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Abstract
The prediction of conformational b-cell epitopes plays an important role in immunoinfor-

matics. Several computational methods are proposed on the basis of discrimination deter-

mined by the solvent-accessible surface between epitopes and non-epitopes, but the

performance of existing methods is far from satisfying. In this paper, depth functions and the

k-th surface convex hull are used to analyze epitopes and exposed non-epitopes. On each

layer of the protein, we compute relative solvent accessibility and four different types of

depth functions, i.e., Chakravarty depth, DPX, half-sphere exposure and half space depth,

to analyze the location of epitopes on different layers of the proteins. We found that confor-

mational b-cell epitopes are rich in charged residues Asp, Glu, Lys, Arg, His; aliphatic resi-

dues Gly, Pro; non-charged residues Asn, Gln; and aromatic residue Tyr. Conformational b-

cell epitopes are rich in coils. Conservation of epitopes is not significantly lower than that of

exposed non-epitopes. The average depths (obtained by four methods) for epitopes are sig-

nificantly lower than that of non-epitopes on the surface using the Wilcoxon rank sum test.

Epitopes are more likely to be located in the outer layer of the convex hull of a protein. On

the benchmark dataset, the cumulate 10th convex hull covers 84.6% of exposed residues

on the protein surface area, and nearly 95% of epitope sites. These findings may be helpful

in building a predictor for epitopes.

Introduction
Epitopes are binding areas on antigens. The prediction of b-cell epitopes is critical for the
development of vaccines and immunotherapeutic drugs [1]. B-cell epitopes are categorized
into linear and conformational epitopes. A linear b-cell epitope is a contiguous amino acid seg-
ment in an antigen. A conformational b-cell epitope is located in close proximity in the protein
3-dimensional structure but discontinuous in the protein sequence. The majority of b-cell epi-
topes are conformational [2].
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It is time-consuming and expensive to use experimental techniques to identify b-cell
epitopes [3], especially on a genomic scale. Many computational methods have been developed
for b-cell epitope prediction [4]. The prediction of linear b-cell epitopes from antigen
sequences can be traced back to the 1980s. The first generation of prediction methods is the
propensity model. These models utilized a single propensity of the amino acid [2, 5–10], or
combined multiple physicochemical propensities to predict epitopes [10–14]. More compli-
cated models were then used to predict epitopes including the neural network [15], hidden
Markov model [16], Naïve Bayes model [17] and support vector machine [18–25].

Some other methods use protein structure to predict epitopes, building the model using
simple scoring-based approaches. CEP [26] utilizes solvent accessibility to score amino acid
surfaces. DiscoTope [27] utilizes surface/solvent accessibility, contact numbers, and amino
acid propensity scores. SEPPA [28] combines propensity scores that were based on solvent
accessibility and the packing density of amino acids. PEPITO [29] fuses amino acid propensity
scores and solvent accessibility, quantified by using half-sphere exposure in a linear regression.
EPSVR [30] takes epitope propensity scores, contact numbers, secondary structure composi-
tion, conservation, side chain energy surfaces and planarity scores as inputs, and a support vec-
tor regression was built. Zhang et al. [31] utilizes the random forest model, while Liu and Hu
[32] uses logistic regression with B-factors and the relative accessible surface area as inputs.
Bepar is an association patterns model [33]. EPMeta is a consensus model [30]. Epitopia [34,
35] utilizes the Naïve Bayes model, fusing physicochemical and structural-geometrical proper-
ties from a surface patch.

Although many methods are proposed, the performance of b-cell epitope predictors is mod-
erate. With the increase of antigen-antibody crystal structures, it is possible to analyze these
complex structures. A more detailed description of the b-cell epitope area becomes important.
In this paper, we applied four types of depth functions; half-sphere exposure (HSE) [36], Chak-
ravarty depth [37], DPX [38–40], and half-space depth (HSD) [41] to analyze the location of
epitopes. Compared with solvent accessibility, depth functions distinguish between atoms just
below the protein surface and those in the core of the protein [37–40]. The goal of this paper is
to investigate these depth functions and the convex hull to distinguish conformational epitopes
from non-epitopes. This information may provide useful clues for b-cell epitope prediction.

