ≥ C(K0)
n → ∞. Thus I (G) = ∞. 
�

In the following, we use the convention 1/I (G) = I (G)−1 = 0 for I (G) = ∞.
Recall that a locally compact group G is amenable if it admits a left-invariant mean

on L∞(G). The following important result is well known, see e.g., [17, 23] and the
monograph [50].

Theorem 3.2 [50, Cor. 4.14] Let G be a locally compact group. Then G is amenable
if and only if I (G) = 1. 
�
We now define the notion of Leptin density of a measure. Although our definition is
given in a general setting, the notion of Leptin density seems most useful in amenable
unimodular locally compact groups. Moreover it will be infinite on measures that are
not upper translation bounded. This will be discussed below.
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Definition 3.3 (Leptin densities) Let G be a locally compact group. Let m be a left
Haar measure on G. For a measure ν on G consider

L−
ν = sup

K∈K
inf

A∈Kp

ν(K A)

m(A)
, L+

ν = inf
K∈K

sup
A∈Kp

ν(A)

m(K A)
.

We call L−
ν and L+

ν the lower Leptin density respectively the upper Leptin density of
the measure ν. If L−

ν = L+
ν = Lν , we call Lν the Leptin density of ν.

Remark 3.4 (i) In the above definition we may assume e ∈ K without loss of gen-
erality, due to left invariance of the Haar measure. The attribution to Leptin is
motivated by L−

m = I (G) and L+
m = I (G)−1. Note that the left Haar mea-

sure m has Leptin density 1 if and only if G is amenable, as a consequence of
Theorem 3.2.

(ii) If L−
ν , L+

ν ∈ (0,∞), then the lower and upper Leptin densities provide uniform
estimates which relate the measure ν to the Haar measure m. Namely, for every
ε > 0 there exists K ∈ K such that for all A ∈ Kp we have ν(K A) ≥ (L−

ν −
ε) · m(A). Also, for every ε > 0 there exists K ∈ K such that for all A ∈ Kp

we have ν(A) ≤ (L+
ν + ε) · m(K A).

(iii) As discussed inSection. 2.1, onemight alternatively use thickening from the right
instead of thickening from the left. Let us denote the corresponding densities
by R−

ν and R+
ν . If G is unimodular, then we have R−

ν = L−
ν†

and R+
ν = L+

ν†
.

In particular if ν satisfies ν = ν†, compare Remark 2.2 (iii), then both notions
coincide.

3.2 Some Properties of Leptin Densities

Let us analyse how Leptin densities behave with respect to translation. For a given
measure ν on G we consider its left translation ν �→ δt ∗ ν and its right translation
ν �→ ν ∗ δt for t ∈ G, where (δt ∗ ν)(A) = ν(t−1A) and (ν ∗ δt )(A) = ν(At−1).

Lemma 3.5 Let ν be ameasure ona locally compact groupG.Then theLeptin densities
of ν are invariant under left translation, i.e., we have for all t ∈ G that

L−
δt∗ν = L−

ν , L+
δt∗ν = L+

ν .

If G is assumed to be unimodular, then the Leptin densities of ν are also invariant
under right translation, i.e., we have for all t ∈ G that

L−
ν∗δt

= L−
ν , L+

ν∗δt
= L+

ν . 
�

Proof This is immediate from the definition of Leptin density. For illustration, observe

L−
ν∗δt

= sup
K∈K

inf
A∈Kp

(ν ∗ δt )(K A)

m(A)
= sup

K∈K
inf

A∈Kp

ν(K At−1)

m(At−1)

= sup
K∈K

inf
A∈Kp

ν(K A)

m(A)
= L−

ν ,

where we assumed G to be unimodular for the second equation. 
�
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Leptin densities reflect amenability of the underlying group. Whereas they are degen-
erate for Delone measures in non-amenable groups, they are well behaved in the
amenable case.

Lemma 3.6 Let ν be a measure on a locally compact group G. If G is amenable, then
L−

ν ≤ L+
ν .

Proof Assume L+
ν < L−

ν and pick a < b such that L+
ν < a < b < L−

ν . Since b < L−
ν ,

there exists Kb ∈ K such that for all A ∈ Kp we have b · m(A) ≤ ν(KbA). Since
a > L+

ν , there exists Ka ∈ K such that for all A ∈ Kp we have a · m(Ka A) ≥ ν(A).
Now fix arbitrary A ∈ Kp. We thus have b · m(A) ≤ ν(KbA) ≤ a · m(KaKbA).
Therefore, for all A ∈ Kp we have

m(KaKbA)

m(A)
≥ b

a
> 1 .

Using the notation of the proof of Lemma 3.1, this implies C(KaKb) > 1. Hence
I (G) = ∞, and G is not amenable by Theorem 3.2. 
�

For a converse of the above statement in the unimodular case, see Lemma 3.9.

3.3 Leptin Densities of DeloneMeasures in Unimodular Groups

In this subsection, we restrict to unimodular locally compact groups. The standard
estimates of Section. 2.3 have the following consequence.

Lemma 3.7 (Standard estimates) Let G be a unimodular locally compact group. Let ν
be any Delone measure on G. Take compact symmetric unit neighborhoods Bl , Bu ⊆
G and positive finite constants Cl ,Cu such that

Cl ≤ ν(Bl x) , ν(B2
u x) ≤ Cu

for all x ∈ G. Then the following estimates hold.

Cl

m(B2
l )

· I (G) ≤ L−
ν ≤ Cu

m(Bu)
· I (G) ,

Cl

m(B2
l )

· I (G)−1 ≤ L+
ν ≤ Cu

m(Bu)
· I (G)−1 .

Here the upper estimates rely on upper translation boundedness, and the lower esti-
mates rely on lower translation boundedness.

Proof We consider L−
ν first and use the estimate in Lemma 2.5 to obtain

L−
ν ≥ sup

K∈K
inf

A∈Kp

ν(Bl K A)

m(A)
≥ Cl

m(B2
l )

· sup
K∈K

inf
A∈Kp

m(K A)

m(A)
= Cl

m(B2
l )

· I (G) .
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For an upper estimate, we use the estimate in Lemma 2.4 to obtain

L−
ν = sup

K∈K
inf

A∈Kp

ν(K A)

m(A)
≤ Cu

m(Bu)
· sup
K∈K

inf
A∈Kp

m(BuK A)

m(A)
≤ Cu

m(Bu)
· I (G) .

The proofs of the assertions on L+
ν are analogous and use Lemma 2.4. 
�

The following lemma relates the notions of translation boundedness and Leptin
density. This also motivates the notion of Delone measure. Part (a) of the lemma is
analogous to [25, Cor. 2].

Lemma 3.8 Let G be a unimodular locally compact group, and let ν be any measure
on G. Then the following hold.

(a) ν is upper translation bounded if and only if L+
ν is finite.

(b) ν is lower translation bounded if and only if L−
ν is positive.

(c) ν is a Delone measure if and only if L−
ν is positive and L+

ν is finite.

Proof (c) follows from (a) and (b). The claims (a ⇒) and (b ⇒) follow from
Lemma 3.7. In order to prove the remaining claims, fix a Haar measure m on G
.
(a ⇐) Assume L+

ν < ∞. Then there exist a compact set K and a finite constant C
such that ν(A) ≤ Cm(K A) for all compact sets A of positive measure. Choosing
A = Bx for some compact symmetric unit neighbouhood B, the claim follows from
unimodularity of G.
(b ⇐) Assume that L−

ν > 0. Then there exist a compact set K and a positive constant
C such that ν(K A) ≥ Cm(A) for all compact sets A of positive measure. Choosing
A = Bx for some compact symmetric unit neighbouhood B, the claim follows from
unimodularity of G. 
�

Due to the above standard estimates, Leptin densities of Delone measures charac-
terise amenability of unimodular locally compact groups.

Lemma 3.9 Let G be a unimodular locally compact group. Let ν be any Delone mea-
sure on G. Then the following assertions are equivalent.

(i) G is amenable.
(ii) L−

ν ≤ L+
ν .

(iii) L−
ν is finite.

(iv) L+
ν is positive.