Materials and Methods

Dataset
The dataset for this paper was first used as benchmark dataset in Ansari and Raghava [42]. It
contains 161 protein chains from 144 antigen-antibody complex structures. Sequence redun-
dancy was removed by BLASTCLUST, at 40% cutoff, leaving 57 antigen chains remaining. In
this paper, all exposed residues (relative solvent accessibility RSA>0) are considered. The data-
set of 57 antigens contains 915 conformational epitopes and 9632 exposed non-epitopes (in S1
Table). In the following section, the term non-epitopes will refer to exposed non-epitopes, i.e.
non-epitopes on the antigen protein surface.

Computed Features
RSA. Solvent accessible surface area (ASA) is calculated by NACCESS [43]. Relative sol-

vent accessibility (RSA) is defined as the ratio of the ASA of a residue, observed in its three-
dimensional structure, to that observed in an extended tri-peptide conformation. We found
that the RSAs of all epitopes are positive, though some values are only slightly larger than zero.
For example, the epitope site Val206 of paracoccus denitrificans two-subunit cytochrome C
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oxidase complex (PDB ID:1AR1:B) has an RSA value of 0.008. To avoid losing any epitope
sites, a residue is considered to be an exposed residue if the RSA is greater than 0.

Conservation. Conservation measure, our use of which was motivated by Valdar’s 2002
work[44], is defined as follows,

Conservation ¼ 1� ð�
X

k¼1::20

n
pk � log2ðpkÞ

o
=log2ð20ÞÞ ð1Þ

where pk is the value from the Weighted Observation Percentage (WOP) matrix generated by
PSI-BLAST [45], divided by 100. If all WOP values of a given residue equal zero, i.e. p1, p2,. . .,
p20 is represented by 20 zeroes, then conservation is one.

Half-Sphere Exposure. Half-Sphere Exposure (HSE) is a 2D measure, introduced by
Hamelryck [36]. HSE consists of the number of Cα atoms in two half-spheres around a resi-
due’s Cα atom. One of the half-spheres corresponds to the side chain’s neighborhood, the other
half-sphere is in the opposite direction. There are two ways to compute HSE, depending on
whether information is available about both the Cαand Cβpositions (HSEB) or only about the
Cαpositions (HSEA). HSE can be divided into HSEAU, HSEAD, HSEBU and HSEBD, depend-
ing on whether the half-sphere selected is an up half-sphere (U) or a down half-sphere (D). In
this paper, we calculated HSEAU, HSEAD, HSEBU and HSEBD, with radius 13Å.

Chakravarty Depth. Chakravarty [37] defined the depth of an atom in a protein as the dis-
tance between the atom and the nearest surface water molecule. The residue depth is the aver-
age of the constituent atom depths. Residue depth is calculated by the program depth-1.0 [46].

DPX. Atom depth (DPX), first introduced by Pintar [38–40], is defined as the distance
between a non-hydrogen atom and its closest solvent-accessible protein neighbor. DPX is a
good geometrical descriptor of the protein interior. Residue DPX is the average of the constitu-
ent atom DPX values. We calculated residue DPX using the software DPX [38].

Half Space Depth (HSD). Tukey [41] introduced half space depth (HSD) to order the
high dimensional data. It is defined as:

HSDðx; PÞ ¼ inffPðHÞ : H is closed half space; x 2 H; x in Rdg ð2Þ

where x is a point in d-dimensional space with probability measure P. HSD is defined as the
minimum probability mass carried by any closed half space containing x. For a protein, the
probability P(H) is estimated by the empirical distribution. The i-th residue HSD is then
defined by:

HSDðResiÞ ¼ inf
n
#ðplaneResiÞ=N

o
ð3Þ

where (planeResi) is the number of residues in the half space which is divided by the plane
through that i-th residue, and N is the total number of residues in the protein. The use of resi-
due HSD is motivated by Shen [47, 48].

Convex Hull. In mathematics, the convex hull of a set X of points in Euclidean space is the
smallest convex set that contains X. For instance, when X is a bounded subset of the plane, the
convex hull may be visualized as the shape formed by a rubber band stretched around X. For a
protein, we consider all residues in a protein to be a point set X. In this paper, MIConvexHull
(http://miconvexhull.codeplex.com/) is used to calculate the convex hull of a point set. [49].

K-th Convex Hull. Let X be all the atoms of the exposed residues (RSA>0) in a protein.
Atoms which are on the convex hull surface are defined as the first level of the convex hull,
denoted as CH1(X). The remaining atoms of the protein comprise the set X-CH1(X). We
then compute the convex hull of X-CH1(X), such that the atoms on the convex hull surface
of X-CH1(X) are defined as the secondary level of the convex hull of the protein, denoted as
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CH2(X). Generally speaking, the k-th level of the convex hull of the protein is the convex hull
of the set X-[i = 1..k-1{CHi(X)}, denoted as CHk(X). Finally, one protein can represent a union
of n convex hulls, i.e. X = [i = 1..n{CHi(X)}. The level of the k-th convex hull of a residue is de-
fined as the minimal level of convex hulls of atoms that are in the residue. For instance, Glycine
contains Cα,Cβ, N,O atoms, where Cα2 CH2(X), Cβ2CH3(X), N2CH3(X), and O2CH5(X).
The level of the convex hull for Gly is 2, as that is the minimal of {2, 3, 3, 5}. The k-th convex
hull is a useful tool for classifying the residues. Take the exposed residues of a protein for exam-
ple; all exposed residues can be divided into k convex hulls.

Cumulate k-th Convex Hull. For given exposed atoms of a protein X, we can calculate the
k-th convex hull (CHk(X)) for each residue. The cumulate k-th convex hull of X (denoted as
CHk(X)) is defined as the union of k convex hulls, i.e. CHk(X) = [i = 1..k{CHi(X)}. Obviously,
CHm(X) is a strict subset of CHn(X), ifm<n. If a residue is in CHi(X), then this residue is also
in the cumulate i-th convex hull CHi(X). Clearly, we can choose a finite value K0 for which
CHk(X) will cover (contain) all the exposed epitopes on the protein surface. K0 is defined as fol-
lows:

K0 ¼ minfkj all epitopes 2 CHkg ð4Þ

K0 would be different for different antigen proteins. If there are more than two chains in
the antibody-antigen complex, the exposed atoms of all chains will be used to compute the con-
vex hull and the cumulate convex hull. We developed software for calculating the Convex Hull
of Protein Surface (CHOPS), which is available at<www.sourceforge.net/projects/chops>.

The cumulate k-th convex hull of protein 1NCA:N is shown in Fig 1, where k = 1, 2,. . ., 9.
Atoms on the cumulate k-th convex hull are colored blue, and the remaining exposed atoms
are colored red. The proportion of exposed atoms on the convex hull to exposed atoms is
increased with increasing value of k.

Statistical Features on the K-Th Convex Hull. The coverage ratio of epitopes in the k-th
convex hull (CREPIk) of a protein is the number of epitopes in the k-th convex hull divided by
the total number of epitopes in this protein. The coverage ratio of epitopes in the cumulate k-th
convex hull (CREPIk) is the number of epitopes in the cumulate k-th convex hull divided by
the total number of epitopes in the protein. The coverage ratio of exposed residues in the k-th
convex hull (CREXPk) is the number of exposed residues in the k-th convex hull divided by the
number of total exposed residues in the protein. The coverage ratio of exposed residues in the
cumulate k-th convex hull (CREXPk) is the number of exposed residues in the cumulate k-th
convex hull divided by the number of total exposed residues in the protein. The proportion of
epitopes in the k-th convex hull (PROPk) is defined as the number of epitopes in the k-th con-
vex hull divided by the number of all residues in the k-th convex hull. The proportion of epi-
topes in the cumulate k-th convex hull (PROPk) is defined as the number of epitopes in the
cumulate k-th convex hull divided by the number of all residues in the cumulate k-th convex
hull.

For example, there are 10 epitopes and 200 exposed residues on an antigen protein. Two
epitopes and 20 residues are in the first convex hull. Then, CREPI1 is 2/10 = 20%, CREXP1 is
20/200 = 10%, and PROP1 is 2/20 = 10%.