Proof The implication (i)⇒ (ii) is Lemma 3.6. For the implication (ii)⇒ (iii) assume
L−

ν = ∞. Then (ii) implies L+
ν = ∞. Hence by Lemma 3.7 we have I (G) = 0

and thus L−
ν = 0, which is a contradiction. For the implication (iii) ⇒ (iv), note that

(iii) excludes the case I (G) = ∞ by Lemma 3.7. In view of Lemma 3.1, we have
I (G) = 1. But then L+

ν > 0 by Lemma 3.7. For the implication (iv) ⇒ (i), note that
(iv) excludes the case I (G) = ∞ by Lemma 3.7, hence I (G) = 1 by Lemma 3.1.
Thus, G is amenable by Theorem 3.2. 
�



Journal of Fourier Analysis and Applications (2022) 28 :85 Page 11 of 36 85

4 Leptin Densities and Beurling Densities

4.1 Leptin Densities and Beurling Densities

Often uniform densities are used, which are invariant under shifting the averaging
sequence or the measure. These densities are sometimes called Beurling densities or
Beurling-Landau densities, see [8, p. 346] and [34, p. 47] for G = R

d . In ergodic
theory they are known by the name Banach densities. In fact these densities can be
defined without resorting to an averaging sequence. For discrete groups, this is studied
in [16]. The case G = R

d is considered in [21] by a linear functional approach.

Definition 4.1 (Beurling densities) Assume that G is a unimodular locally compact
group with left Haar measure m. Let ν be a measure on G and consider

B−
ν = sup

A∈Kp

inf
s∈G

ν(As)

m(A)
, B+

ν = inf
A∈Kp

sup
s∈G

ν(As)

m(A)
.

We call B−
ν and B+

ν the lower Beurling density respectively the upper Beurling density
of the measure ν. If B−

ν = B+
ν = Bν , we call Bν the Beurling density of ν.

In the following, we will suppress the subscript ν if the reference to the measure is
clear.

Remark 4.2 Note that B+
ν < ∞ if ν is upper translation bounded, as a consequence of

Lemma 2.4. The attribution to Beurling is motivated by Proposition 5.14 below, which
states that, for unimodular groups, the above densities coincide with a definition based
on averaging.

Let us discuss the relation between Beurling densities and Leptin densities. Beyond
the amenable situation, these notions differ. Indeed, for any left Haar measure m on
a unimodular non-amenable group G, we have B+

m = B−
m = 1, but L−

m = ∞ and
L+
m = 0. It follows from the next theorem that, for a locally finite measure ν on

a unimodular amenable group, the apriori different notions of Beurling density and
Leptin density coincide. Precisely, the lower Beurling density of ν coincides with its
lower Leptin density and the upper Beurling density of ν coincides with its upper
Leptin density.

Theorem 4.3 Assume that G is a unimodular locally compact group. Consider any
locally finite measure ν on G. For the densities associated to ν we then have

B−
ν ≤ L−

ν ≤ B−
ν · I (G) , I (G)−1 · B+

ν ≤ L+
ν ≤ B+

ν .

In particular if G is additionally amenable, then we have B−
ν = L−

ν ≤ L+
ν = B+

ν .

4.2 Proof of Theorem 4.3

We will treat the four inequalities separately. The inequalities L− ≤ B− · I (G) and
B+ ≤ L+ · I (G) follow from elementary estimates.
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Proof of L− ≤ B− · I (G) Consider any A ∈ Kp, any nonempty K ∈ K and any
s ∈ G. We have

ν(K As)

m(A)
= m(K A)

m(A)
· ν(K As)

m(K A)
.

Taking the infimum over A ∈ K on the lhs and using unimodularity of G, we see that
the lhs is independent of s ∈ G. Hence we may take the infimum over s on the rhs and
arrive at

inf
A∈Kp

ν(K A)

m(A)
≤ m(K A)

m(A)
· inf
s∈G

ν(K As)

m(K A)
≤ m(K A)

m(A)
· B− .

As the lhs is independent of A ∈ Kp, we may take the infimum over A on the rhs and
the supremum over K on both sides to conclude

L− = sup
K∈K

inf
A∈Kp

ν(K A)

m(A)
≤ sup

K∈K
inf

A∈Kp

m(K A)

m(A)
· B− ≤ I (G) · B− .


�
Proof of I (G)−1 · B+ ≤ L+ Consider any A ∈ Kp, nonempty K ∈ K and any s ∈ G
and note that by unimodularity of G we have

m(A)

m(K A)
· ν(As)

m(A)
= ν(As)

m(K A)
≤ sup

A′∈Kp

ν(A′)
m(K A′)

,

where the rhs is independent of s ∈ G. Hence we may take the supremum over s on
the lhs and arrive at

m(A)

m(K A)
· B+ ≤ m(A)

m(K A)
· sup
s∈G

ν(As)

m(A)
≤ sup

A′∈Kp

ν(A′)
m(K A′)

.

As the rhs is independent of A ∈ Kp, we may take the supremum over A on the lhs
and the infimum over K on both sides to conclude I (G)−1 · B+ ≤ L+. 
�

The proofs of B− ≤ L− and of L+ ≤ B+ are more delicate. We will follow ideas
from [16, Lemma 2.9]. Note the following two elementary results.

Lemma 4.4 Let G be a unimodular locally compact group. Fix a left Haar measure
m on G and let ν be a locally finite measure on G. Then we have for any compact sets
A, B ⊆ G that ∫

A
ν(aB) dm(a) =

∫

B
ν(Ab) dm(b) . (4.1)
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Proof We evaluate the lhs and use Tonelli’s theorem, which is applicable as ν is
assumed to be locally finite, and A and B are compact sets. We obtain

∫

A
ν(aB) dm(a) =

∫

A

∫

aB
dν(x) dm(a) =

∫

G

∫

A∩x B−1
dm(a) dν(x)

=
∫

G
m(A ∩ x B−1) dν(x) ,

where we used x ∈ aB iff a ∈ x B−1. Evaluating the rhs and using Tonelli’s theorem
yield

∫

B
ν(Ab) dm(b) =

∫

B

∫

Ab
dν(x) dm(b) =

∫

G

∫

B∩A−1x
dm(b) dν(x)

=
∫

G
m(B ∩ A−1x) dν(x) ,

where we used x ∈ Ab iff b ∈ A−1x . Now equality follows from unimodularity and
left invariance of the Haar measure. Indeed we have

m(B ∩ A−1x) = m(B−1 ∩ x−1A) = m(x B−1 ∩ A) .


�
Lemma 4.5 Let G be a unimodular locally compact group. Fix a left Haar measure
m on G and let ν be a locally finite measure on G. Let A, B ⊆ G be compact sets.
Assume that there is a positive finite constant C = C(A, B) such that for all b ∈ B
we have

ν(Ab) ≥ C · m(A) .

Then there exists a ∈ A such that

ν(aB) ≥ C · m(B) .

Remark 4.6 In the two inequalities of the above lemma, replace “≥” by “≤”. Then the
resulting statement remains true, as the following proof shows.

Proof Let A, B be compact sets and assume that the assertion of the lemma is wrong.
Then we have for all a ∈ A that ν(aB) < C ·m(B). Integrate this inequality to obtain

∫

A
ν(aB) dm(a) < C · m(A) · m(B) . (4.2)

On the other hand, the inequality in the assumption of the lemma can be integrated to
yield ∫

B
ν(Ab) dm(b) ≥ C · m(A) · m(B) . (4.3)
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But the left hand sides of the above two inequalities are equal due to Lemma 4.4. This
is contradictory. 
�
Proof of B− ≤ L− Recall from Definition 4.1 that

B− = sup
A∈Kp

inf
s∈G

ν(As)

m(A)
, L− = sup

K∈K
inf

A∈Kp

ν(K A)

m(A)
.

Fix arbitrary ε > 0 and take A ∈ Kp such that for all s ∈ G we have

B− − ε ≤ ν(As)

m(A)
.

Let now S ∈ Kp be arbitrary. Recall that m(A) · (B− − ε) ≤ ν(As) for all s ∈ S.
Hence by Lemma 4.5 there exists a ∈ A such thatm(S) · (B− −ε) ≤ ν(aS) ≤ ν(AS).
Hence we have

B− − ε ≤ ν(AS)

m(S)
.

As S ∈ Kp and ε > 0 were arbitrary, the claim follows. 
�
Proof of L+ ≤ B+ Recall from Definition 4.1 that

L+ = inf
K∈K

sup
A∈Kp

ν(A)

m(K A)
, B+ = inf

A∈Kp

sup
s∈G

ν(As)

m(A)
.

Assume without loss of generality that B+ < ∞. Fix arbitrary ε > 0 and take A ∈ Kp

such that for all s ∈ G we have

ν(As)

m(A)
≤ B+ + ε .

Let now S ∈ Kp be arbitrary. Since ν(At) ≤ (B+ + ε) · m(A) for all t ∈ A−1S, by
Remark 4.6 there exists a ∈ A such that ν(aA−1S) ≤ (B+ + ε) · m(A−1S). Since
S ⊆ aA−1S, we have

ν(S)

m(A−1S)
≤ B+ + ε .