Results and Discussion

Amino Acid Composition of Epitopes and Non-Epitopes
All exposed residues (RSA>0) are considered. In the following sections, the term non-epitopes
will refer to non-epitopes with RSA values larger than zero. Amino acid composition is defined
as the count of a type of amino acid divided by the length of the antigen protein. Fig 2 shows
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Fig 1. The cumulate k-th convex hull of the protein 1NCA:N. (k = 1, 2,. . .9). Atoms on the cumulate k-th
convex hull are colored blue, remaining exposed atoms are colored red.

doi:10.1371/journal.pone.0134835.g001

Fig 2. Amino acid composition of epitopes and non-epitopes.

doi:10.1371/journal.pone.0134835.g002

Analysis of B-Cell Epitopes Using Depth Function and Convex Hull

PLOS ONE | DOI:10.1371/journal.pone.0134835 August 5, 2015 5 / 16



the average amino acid composition for 57 antigens. It shows that conformational b-cell epi-
topes are rich in negatively charged residues Asp(D) and Glu(E); positively charged residues
Lys(K), Arg(R), and His(H); non-polar, aliphatic residues Gly(G) and Pro(P); polar, non-
charged residues Asn(N) and Gln(Q), and the aromatic residue Tyr(Y). Compared to the epi-
topes, non-epitopes are rich in non-polar, aliphatic residues Ala(A), Leu(L), and Val(V), and
the polar, non-charged residue Ser(S). These results are consistent with previous findings that
epitopes are rich in polar amino acids and aromatic amino acids but depleted in aliphatic
amino acids [33, 50, 51].

Secondary Structure of Epitopes and Non-Epitopes
Secondary structure was computed by the DSSP program, and then eight types of secondary
structure are combined into three types: (1) Helices, which groups α-helices, 3-helices and π-
helices. (2) Strands, that is, isolated β−bridges and extended strands participate inβ−ladders.
(3) Coils, consisting of hydrogen-bonded turns, bends and others. The secondary structures of
epitopes and non-epitopes are shown in Fig 3. Conformational b-cell epitopes are rich in coils.
In contrast, the non-epitopes are rich in strands and helices. Further analyzing the eight types
of secondary structure from DSSP, we see that epitopes are rich in bends (S) and hydrogen-
bonded turns (T). In contrast, non-epitopes are rich in extended strands which participate inβ
−ladders (E), andα-helices (H). (See S1 Fig).

RSA Values of Epitopes and Non-Epitopes
Fig 4 shows the histogram of RSA values of both epitopes and non-epitopes. Fig 4A shows the
histogram for epitopes alone. The average and standard deviation of the RSA values of epitopes
are 50.0 and 24.8, respectively (see Table 1). Fig 4B shows the histogram for non-epitopes
alone. The average and standard deviation of the RSA values are 35.4 and 27.4, respectively.
The distributions for epitopes and non-epitopes do not follow the normal distribution, based
on the Shapiro-Wilk normality test. The average RSA of epitopes is significantly greater than
the average RSA of non-epitopes, based on the Wilcoxon rank-sum test (p-value<2.2e-16).

Correlations between RSA and depth functions are also considered. Table 1 shows average
57 antigen proteins Pearson correlation coefficient (PCC) between RSA and depth. Chakra-
varty depth, DPX, HSEAU and HSEBU obtain higher correlation with absolute PCC of
(> 0.70). HSEAD, HSEBD and HSD obtain lower correlation with absolute PCC of (<0.55).
Half-sphere exposure using up half-sphere (HSEAU, HSEBU) achieves higher correlation coef-
ficient than the using down half-sphere (HSEAD, HSEBD).

Depth Functions for Epitopes and Non-Epitopes
Table 1 shows the average values of different depth functions for epitopes and non-epitopes.
The average epitope depth values, i.e. the Chakravarty depth, DPX, Half Space Exposure (HSE)
and Half Space Depth (HSD), are smaller than the average non-epitope depth values. Take the
Chakravarty depth for example; the average depth for epitopes is 4.15, which is lower than
average depth for non-epitopes, 5.05. This indicates that epitopes prefer the outer layer of the
protein surface, making it easier for epitopes to interact with antibodies.

Conservation, Depth Functions, and RSA for Epitopes and Non-Epitopes
The conservation of epitopes is widely used in the prediction of epitopes. The average conser-
vation scores for epitopes are not significantly lower than for non-epitopes. We further analyze
the relationship between RSA, Chakravarty depth and conservation (Fig 5). It shows that
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Chakravarty depth for all epitopes is below 8Å. Further examination of non-epitopes with resi-
due depth above 8Å shows that the median RSA and the conservation of these residues are 1.4
and 0.84, respectively, In contrast, the median of the RSA and the conservation for epitopes are
49.5 and 0.36. With information about the depth function, the epitopes are easily distinguished
from non-epitopes.

Fig 3. Secondary structures of epitopes and non-epitopes.

doi:10.1371/journal.pone.0134835.g003

Fig 4. Histogram of RSA values for epitopes and non-epitopes. (A) RSA values of epitopes (red) (B) RSA values of non-epitopes (blue).

doi:10.1371/journal.pone.0134835.g004
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Analysis of Epitopes Using the Convex Hull (CHk)
We calculate the level of the convex hull for each epitope. The smaller the level, the more exter-
nal the layer in which the epitope is found. The average level of the convex hull for epitopes is
4.5, while the non-epitopes are at 8.0. The level of the convex hull is significantly smaller (p-
value< 2.2e-16) than for non-epitopes, using the Wilcoxon rank-sum test. This indicates that

Table 1. Average values and standard deviation (in bracket) of depth function for epitopes and non-epitopes.

Depth Epitopes Non-
epitopes

PCC between depth and
RSA

Significance difference between epitopes and non-epitopes (p-
value<0.05)

Chakravarty
deptha

4.15(0.69) 5.05(1.79) -0.78(0.04) -b (p-value< 2.2e-16)

DPXc 0.41(0.41) 0.67(0.62) -0.70(0.04) - (p-value< 2.2e-16)

HSEAUd 8.46(6.76) 13.1(9.1) -0.78(0.08) - (p-value< 2.2e-16)

HSEAD d 17.97
(6.55)

19.2(7.3) -0.01(0.14) - (p-value = 2.8e-06)

HSEBU d 9.64(6.83) 14.2(8.7) -0.79(0.04) - (p-value< 2.2e-16)

HSEBD d 17.11
(6.51)

18.4(7.3) -0.07(0.14) - (p-value = 1.0e-06)

HSDe 0.02(0.04) 0.05(0.07) -0.55(0.13) - (p-value< 2.2e-16)

RSA 50.0(24.8) 35.4(27.4) 1.00 + (p-value< 2.2e-16)

aChakravarty depth is introduced by [37] and computed following [46].
b means that the average of conservation scores is significantly smaller than the average of conservation scores of non-epitopes at p-value<0.05 using

Wilcoxon rank sum test with one-side test.
c DPX is the average of constituent atom DPX values, DPX is calculated following [38].
dHSEAU/HSEAD: Half-Sphere Exposure using Cα position and selected Up/Down half-sphere, HSEBU/HSEBD: Half-Sphere Exposure using Cβ position

and selected Up/Down half sphere. Radius of sphere 13Å is used.
eHSD: half space depth which was firstly introduced by [41], and used in [47, 48].

doi:10.1371/journal.pone.0134835.t001

Fig 5. Chakravarty depth, RSA and conservation of epitopes (black points) and non-epitopes (yellow points). Depths of all epitopes are less than 8Å
(gray plane).

doi:10.1371/journal.pone.0134835.g005
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epitopes are closer to the convex hull. It is also consistent with the results in Rubinstein et al.
[51] which found that the distance between epitope site and protein convex residue is less than
the distance between non-epitope site and convex residue.

Epitopes prefer the outer layer of the protein surface, but not all epitopes are in the first con-
vex hull (CH1(X)) of the protein. Fig 6 shows the average CREPIk, CREXPk and PROPk in the
k-th surface convex hull, where k = 1,. . .15. There are 42.2% of the epitopes in 1st convex hull
of the protein (CREPI1 = 42.2%). These 42.2% of epitopes cover 26.0% of the surface area of
the protein (CREXP1 = 26.0%). There is approximately one epitope per six residues of CH1

(PROP1 = 17.9%, 1/0.179�6). We also noted that CREPIk, CREXPk and PROPk are decreased
while k is increasing. This indicates that the percentage of epitopes would be decreased when
the residue in the protein interior. Take the k = 2 for example; there are 12.6% of the epitopes
in the secondary convex hull (CH2). These residues in CH2 cover 7.76% of the protein surface.
Each epitope is around 4 non-epitopes.