As S ∈ Kp and ε > 0 were arbitrary, the claim follows. 
�

5 Følner Conditions and Følner Nets

As for Følner sequences or nets in locally compact groups there are various definitions
in the literature depending on the definition of boundary. In this sectionwe clarify some
subtle connections, most of which can be found in the literature.
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5.1 Various Boundaries

The geometric intuition behind amenability is that, for suitable sets A, the measure of
the boundary of A is small when compared to the measure of A. Traditionally this is
formalised using the so-called Følner boundaries

δK A := K A� A = (
K A ∩ Ac) ∪ (

(K A)c ∩ A
)
.

Here and also in the sequel of this text, � denotes the symmetric set difference, i.e.,
A� B = (A ∩ Bc) ∪ (Ac ∩ B). We write Ac := G \ A for the complement set of A.

As we discuss in the following sections, it is often useful to consider different
notions of boundaries such as the van Hove boundary, defined as

∂K A := (K A ∩ Ac) ∪ (K−1Ac ∩ A)

or the strong Følner boundary, defined as

∂K A := K−1A ∩ K−1Ac = {g ∈ G : Kg ∩ A �= ∅ ∧ Kg ∩ Ac �= ∅}

for sets K , A ⊆ G.

Remark 5.1 The attribution to van Hove is due to Schlottmann [56]. Van Hove bound-
aries are often used in model set analysis, see [3] and [48, Sec. 2] for further
background. Strong Følner boundaries have been introduced and used by Ornstein
and Weiss in [49]. The name strong Følner boundary is coined in [51]. Also note the
slightly different definition in [27], which is more in line with the notion of van Hove
boundary, compare [27, Remark 2.2(ii)]. Such boundaries naturally arise in tiling prob-
lems leading to sub- or almost additive convergence results beyond Euclidean space,
cf. e.g., [14, 27, 32, 39, 51].

Note that the van Hove boundary and the strong Følner boundary are both mono-
tonic in K , in contrast to the classical Følner boundary. Strong Følner boundaries
additionally satisfy the simple relation L∂K A ⊆ ∂K L−1 A, which is very convenient
in calculations. Let us collect some relations between the three types of boundary for
later use.

Lemma 5.2 (Boundary comparison) Let G be a locally compact group. Let K ⊆ G
be any symmetric unit neighborhood and A ⊆ G be arbitrary. Then

∂K A ⊆ ∂K A ⊆ ∂K 2 A , δK A ⊆ ∂K A ⊆ K δK A , ∂K (K A) ⊆ δK
2
A .

Remark 5.3 The statements comparing the boundaries ∂K and δK can be found in [32,
Lemma 2.2]. The inclusion ∂K (K A) ⊆ δK

2
A has been observed in [49] and leads to

the uniform Følner condition (UFC) in [49, p. 19]. We provide the proofs for the sake
of self-containment.
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Proof Let K = K−1 be any symmetric unit neighborhood. We have to show five
inclusions which we enumerate by (i)–(v) in its order of appearance in the statement.
(i) To show ∂K A ⊆ ∂K A, let x ∈ K A∩ K Ac and assume x /∈ K A∩ Ac. Then x ∈ A,
which implies x ∈ K A ∩ K Ac ∩ A = A ∩ K Ac ⊆ A ∩ K Ac ⊆ ∂K A.
(ii) Noting Ac ⊆ K Ac we have K A ∩ Ac ⊆ K A ∩ K Ac ⊆ K 2A ∩ K 2Ac. Likewise
we have K Ac ∩ A ⊆ KK Ac ∩ K A ⊆ K 2Ac ∩ K 2A. We thus have ∂K A ⊆ ∂K 2 A.
(iii) As (K A)c ⊆ K Ac, we have δK A = (K A ∩ Ac) ∪ ((K A)c ∩ A) ⊆ (K A ∩ Ac) ∪
(K Ac ∩ A) ⊆ ∂K A.
(iv) We have ∂K A = K A∩ K Ac ∩ (A∪ Ac) = (A∩ K Ac)∪ (K A∩ Ac). As we have
A ∩ K Ac ⊆ K (K A ∩ Ac), this implies ∂K A ⊆ K δK A.
(v)Wehave ∂K (K A) = K (K A)∩K (K A)c = K 2A∩K (K A)c ⊆ K 2A∩Ac ⊆ δK

2
A.

�

Let us denote by Ks0 ⊆ K the collection of compact sets which are symmetric
and contain the identity. The following proposition characterizes amenability. It is
well-known, we give a proof for the convenience of the reader.

Proposition 5.4 Let G be a locally compact group with left Haar measure m. Then
the following are equivalent.

(i) For all K ∈ K we have inf A∈Kp m(K A)/m(A) = 1.
(ii) For all K ∈ K we have inf A∈Kp m(δK A)/m(A) = 0.
(iii) For all K ∈ K we have inf A∈Kp m(∂K A)/m(A) = 0.
(iv) For all K ∈ K we have inf A∈Kp m(∂K A)/m(A) = 0.

In fact the claimed equivalences continue to hold if in any of the four statements (i) to
(iv) the condition “K ∈ K” is replaced by “K ∈ Ks0”.

Proof We will first prove the claimed equivalences for K ∈ Ks0. The equivalence of
(i) and (ii) is a direct consequence of A ∪̇ δK A = K A, which holds as e ∈ K . For (ii)
⇒ (iii), let ε > 0 be arbitrary and choose A′ ∈ Kp such that m(δK

2
A′)/m(A′) < ε.

Letting A = K A′, we then estimate ∂K A = ∂K (K A′) ⊆ δK
2
A′. As we have m(A) =

m(K A′) ≥ m(A′), we obtainm(∂K A)/m(A) ≤ m(δK
2
A′)/m(A′) < ε. As ε > 0 was

arbitrary, then claim follows.
The implications (iii)⇒ (iv) and (iv)⇒ (ii) follow from the comparison lemma 5.2.

Indeed that lemma states ∂K A ⊆ ∂K 2 A and δK A ⊆ ∂K A.
Consider now the general case K ∈ K in the above statements. Then statements (i),

(i i i), (iv) hold if these statements hold for K ∈ K0s , as the corresponding measure
ratios are monotonic in K . With respect to (i i), note δK A ⊆ ∂K−1∪{e}A. Hence (i i)
follows from (i i i), which is already established. 
�

5.2 Følner Nets

Consider a Delone measure ν on an amenable locally compact group G. In that case,
one might ask whether there exists a sequence (An)n∈N of compact sets in G such that
the Leptin density L−

ν is realised on that sequence, instead of taking the infimum over
all A ∈ Kp. Natural candidates are Følner sequences, which exist in any σ -compact
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amenable group. For general locally compact groups, amenability is characterized
by the existence of Følner nets. We refer to [50, Chapter 4] for the construction of
Følner nets. For the convenience of the reader, background about nets is collected in
Appendix A.

Definition 5.5 (Følner net) Let G be an amenable locally compact group with left
Haar measure m. Let (I,≺) be a directed poset and let (Ai )i∈I ∈ (Kp)

I. Then (Ai )i∈I
is called a Følner net if

sup
K∈K

lim
i∈I

m(δK Ai )

m(Ai )
= 0 .

Remark 5.6 Note that any subnet of a Følner net is a Følner net. If G is unimodular
and (Ai )i∈I is a Følner net, then (Ai xi )i∈I is a Følner net for every net (xi )i∈I ∈ GI.
This is a direct consequence of right-invariance of the Haar measure in that case. For
σ -compact amenable G, there always exists a Følner sequence. See the proof of [50,
Theorem 4.16].

Clearly, one can define alternative Følner nets or sequences using ∂K or ∂K as a
notion of boundary. This has lead to the terminology of van Hove sequences or strong
Følner sequences in the literature. Let us introduce these notions in the general context
of nets. Namely, (Ai )i∈I ∈ (Kp)

I is called strong Følner net, respectively a van Hove
net if

sup
K∈K

lim
i∈I

m
(
∂K Ai

)

m(Ai )
= 0, respectively sup

K∈K
lim
i∈I

m
(
∂K Ai

)

m(Ai )
= 0.

Remark 5.7 Concerning the discussion in Section. 2.1, note that for a unimodular
amenable group with left (strong) Følner net (Fi ), a right (strong) Følner net is given
by (F−1

i ). Note that for many groups of interest there are symmetric Følner sequences,
which are invariant from the left and from the right simultaneously. This is for instance
the case for homogeneous Lie groups (for a beautiful exposition see [19, Chapter 3])
endowed with a left-invariant (homogeneous) metric. For those groups one can con-
sider the sequence (Bn), with the Bn being the closed balls of radius n around the
identity, cf. [6, Proposition 4.4].