We also analyzed the influence of the depth function according to the k-th convex hull. Fig
7 shows these results. For DPX (Fig 7A), the values for epitopes are smaller than the values for
non-epitopes, except on CH2. For Chakravarty depth (Fig 7B), all values for epitopes are
smaller than the values for non-epitopes. There are two types of HSE, i.e. HSEA, HSEB. There
is no significant rule for the HSEA down sphere (HSEAD) (See S2 Fig), but all values of
HSEAU for epitopes are smaller than the values of HSEAU for non-epitopes, except CH4. On
the other hand, there is no significant rule for the HSEB down sphere (HSEBD), all values of
HSEBU for epitopes are smaller than the values of HSEBU for non-epitopes (S3 Fig). This indi-
cates that the DPX, Chakravarty depth and HSEAU, HSEBU may be useful to classify epitopes
and non-epitopes on the surface.

Minimal Level of the Convex Hull for Antigen Proteins
K0 is the minimal level of the convex hull such that all epitopes are on the cumulate k-th convex
hull (CHk). We analyzed the cumulate k-th convex hull of different antigen protein chains. Fig
8 shows the results. For 24.6% ((1+1+1+3+8)/57, K0�5) of the antigen chains, all epitopes are
covered in the top five layers of the convex hull of the antigen. There are a total of 86.0% ((3+8
+7+6+5+7+4+2+3+4)/57 = 86.0%) proteins for which all epitopes are located in top 4~13 lay-
ers of the convex hull. This also indicated that there is only one protein for which all epitopes
are located in the first layer of the convex hull (CH1). From these results, we can see that the
convex hull functions can further describe the distribution of epitopes.

Choose K0 for the Cumulate K-Th Surface Convex Hull
For a given protein, we do not know which K0 of the cumulate k-th convex hull can contain all
the epitope sites. If the K0 value is too small, many epitopes will not be considered. On the
other hand, if the K0 value is too big, too many non-epitopes will be considered. To estimate a
proper K0 value, 7 chains (protein IDs: 1AFV:A, 1FSK:A, 1IAI:M, 1KB5:A, 1NFD:D, 1OTS:A,
1QFU:A) were randomly selected as a test set, and the remaining 50 chains were used as train-
ing set. We calculated CREPIk, CREXPk and PROPk of CHk (k = 1, 2,. . ., 20) for each protein
in the training set. Then, averages for three kinds of ratios in CHk were computed. Fig 9 shows
the results.

As the k value is increased, CHk will contain many more residues, including both epitopes
and non-epitopes. The more epitopes included in CHk, the larger CREPIk will be. The more
non-epitope sites included in CHk, the larger CREXPk will be, and the smaller PROPk will be
(see Fig 9). If we want to obtain a proper k value, we must make sure CREPIk and PROPk are as
large as possible, and CREXPk is as small as possible at the same time. For this training dataset,

Analysis of B-Cell Epitopes Using Depth Function and Convex Hull

PLOS ONE | DOI:10.1371/journal.pone.0134835 August 5, 2015 9 / 16



K0 = 10 is selected. Generally, CH10 covers 84.6% of the residues on the protein surface area,
and nearly 95% of the epitope sites. In CH10 of a protein, 13.1% of the residues are epitopes.

We test our results on the test dataset. CREPI10, CREXP10 and PROP10 of CH10 for each
protein are calculated. The average of CREPI10s is 96.7%. The CREPI10 values for five proteins
are above 95%, except for 1AFV:A (92.8%) and 1QFU:A(84.2%). The average of the CREXP10s
is 77.3%. This indicates that just 77.3% of the exposed residues are covered in CH10. The

Fig 6. Average CREPIk, CREXPk and PROPk in different k-th surface convex hull layers CHk. CREPIk is
the number of epitopes in the k-th convex hull divided by the total number of epitopes in this protein. CREXPk

is the number of exposed residues in the k-th convex hull divided by the number of total exposed residues in
the protein. PROPk is defined as the number of epitopes in the k-th convex hull divided by the number of all
residues in the k-th convex hull.

doi:10.1371/journal.pone.0134835.g006

Fig 7. Different depth functions according to the k-th convex hull layers CHk (k = 1, 2,. . ., 15). (A)DPX (B) Chakravarty Depth.

doi:10.1371/journal.pone.0134835.g007
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average value of PROP10 is 8.2%. We further analyze CH6 for the test dataset, and CH6 for
1FSKA, 1IAIM, 1KB5A, 1OTSA covers 100% of the epitopes. The remaining 7th, 8th, 9th, 10th

layers of the convex hull contain zero epitopes. This indicates that the cutoff of K0 = 10 is prob-
ably robust for the test data.

Conclusions
Relative Solvent Accessibility or solvent surface is widely used in the analysis of proteins and
protein functions. The accessible surfaces are always the residues for which RSA>5%. If the
cutoff 5% is used, about 2.4% of the epitopes are buried, in the dataset used in this paper. We
use the k-th convex hull and the cumulate k-th convex hull to categorize the protein residues,
and analyze the location of epitopes on different layers of the proteins. On each layer of the
protein, we compute the four different types of depth functions to analyze the location of epi-
topes on different layers of the proteins.

Based on RSA of the epitopes and non-epitopes on the protein surface, the average RSA for
epitopes is significantly greater than the average RSA for non-epitopes. Nevertheless, there is
no significantly difference between RSA values of epitopes and non-epitopes which are in top
eight convex hull layers (see S4 Fig). It may be the reason why the b-cell prediction perfor-
mance is moderate using monotonous RSA-based features. For Chakravarty depth, DPX, Half
Sphere Exposure, and HSD, the average values for epitopes are significantly lower than the
average values for non-epitopes on the surface. Take Chakravarty depth for example; all epi-
topes have depth below 8Å. This indicates that epitopes may be distinguished from non-epi-
topes on the basis of the depth function.

Fig 8. Minimal level of the convex hull for antigen proteins. Take K0 = 7 for example, there are six
proteins for which all epitopes are located in the cumulate 7-th convex hull (CH7).

doi:10.1371/journal.pone.0134835.g008
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Correlation between RSA and different depth functions are also analyzed. Chakravarty
depth, DPX, Half-sphere exposure using up half-sphere(HSEAU, HSEBU) achieve higher
absolute Person correlation coefficients. HSD, half-sphere exposure using down half-sphere
(HSEAD, HSEBD) and half space depth(HSD) achieve lower absolute Person correlation coef-
ficients. Depth functions provide more detailed description of the b-cell epitopes It may pro-
vide useful clues for b-cell epitope prediction.

The conservation for epitopes is not significantly lower than that for non-epitopes. This is
due to the fact that some non-epitopes may play important biological functions, such as glyco-
sylation sites and pockets, giving higher conservation. For example, for the residue LEU259 of
hiv-1 JR-RF gp120 core protein (2B4C:G), its Chakravarty depth is 13Å, RSA is just 0.2, while
its conservation is 0.98; this residue is a glycosylation site.

Epitopes prefer to be located in the outer layer of the protein surface, but not all epitopes are
in the convex hull of the protein. For Chakravarty depth, HSEAU, and HSEBU, the average
depth function values for epitopes are smaller than the average values for non-epitopes on the
surface. On the benchmark dataset, CH10 just covers 84.6% of the residues on protein surface
area, but nearly 95% of the epitope sites.

Our software for calculating the Convex Hull of Protein Surface (CHOPS) can be down-
loaded from<www.sourceforge.net/projects/chops>. As demonstrated in a series of recent
publications [52–63] in developing new prediction or analysis methods, user-friendly and pub-
licly accessible web-servers will significantly enhance their impacts [64]. We shall make efforts
in our future work to provide a web-server for the method presented in this paper.

Fig 9. CREPIk, CREXPk and PROPk curve of CHk with different k values.CREPIk is the number of
epitopes on the cumulate k-th convex hull divided by the total number of epitopes in the protein. CREXPk is
the number of exposed residues on the cumulate k-th convex hull divided by the number of total exposed
residues in the protein. PROPk is defined as the number of epitopes in the cumulate k-th surface convex hull
divided by the number of all residues in the cumulate k-th convex hull.

doi:10.1371/journal.pone.0134835.g009
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turn; I: 5-helix.
(DOC)

S2 Fig. HSEA depth functions according to the k-th convex hull layers CHk (k = 1, 2,. . .,
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S4 Fig. RSA according to k-th convex hull layers CHk (k = 1, 2,. . ., 15). There is no signifi-
cantly difference between epitopes and non-epitopes in the top 8 convex hull layers (p-values
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