It is obvious from the boundary comparison Lemma 5.2 that the notions of strong
Følner net and van Hove net coincide, a fact that has already been remarked in [27,
Remark 2.2(ii)]. In the remainder, we will mostly work with strong Følner boundaries.
It is easy to see that every strong Følner net is a Følner net, since δK A ⊆ ∂K−1∪{e}A
for all K ∈ K and each A ∈ Kp. An example of a Følner sequence (An)n∈N in G = R

that is not a strong Følner sequence can be provided by compact nowhere dense sets
An ⊂ [0, n] of Lebesgue measure n− 1/n, see [62]. An example in G = R

d has been
given in [60, Appendix, Ex. 3.4]. The next proposition characterizes strong Følner
nets. Whereas parts of it are known, we give a proof for the convenience of the reader.
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Proposition 5.8 (Characterization of strong Følner nets) Let G be an amenable locally
compact group with left Haar measure m. Let (Ai )i∈I ∈ KI

p. Then the following are
equivalent.

(i) (Ai )i∈I is a strong Følner net.
(ii) (Ai )i∈I is a Følner net and there is an open unit neighborhood O such that

limi∈I
m
(⋂

o∈O oAi

)

m(Ai )
= 1.

(iii) (Ai )i∈I is a Følner net and for every compact symmetric unit neighborhood K

limi∈I
m
(⋂

k∈K kAi

)

m(Ai )
= 1.

(iv) For all K , L ∈ K we have limi∈I m(LδK Ai )
m(Ai )

= 0.

(v) For all K , L ∈ K we have limi∈I m(L∂K Ai )
m(Ai )

= 0.

(vi) For all K , L ∈ K we have limi∈I m(L∂K Ai )
m(Ai )

= 0.

In fact the same equivalences (iv), (v) and (vi) hold if “K , L ∈ K” is replaced by
“K , L ∈ Ks0” in any of the above statements. In particular, (Ai )i∈I is a van Hove
net (sequence) if and only if it is a strong Følner net (sequence). If G is additionally
assumed to be discrete, then every Følner net (sequence) is also a strong Følner net
(sequence).

Remark 5.9 The equivalence (i)⇔(ii) already appears in [60, Appendix (3.K)]. It
shows that Følner nets are strong Følner nets if the they display some asymp-
totic invariance with respect to small topological pertubations. In this situation,
one gets with (iii) asymptotic invariance for the “inner part” Ai \ IntK (Ai ), where
IntK (A) = {g ∈ A : Kg ⊆ A} for a compact symmetric unit neighborhood K
and a set A. The observation that for discrete groups, the notions of a Følner net (or
sequence) and a strong Følner net (or sequence) are equivalent has also been observed
in [32, Proposition 2.3] and [14, Proposition 2.4]. Note also that the authors deal in
[14] with semigroups and with boundary defined as the inner part of the strong Følner
boundary, i.e., ∂̃K A := A \ IntK (A).

Proof We have indicated above that every strong Følner net is a Følner net. In order to
complete the proof of the implication (i)⇒(ii), let O be an open relatively compact,
symmetric unit neighborhood. Since Ai \ ⋂

o∈O oAi ⊆ ∂O(Ai ), and since (Ai ) is a
strong Følner net by (i), we obtain

lim inf
i∈I

m
(⋂

o∈O oAi
)

m(Ai )
≥

(
1 − lim sup

i∈I
m

(
∂O Ai

)

m(Ai )

)
= 1.
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We turn to the proof of (ii)⇒(iii). Let K be any compact symmetric unit neighborhood.
We find a finite cover of K by left-translates s j O . Then

lim sup
i∈I

m
(
Ai \ ⋂

k∈k k Ai
)

m(Ai )
≤ lim sup

i∈I

m
(
Ai \ ⋂

j
⋂

o∈O s j oAi
)

m(Ai )

≤ lim sup
i∈I

∑

j

m
(
s−1
j Ai \ ⋂

o∈O oAi
)

m(Ai )

≤
∑

j

(
lim sup

i∈I

m
(
s−1
j Ai � Ai

)

m(Ai )
+ lim sup

i∈I
m

(
Ai \ ⋂

o∈O oAi
)

m(Ai )

)

= 0.

Note that we used for the last equality that (Ai ) is a Følner net and the assumption on
O . This shows the assertion (iii). We turn to the proof of the implication (iii)⇒(i). By
Lemma 5.2 and the fact that (Ai ) is a Følner net,

lim sup
i∈I

m
(
∂K Ai

)

m(Ai )
≤ lim sup

i∈I
m

(
K (K Ai \ Ai ))

m(Ai )
≤ lim sup

i∈I
m

(
K 2Ai \ ⋂

k∈K kAi
)

m(Ai )

≤ lim sup
i∈I

m(K 2Ai \ Ai )

m(Ai )
+ lim sup

i∈I
m(Ai \ ⋂

k∈K kAi )

m(Ai )

= 0.

Due to themonotonicity of the strongFølner boundary in K , the same is true for general
K ∈ K. Hence (Ai ) is a strong Følner net. The equivalence of (i) and (vi) is due to
the relation L∂K A ⊆ ∂K L−1 A for general compact sets K , L, A. If restricting oneself
to compact symmetric unit neighborhoods K and L , the equivalences (iv)⇔(v)⇔(vi)
follow from the boundary comparison lemma, Lemma 5.2. Due to monotonicity, these
assertions are equivalentwhen formulated for general K , L ∈ K. Assuming in addition
thatG is discrete, then the implication (ii)⇒ (i) shows that every Følner net is a strong
Følner net. 
�

It is well known that existence of a Følner sequence implies existence of a strong
Følner sequence, cf. [51, Lemma 2.6] or [62, Lemma 2.2]. Here we describe how a
strong Følner net can be constructed from any Følner net by a simple “thickening
procedure”.

Proposition 5.10 (Construction of strong Følner nets) Let G be an amenable locally
compact group with left Haar measure m. If (Ai ) is a Følner net and L is a compact
symmetric unit neighborhood, then the net (A′

i ) with A′
i := L Ai is a strong Følner

net.

Proof We first note that (A′
i ) is a Følner net which follows from the Følner property

of (Ai ) and the inclusion

A′
i � K A′

i ⊆ (
L Ai � Ai

) ∪ (
Ai \ K Ai

) ∪ (
K LAi \ Ai

)



85 Page 20 of 36 Journal of Fourier Analysis and Applications (2022) 28 :85

for arbitrary K ∈ K. Further, take an open symmetric unit neighborhood O ⊆ L .
We claim that Ai ⊆ ⋂

o∈O oA′
i . Indeed, for any a ∈ Ai and each o ∈ O , we have

a = oo−1a ⊆ oA′
i . Using that (Ai ) is a Følner net, we obtain

lim inf
i∈I

m
(⋂

o∈O oA′
i

)

m(A′
i )

≥ lim inf
i∈I

m(Ai )

m(L Ai )
= 1.

Now the claim follows from the previous proposition, equivalence (i)⇔(ii). 
�
The following lemma shows that (left)-asymptotic invariance observed via strong

Følner nets carries over to upper translation bounded measures. For σ -compact LCA
groups, weaker versions of it are well known, see e.g., [36, Proposition 9.1] and [48,
Lemma 2.2, Proposition 5.1].

Lemma 5.11 Let G be a unimodular amenable locally compact group with Haar
measure m. Let (I,≺) be a directed poset and let (Ai )i∈I be a strong Følner net. Let
ν be a measure on G that is upper translation bounded. We then have

sup
K ,L∈K

lim
i∈I sups∈G

ν(LδK Ai s)

m(Ai )
= sup

K ,L∈K
lim
i∈I sups∈G

ν(L∂K Ai s)

m(Ai )

= sup
K ,L∈K

lim
i∈I sups∈G

ν(L∂K Ai s)

m(Ai )
= 0 .

Proof We use Lemma 2.4 to transfer the properties in Proposition 5.8 to the measure
ν. For instance, for the strong Følner boundary this yields

lim
i∈I sups∈G

ν(L∂K Ai s)

m(Ai )
≤ lim

i∈I
Cu

m(Bu)

m(BuL∂K Ai )

m(Ai )
= 0 ,

where we used right invariance of the Haar measure in the estimate. 
�

5.3 Densities on Følner Nets in Unimodular Groups

In this section, we restrict ourselves to amenable locally compact groups that are
unimodular. We define densities of a measure via averaging with respect to a Følner
net.

Definition 5.12 (A-densities) LetG be a unimodular amenable locally compact group
with left Haar measure m. Let ν be a measure on G, and let A = (Ai )i∈I be a strong
Følner net in G. We define the upper and lower densities of ν with respect to A by

D−
A = lim inf

i∈I
1

m(Ai )
ν(Ai ) , D+

A = lim sup
i∈I

1

m(Ai )
ν(Ai )

B−
A = lim inf

i∈I
1

m(Ai )
inf
s∈G ν(Ai s) , B+

A = lim sup
i∈I

1

m(Ai )
sup
s∈G

ν(Ai s) .
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If D−
A = D+

A = DA, we say that ν has A-density DA.

Remark 5.13 We have 0 ≤ B−
A ≤ D−

A ≤ D+
A ≤ B+

A ≤ ∞ by definition. If ν is upper
translation bounded, we have B+

A < ∞. If ν is lower translation bounded, we have
B−
A > 0.

Proposition 5.14 Assume that G is a unimodular amenable locally compact group
with left Haar measure m. Let ν be an upper translation bounded measure on G. Take
any strong Følner net A = (Ai )i∈I in G. We then have

B−
A = lim

i∈I
1

m(Ai )
inf
s∈G ν(Ai s) , B+

A = lim
i∈I

1

m(Ai )
sup
s∈G

ν(Ai s) .

Moreover we have

0 ≤ L− = B− = B−
A ≤ D−

A ≤ D+
A ≤ B+

A = B+ = L+ < ∞ ,

where L−, L+ are the Leptin densities from Definition 3.3, and where B−, B+ are
the Beurling densities from Definition 4.1. In particular, the aboveA-densities do not
depend on the choice of the strong Følner sequence.

Remark 5.15 In the following proof, note that upper translation boundedness and the
strong version of the Følner property only enter in showing that B−

A = B−. Assuming
only local finiteness of ν we still have B−

A ≤ B− = L− ≤ L+ = B+ ≤ B+
A.

Proof Consider

C−
A = lim sup

i∈I
1

m(Ai )
inf
s∈G ν(Ai s) , C+

A = lim inf
i∈I

1

m(Ai )
sup
s∈G

ν(Ai s) .

(i) Note that for each i ∈ I we have

1

m(Ai )
inf
s∈G ν(Ai s) ≤ sup

A∈Kp

1

m(A)
inf
s∈G ν(As) = B− ,

which gives C−
A ≤ B−. If L− ≤ C−

A, thenC−
A = B− = L− by Theorem 4.3. To show

L− ≤ C−
A, we take arbitrary d < L−. Take K ∈ K such that for all A ∈ Kp we have

d ≤ ν(K A)/m(A). Choosing A = Ai s for i ∈ I we obtain the estimate

d ≤ ν(K Ai s)

m(Ai )
≤ ν(Ai s)

m(Ai )
+ ν((δK Ai )s)

m(Ai )
,

where we used the estimate K As ⊆ As ∪ (δK A)s, and the unimodularity of G. Now
upper translation boundedness of ν, right invariance of theHaarmeasure and the strong
Følner property of A yield d ≤ C−

A, cf. Lemma 5.11. As d < L− was arbitrary, we
infer L− ≤ C−

A. Therefore, we have C−
A = B− = L−.
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(ii) Since for all i ∈ I we have

1

m(Ai )
sup
s∈G

ν(Ai s) ≥ inf
A∈Kp

1

m(A)
sup
s∈G

ν(As) = B+ ,

we get B+ ≤ C+
A. If C+

A ≤ L+, then C+
A = B+ = L+ by Theorem 4.3, which uses

local finiteness of ν. Let us thus show L+ ≥ C+
A. Assume without loss of generality

L+ < ∞. Assume d > L+ for some finite d. Take K ∈ K such that for all A ∈ Kp we
haved ≥ ν(A)/m(K A). Choosing A = Ai s for i ∈ Iweobtainwith the unimodularity
of G the estimate

d ≥ ν(Ai s)

m(K Ai )
.

By the Følner property ofA this implies d ≥ C+
A. As d > L+ was arbitrary, we infer

L+ ≥ C+
A. Therefore, we have C+

A = B+ = L+.
(iii) By (i) and (ii), the values C−

A and C+
A are independent of the choice of the

strong Følner net. This means that C−
A and C+

A are limits. In particular this implies
C−
A = B−

A ≤ D−
A ≤ D+

A ≤ B+
A = C+

A. Also note B+ < ∞ by upper translation
boundedness of ν, see Remark 4.2. 
�

6 Leptin Densities for Lattice Point Counting

In the sequel, we consider groups G that admit a uniform lattice �, i.e., a discrete sub-
group � ⊆ G that is also co-compact. Beyond the abelian situation, lattices in locally
compact groups are defined as discrete subgroups permitting a finite G-invariant mea-
sure on the quotient space. These subgroups are not necessarily uniform (co-compact).
However, there are large classes of amenable groups, such as nilpotent locally compact
groups, where this is the case. For an in-depth study of this and related phenomena via
the so-called property (M), we refer to [5]. Recall that existence of a uniform lattice
in G implies that G is unimodular, see e.g., [15, Theorem 9.1.6]. A uniform lattice
is both left-uniformly discrete and right-uniformly discrete. Analogously, a uniform
lattice � in G is both left-relatively dense and right-relatively dense. Hence it admits
a measurable, relatively compact left-fundamental domain and also a measurable, rel-
atively compact right-fundamental domain. For a proof, see Theorem 1 and Remark 6
in [18]. Since we are only interested in the Haar measure of a fundamental domain, we
can make this choice freely and fix a relatively compact measurable left-fundamental
domain F , i.e., we have �F = G and F−1γ1 ∩ F−1γ2 �= ∅ for some γ1, γ2 ∈ �

implies γ1 = γ2. Moreover, for any γ ∈ �, we observe that

card(� ∩ F−1γ ) = card(�γ −1 ∩ F−1) = card(� ∩ F) = 1. (6.1)

This fact will be used below in the proofs of the density formulas.
When identified with the Delone measure δ� = ∑

γ∈� δγ , uniform lattices � have a
positive finite Leptin density, which equals the reciprocal of its covolume covol(�).
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Recall that the covolume is defined as the Haar measure of any measurable relatively
compact (left or right) fundamental domain.

Proposition 6.1 (Density of a uniform lattice) Let � be a uniform lattice in a unimod-
ular amenable locally compact group G. Then � has positive finite Leptin density

L� := Lδ� = 1

m(F)
= 1

covol(�)
,

where F is any measurable relatively compact (left or right) fundamental domain for
�.

Proof Fix a measurable relatively compact left-fundamental domain F of �. Define
the compact set K = F−1F . Fix an arbitrary compact set A ⊆ G and consider

�A = {γ ∈ � : A ∩ F−1γ �= ∅} , AF =
⋃

γ∈�A

F−1γ .

Note that �A is a finite set and AF is a disjoint union. We have

A ⊆ AF ⊆ K A . (6.2)

For the second inclusion, assume that x ∈ AF . Then x ∈ F−1γ for some γ ∈ �A

and there exists some a ∈ A such that a ∈ F−1γ . Hence x ∈ F−1γ ⊆ F−1Fa ⊆
F−1FA ⊆ K A. With equality (6.1) we thus have

m(A) ≤ m(AF ) = m(F) · card(�A) = m(F) ·
∑

γ∈�A

card(� ∩ F−1γ )

= m(F) · card(� ∩ AF ) ≤ m(F) · card(� ∩ K A) = m(F) · δ�

(
K A

)
.

By Definition 3.3 this implies L− ≥ 1/m(F). We can similarly estimate

m(K A) ≥ m(AF ) = m(F) · card(�A) = m(F) · card(� ∩ AF ) ≥ m(F) · δ�(A) .

This leads to L+ ≤ 1/m(F) by Definition 3.3. Finally, since G is amenable, we can
use Lemma 3.6 in order to conclude L− = L+. This and the fact that the expression
1/m(F) does not depend on F show that� has Leptin density 1/covol(�) = 1/m(F).

�

The next result, whose proof uses a standard argument [59, Lemma 2], will be
needed in the following section.

Lemma 6.2 Let G be a locally compact group and let � be a uniform lattice in G.
Consider any measurable relatively compact set U ⊆ G such that �U = G. Then U
contains a measurable relatively compact left-fundamental domain for � in G.
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Proof Let F be a measurable relatively compact left-fundamental domain for � in G.
By relative compactness of both F and U , the set �U = {γ ∈ � : U ∩ γ F �= ∅} is
finite, andwe can thuswrite�U = {γ1, . . . , γn}. Define Fk = F∩γ −1

k U ⊆ F and note

F = ⋃n
k=1 Fk as �U = G. Define F ′

1 = γ1F1 and F ′
k = (γk Fk) \ ⋃k−1

j=1(�Fj ) ⊆ U

for k ≥ 2 and note that FU := ⋃̇n
k=1F

′
k is a disjoint union. Furthermore, FU is a

measurable relatively compact set which satisfies FU ⊆ U . We show that FU is a
left-fundamental domain for �. Consider any z ∈ G and choose k ∈ {1, . . . , n} such
that z ∈ �Fk but z /∈ �Fj for all j < k. Then z ∈ �F ′

k ⊆ �FU and thus �FU = G.
Assume F−1

U γ ′
1 ∩ F−1

U γ ′
2 �= ∅ for some γ ′

1, γ
′
2 ∈ �. Then F ′−1

r γ ′
1 ∩ F ′−1

s γ ′
2 �= ∅ for

some r and some s. We may assume r ≤ s without loss of generality. By construction
of F ′

s we then have r = s. Since F ′
r ⊆ γr F , we have F−1γ −1

r γ ′
1 ∩ F−1γ −1

r γ ′
2 �= ∅.

Since F is a left-fundamental domain for �, this implies γ ′
1 = γ ′

2. 
�

7 UniformModel Sets in Amenable Groups

We analyse the upper and lower Leptin densities of weak model sets in amenable
groups. As an application we give a simple geometric proof of the density formula for
regular model sets.

7.1 Definition and Elementary Properties

Let (G, H ,L) be a cut-and-project scheme, i.e., both G and H are unimodular locally
compact groups, and L is a uniform lattice in G × H , which projects injectively to G
and densely to H . Let us denote the canonical projections by πG and πH . If W ⊆ H
is relatively compact, then the set�W = πG(L∩(G×W )) is called aweak model set.
Any weak model set is left-uniformly discrete and right-uniformly discrete. A model
set is a weak model set which satisfies W̊ �= ∅. Here and in the sequel of this paper,
we denote by S̊ the interior of a set S in a topological space. Any model set is both
right-relatively dense and left-relatively dense. We call a model set regular if W is
Riemann measurable, i.e., ifmH (∂W ) = 0, a nomenclature that is nowadays common
in the abelian case [2, Definition 7.2]. Recall that the topological boundary of set S in a
topological spaces is defined as ∂S := S∩Sc. Note that in other contexts, the definition
of regular model set can be slightly different. For instance, in [11, 12], regular model
sets are defined for non-abelian groups and homogeneous spaces arising from them
via cut-and-project schemes with a slightly more restrictive notion of window but also
for possibly non-uniform lattices. We refer to [2, 45, 46] for further background on
model sets in mostly abelian situations.

As πH (L) is dense in H , the lattice L admits fundamental domains in G × H that
are “closely aligned toG”. This is formalised in the following lemma, which combines
[29, Lemma 2.3] and Lemma 6.2.

Lemma 7.1 Let (G, H ,L) be a cut-and-project scheme and consider any non-empty,
open and relatively compact set U ⊆ H. Then there exists an open relatively compact
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set V ⊆ G satisfying

L(V ×U ) = G × H .

Moreover V ×U contains a measurable relatively compact left-fundamental domain
for L. 
�

7.2 Leptin Density ofWeakModel Sets

The above property allows to derive bounds on the strong upper and lower densities
of any weak model sets in the same way as in the lattice case.

Theorem 7.2 (Leptin density estimates for weak model sets) Let (G, H ,L) be a cut-
and-project scheme, where G is amenable. Fix a relatively compact set W ⊆ H. We
then have

mH (W̊ )

covol(L)
≤ L−

�W̊
≤ L−

�W
≤ L+

�W
≤ L+

�W
≤ mH (W )

covol(L)
.

In particular, if W is Riemann measurable, then

L�W = mH (W )

covol(L)
.

Remark 7.3 The so-called density formula L�W = mH (W )/covol(L) for Riemann
measurable windows has been proven in the literature in various contexts, compare the
discussion in the introduction. In [11, Section 4.5] the notion of covolume of a regular
model set over locally compact second countable groups is defined. We emphasize
that regular model sets as of [11, 12] are defined via cut-and-project schemes with
additional assumptions onW , but L does not need to be uniform, and the construction
works beyond the realm of amenable groups. In the language of the present paper, the
covolume of a regular model set is the inverse of its Leptin density. Sticking to the
framework of [11], a density approximation formula for regularmodel sets in amenable
locally compactond countable groups can be derived by combining Proposition 4.13
with the ergodic theorem in Cor. 5.4 of [11].

Proof (i) Consider any compact unit neighborhood U ⊆ H . By Lemma 7.1, there
exists a compact set F such that L(F × U ) = G × H , and we can pick a relatively
compact measurable left-fundamental domain FU ⊆ F ×U . Define KU = F−1

U FU ,

write K = F−1F and note that KU ⊆ K × U−1U . For an arbitrary compact set
A ⊆ G × H , consider

LA = {� ∈ L : A ∩ F−1
U � �= ∅} , AU =

⋃

�∈LA

F−1
U � .
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Then LA is a finite set and AU is a disjoint union. We have

A ⊆ AU ⊆ KUA .

For the second implication, assume that x ∈ AU . Then x ∈ F−1
U � for some � ∈ LA

and there exists some a ∈ A such that a ∈ F−1
U �. Hence x ∈ F−1

U � ⊆ F−1
U FUa ⊆

F−1
U FUA ⊆ KUA.

(ii) We first prove the last two upper inequalities. Fix arbitrary ε > 0. ChooseU in (i)
sufficiently small such that mH (U−1UW ) ≤ (1+ ε) ·mH (W ), which is possible due
to continuity of the Haarmeasure on H . For arbitrary compact A ⊆ G andA = A×W
we estimate with equality (6.1)

mG×H (KUA) ≥ mG×H (AU ) = mG×H (FU ) · card(LA)

= mG×H (FU ) ·
∑

�∈LA

card(L ∩ F−1
U �)

= mG×H (FU ) · card(L ∩ AU ) ≥ mG×H (FU ) · card(L ∩ A) .

Combining the latter estimate with mG×H (KUA) ≤ mG(K A) · mH (U−1UW ), we
arrive at

(1 + ε) · mH (W )

mG×H (FU )
· mG(K A) ≥ mH (U−1UW )

mG×H (FU )
· mG(K A) ≥ card(L ∩ A)

≥ card(�W ∩ A) ≥ card(�W ∩ A) .

(7.1)
Now the last two upper inequalities claimed in the theorem follow by definition of the
upper Leptin density.
(iii) To show the first two lower inequalities, fix arbitrary ε > 0. Take a compact set
V ⊆ W̊ sufficiently large such that mH (V ) ≥ (1− ε) ·mH (W̊ ), which is possible by
regularity from below of the Haar measure.
Choose a compact zero neighborhood U ⊆ H such thatU−1UV ⊆ W̊ , compare [15,
Lemma 4.1.3]. Consider arbitrary compact A ⊆ G and writeA = A× V . Define FU

and KU as in step (i) above. Using the equality (6.1), we compute

mG×H (A) ≤ mG×H (AU )=mG×H (FU ) · card(LA)

= mG×H (FU ) ·
∑

�∈LA

card(L ∩ F−1
U �)

= mG×H (FU ) · card(L ∩ AU ) ≤ mG×H (FU ) · card(L ∩ KUA) .

Noting that KUA ⊆ K A ×U−1UV ⊆ K A × W̊ , we infer

card(L ∩ KUA) ≤ card(�W̊ ∩ K A) ≤ card(�W ∩ K A) .
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Note that in the first inequality above we used the injectivity of the projection πG .
Putting everything together yields

(1 − ε) · mH (W̊ ) · mG(A) ≤ mH (V ) · mG(A) ≤ mG×H (FU ) · card(�W̊ ∩ K A)

≤ mG×H (FU ) · card(�W ∩ K A). (7.2)

Now the first two lower inequalities claimed in the theorem follow by definition of the
lower Leptin density.
(iv) Recall that L−

�W
≤ L+

�W
by amenability of G, see Lemma 3.6. Now the “In

particular”-part of the theorem follows from mH (W̊ ) = mH (W ) = mH (W ) by Rie-
mann measurability of W . 
�

The inequalities (7.1) and (7.2) in the preceding proof lead to the following uniform
estimates.

Corollary 7.4 Let (G, H ,L) be a cut-and-project scheme as in the previous theorem.
Let (Ai )i∈I be a strong Følner net in G. Then for all ε > 0 there is some i0 ∈ I such
that for all i � i0 and all (x, h) ∈ G × H, one gets the uniform estimates

mH (W̊ )

covol(L)
− ε ≤ card(�Wh ∩ Ai x)

mG(Ai )
≤ mH (W )

covol(L)
+ ε.

In particular, if W is Riemann measurable then the convergence to the limit is uniform
in (x, h).

Proof Let ε > 0. It follows from the inequality (7.1) with W replaced by Wh, from
the unimodularity of the group G and from the Følner property of (Ai )i∈I that there
must be some i0 ∈ I such that

sup
(x,h)∈G×H

card(�Wh ∩ Ai x)

mG(Ai )
≤ (1 + ε)2 · mH (W )

covol(L)

for all i � i0. Adjusting ε gives the claimed upper bound.
As for the lower bound, we consider the compact set K in inequality (7.2) in the proof
of Theorem 7.2 and claim that for given ε > 0 there must be some i1 � i0 such that

inf
(x,h)∈G×H

card(�Wh ∩ Ai x)

mG(Ai )
≥ inf

(x,h)∈G×H

card(�Wh ∩ K Ai x)

mG(Ai )
− ε

for all i � i1. To this end, fix a finite constant C and a symmetric unit neighborhood
B ⊆ G × H such that δL(B2(x, h)) ≤ C . Using Lemma 2.4 (which is justified as
G × H is unimodular) and the comparison Lemma 5.2 (which is justified as K is
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symmetric and contains the identity), we estimate

card(�Wh ∩ (Ax) � (K Ax)) = card(�Wh ∩ δK (Ax)) ≤ card(�Wh ∩ ∂K (Ax))

≤ C

mB×H (B)
· mG×H (πG(B)∂K (Ax) × πH (B)Wh)

= C

mG×H (B)
· mG(πG(B)∂K A) · mH (πH (B)W ) .

Note that the above estimate is uniform in (x, h) ∈ G×H . Thus dividingbymG(A) and
using the strong Følner property of Lemma 5.11 yields the claim. But inequality (7.2)
yields

inf
(x,h)∈G×H

card(�Wh ∩ K Ai x)

mG(Ai )
≥ (1 − ε) · mH (W̊ )

covol(L)

for all i . Now adjusting ε finishes the proof. 
�

8 Almost Periodicity of Regular Model Sets

8.1 Almost Periodicity for Point Sets andMeasures

With respect to mathematical diffraction theory, almost periodicity of the underlying
point set has become a central notion in recent years. For upper translation bounded
measures in σ -compact locally compact abelian groups, this is analysed in [37]. In
particular, pure point diffraction of a measure is shown to be equivalent to so-called
mean almost periodicity of the measure [37, Theorem 2.13], see also below. The dis-
cussion is based on density notions using van Hove sequences. Here wewill work with
the stronger uniform version of mean almost periodicity, thereby avoiding averaging
sequences or nets.

Definition 8.1 Amodel set� in an amenable locally compact group G is called right-
uniformly mean almost periodic if for every ε > 0 there exists a both left- and right-
relatively dense set T ⊆ G such that L+

� � (�t) ≤ ε for every t ∈ T .

Remark 8.2 Left-uniformly mean almost periodic model sets can be defined analo-
gously. Recall that groups containing a model set are necessarily unimodular. Due
to invariance of the Leptin densities with respect to translations, see Lemma 3.5, the
set T in the above definition can be chosen to be symmetric, i.e., T = T−1. In this
situation, T is right-relatively dense if and only it if left-relatively dense.

Note that, for σ -compact locally compact abelian groups, the latter is a weaker
notion than Weyl almost periodicity [37, Definition 4.1], which is defined via approx-
imation by trigonometric polynomials. Also note that Meyer’s and Guihéneuf’s
definition of almost periodic pattern [26, Definition 7], [25, Definition 4] and almost
periodic measure [26, Definition 10] coincide with Weyl almost periodicity. Note
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finally that the notion of Weyl almost periodicity is based on the Weyl seminorm [37,
Section 1.3], which can be rephrased using the Leptin upper density, without resorting
to a van Hove sequence or net.

8.2 UniformMean Almost Periodicity andModel Sets

We analyse (right-)uniform mean almost periodicity for regular model sets.

Theorem 8.3 Any regular model set in an amenable locally compact group is right-
uniformly mean almost periodic.

This is an immediate consequence of the following result, which may be seen as
weak variant of Lemma 3 from [26], however without resorting to an averaging net.

Lemma 8.4 Let�W be a regularmodel set. Then for every ε > 0 there exists a compact
symmetric unit neighborhoodU ⊆ H such that L+

�(WU )∩(WcU )
≤ ε, and t ∈ �U implies

�W � (�W t) ⊆ �(WU )∩(WcU ).

Proof Take any compact symmetric unit neighborhood U ⊆ H . Consider t ∈ �U ,
write t = πG(�) for � ∈ L ∩ (G ×U ) and note

(�W t)��W = �(WπH (�)) ��W ⊆ �(WU )∩(WcU ) .

Now note that mH (WU ∩ WcU ) → mH (∂W ) = 0 as U → {e} due to continuity of
mH . We thus have by Theorem 7.2 that L+

�WU∩WcU
≤ covol(L)−1m(WU ∩ WcU ) →

0 as U → {e}. 
�
To put this result into perspective, take any strong Følner net (Ai )i∈I in G. We then

have the estimate

d(t) := lim sup
i∈I

card((�W t)��W ∩ Ai )

m(Ai )
≤ L+

�(WU )∩(WcU )
,

see Proposition 5.14. In particular, the set Pε(�W ) = {t ∈ G : d(t) ≤ ε} is both right-
and left-relatively dense for all ε > 0.

In the context ofσ -compact locally compact abelian groups, the property of Pε(�W )

being relatively dense for all ε > 0 is called mean almost periodicity of �W , see [37,
Theorem 2.18]. Note that for � being an arbitrary Meyer set, mean almost periodicity
of � is equivalent to pure point diffraction of �. Moreover, any regular model set �W

is a Meyer set and thus, �W has pure point diffraction. Whereas this has been known
since [4, Theorem 5] and [22, Theorem 1.1], it has recently been put into broader
perspective in [37, Theorems 2.18, 2.13]. We also point out that uniform mean almost
periodicity of� is a stronger notion thanmean almost periodicity, that typically results
in continuous dynamical eigenfunctions, compare [35, Theorem 5]. In light of these
results, it might also be interesting to study variants and aspects of uniformly mean
almost periodic point sets beyond the abelian situation.
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Appendix A. Nets and Convergence

We briefly explain our definition of net and collect some basic properties. We adopt
the setting of Moore–Smith convergence as described in [31, Chap. 2].

A.1. Directed Sets

Let I be a set, and let ≺ be a binary relation on I. Recall the following properties that
(I,≺) might have.

• Reflexiveness: For all i ∈ I we have i ≺ i .
• Anti-symmetry: For all i, j ∈ I, we have that i ≺ j and j ≺ i implies i = j .
• Transitivity: For all i, j, k ∈ I we have that i ≺ j and j ≺ k implies i ≺ k.
• Directedness: For all i, j ∈ I there exists k ∈ I such that i ≺ k and j ≺ k.

We say that (I,≺) is a partial order if ≺ is reflexive, transitive and antisymmetric. In
that case we call I a partially ordered set or poset. Examples of directed partial orders
are (N,≤), (R,≤), (R,≥), (P(X),⊆) and (P(X),⊇), where P(X) is the collection
of subsets of the set X .

A.2. Nets, Cluster Points and Limits

Let (I,≺) a directed poset and let X be a topological space. A net in X is a map
I → X . We denote nets by (xi )i∈I. The range of a net is the set {xi : i ∈ I} ⊆ X . We
call x ∈ X a cluster point of a net (xi )i∈I if for every neighborhood U of x and for
every i0 ∈ I there exists i � i0 such that xi ∈ U . A net (xi )i∈I converges to x ∈ X
if for every neighborhood U of x there exists i0 ∈ I such that xi ∈ U for all i � i0.

http://creativecommons.org/licenses/by/4.0/


Journal of Fourier Analysis and Applications (2022) 28 :85 Page 31 of 36 85

In this case we say that x is a limit point of (xi )i∈I. Any limit point is a cluster point.
Limit points are unique if and only if X is a Hausdorff space [31, Chap. 2, Theorem 3].

A.3. Subnets and Cluster Points

Let X be a topological space and let (I,≺) and (J,≺) be directed preorders. Then a
net (y j ) j∈J in X is a subnet of (xi )i∈I in X if y j = xφ( j) for some function φ : J → I

which is strictly cofinal, i.e., for every i0 ∈ I there exists j0 ∈ J such that j � j0
implies φ( j) � i0. Note that if (xi )i∈I converges to x , then every subnet (y j ) j∈J
converges to x . This is a direct consequence of the subnet definition. Also note that
the composition of two cofinal maps is a cofinal map. Hence a subnet of a subnet is a
subnet of the original net. The following characterisation of a cluster point is standard
[31, Chap. 2, Theorem 6].

Proposition A.1 A point x ∈ X is a cluster point of a net (xi )i∈I if and only if there
exists a subnet (xφ( j)) j∈J that converges to x. 
�

A.4. Nets inR

Let us consider nets in the affinely extended real numbers R = R ∪ {∞,−∞}. A net
(xi )i∈I in R is increasing if xi ≤ x j for all i ≺ j . It is decreasing if xi ≥ x j for all
i ≺ j . As in the sequence case, we have the following result.

Lemma A.2 Let (xi )i∈I be an increasing net in R. Then (xi )i∈I converges to its supre-
mum x = sup{xi : i ∈ I} ≤ ∞. 
�

Let (xi )i∈I be a net in R. Then the net (si )i∈I where si = inf{x j : j � i} is
increasing, and the net (ti )i∈I where ti = sup{x j : j � i} is decreasing. Note si ≤
xi ≤ ti for all i ∈ I as ≺ is reflexive. As the nets (si )i∈I and (ti )i∈I both have a unique
limit point, we can define

lim inf
i∈I xi = lim

i∈I infj�i
x j = sup

i∈I
inf
j�i

x j ≥ −∞ , lim sup
i∈I

xi = lim
i∈I supj�i

x j = inf
i∈I supj�i

x j ≤ ∞ .

(8.1)
As in the sequence case it is seen that lim inf i∈I xi is the smallest cluster point of
(xi )i∈I. Moreover one may easily construct a subnet (xφ(n))n∈N which is a sequence
and converges to lim inf i∈I xi . Analogous results hold for lim supi∈I xi .

Appendix B. Box Decompositions in �-Compact Groups

Some σ -compact locally compact groups admit Følner sequences of hierarchically
nested monotiles. Such sequences can be used for box decomposition arguments. We
indicate in this section how to prove equality of uniform Leptin and Beurling densities
via this method, as was done in [24, Section 7] for G = R

d and ν = δ� being a Dirac
comb over a uniformly discrete set �.
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In a σ -compact group we call a compact set A a right monotile for G if there is
a countable set T such that A · T = G and for each s, t ∈ T with s �= t , we have
Ås ∩ Åt = ∅, where as above, Å denotes the interior of the set A. Analogously,
one defines left monotiles for G. In the following we will exclusively deal with right
monotiles and refer to those as monotiles for G.

Definition B.1 We call a Følner sequence (An)n∈N a monotile Følner sequence if for
each n ∈ N, the set An a is a monotile for G. We say that a monotile Følner sequence
is topologically nested if for all n ∈ N there is some sn ∈ G such that An ⊆ Ån+1sn .

Monotile Følner sequences can be found in many amenable groups. In [61], Weiss
has shown that all countable linear amenable groups and all residually finite amenable
groups admit such sequences. In the abelian situation, Emersonused in [17,Theorem5]
the structure theorem for compactly generatedLCAgroups for findingmonotile Følner
sequences. By passing to a subsequence if necessary one can make sure that these
sequences are topologically nested. The construction of Emerson has been used in
the context of mathematical quasicrystals, see for example the proof of Lemma 1.1 in
[56]. Moreover, topologically nested monotile Følner sequences can be constructed
explicitly for many homogeneous Lie groups such as the Heisenberg group.

Example B.2 Let G = H3(R) be the 3-dimensional Heisenberg group with its group
multiplication given by

(a, b, c) · (x, y, z) = (a + x, b + y, c + z + ay).

For each n ∈ N, the set Fn := [0, n)2 × [0, n2) is a fundamental domain for the
(uniform) lattice

�n := {(k, l,m) : k, l ∈ nZ, m ∈ n2Z
}
.

Now it is easy to see that by setting An := Fn for n ∈ N, one obtains a monotile strong
Følner sequence for G. Moreover, we have An · tn ⊆ Ån+1 when setting tn = (ε, ε, ε),
with 0 < ε < 1. Therefore, (An)n∈N is also topologically nested.

For illustration, let us give a box decomposition proof of B−
A ≤ L− when A =

(An)n∈N is a topologically nested monotile strong Følner sequence in a σ -compact
amenable unimodular group.
Proof of B−

A ≤ L− Let A = (An)n∈N be a Følner sequence of monotiles as of
Definition B.1 and suppose that A is also a strong Følner sequence. We show

L− = sup
K∈K

inf
A∈Kp

ν(K A)

m(A)
≥ B−

A = lim
n→∞ inf

s∈G
ν(Ans)

m(An)
.

Setting Bn := Ån = An \ ∂An we note that we have

B−
A = lim

n→∞ inf
s∈G

ν(Bns)

m(An)
.
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Indeed, this follows from standard estimates, using Ans \ Bns = ∂Ans ⊆ ∂U Ans for
any relatively compact unit neighborhood U , and using the Følner property together
with

lim
n→∞ sup

s∈G
ν(∂U Ans)

m(An)
= 0 ,

cf. Lemma 5.11. Fix arbitrary ε > 0. Take n ∈ N large enough such that for all s ∈ G
we have

ν(Bns)

m(An)
≥ B−

A − ε .

Consider an arbitrary compact set A ∈ Kp. Since Bntn = Åntn ⊇ An−1 for some
tn ∈ G, by assumption on a topologically nested monotile Følner sequence, we find a
finite set I and si ∈ G for i ∈ I such that

A ⊆
⋃̇

i∈I
Bnsi ⊆

⋃

i∈I
Ansi ⊆ K A,

where K = An A−1
n , compare the argument for the inclusions (6.2) in the proof of

Proposition 6.1. Now we can estimate for n large enough

ν(K A) ≥ ν

(
⋃

i∈I
Bnsi

)
=

∑

i∈I
ν(Bnsi ) ≥ |I | · m(An) · (B−

A − ε)

≥ m

(
⋃

i∈I
Ansi

)
· (B−

A − ε) ≥ m(A) · (B−
A − ε) .

As A was arbitrary, we infer

sup
K∈K

inf
A∈Kp

ν(K A)

m(A)
≥ B−

A − ε .

As ε > 0 was arbitrary, we get L− ≥ B−
A. 
�

Appendix C. The Densities of Gröchenig, Kutyniok, Seip

We review the density notion from [24], which has inspired our definition of Leptin
density. Consider any locally finite measure ν on G. For example, ν might be the
counting measure on some right uniformly discrete point set in G. Assume that G
admits a uniform lattice. Then densities of ν are defined via point counting with
respect to �.
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Definition C.1 Let G be a unimodular locally compact group. Assume that � is a
uniform lattice in G. For locally finite measuresμ, ν on G we writeμ ≤ ν if for every
ε > 0 there exists K ∈ K such that for all A ∈ K we have (1 − ε) · μ(A) ≤ ν(K A).
We define

D−
ν = sup{α ∈ [0,∞) : αδ� ≤ ν} , D+

ν = inf{α ∈ [0,∞) : ν ≤ αδ�} .

Here δ� is the point counting measure associated to � via δ�(A) = card(A ∩ �).

Proposition C.2 Let G be a unimodular locally compact groupwhich admits a uniform
lattice �. Let ν be any locally finite measure on G. We then have

L� · D−
ν = L−

ν , L� · D+
ν = L+

ν ,

where L� denotes the Leptin density of the lattice �.

Proof We argue L� · D− = L−, the proof for the upper density is analogous.
(i) We collect some prerequisites from the proof of Proposition 6.1. Let F be a mea-
surable relatively compact left-fundamental domain for � and note L� · m(F) = 1.
Defining K = F−1F , we have for any A ∈ K the estimates

m(F) · δ�(A) ≤ m(K A) , m(F) · δ�(K A) ≥ m(A) .

(ii) To showD− ≤ m(F)·L−, we assumewithout loss of generalityD− > 0. Consider
any 0 < d < D−. Then by Definition C.1 there exists K ′ ∈ K such that for all A ∈ K
we have d δ�(A) ≤ ν(K ′A). This implies ν(K ′K A) ≥ d δ�(K A) ≥ d ·m(A)/m(F).
We thus have d/m(F) ≤ L−. As 0 < d < D− was arbitrary, we conclude D− ≤
m(F) · L−.
(iii) To show m(F) · L− ≤ D−, we assume without loss of generality L− > 0. Take
any 0 < d < L−. Then by definition of the lower Leptin density, cf. Definition 3.3,
there exists K ′ ∈ K such that for all A ∈ K we have d · m(K A) ≤ ν(K ′K A). This
implies m(F) · d δ�(A) ≤ d · m(K A) ≤ ν(K ′K A). We thus obtain m(F) · d < D−.
As 0 < d < L− was arbitrary, we conclude m(F) · L− ≤ D−. 
�
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