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The Two Physics Governing the One-Dimensional Cubic

Nonlinear Schrödinger Equation

Ana Mucalica

Abstract

In 1926, in his quest to explain the quantum probabilistic nature of particles, Erwin Schrödinger pro

posed a nonrelativistic wave equation that required only one initial condition, i.e., the initial displace

ment of an electron. His equation describes the waveparticle duality discovered by Louis de Broglie

in 1924. Furthermore, Schrödinger’s wave equation is dimensionless, allowing the equation to be

a mathematical model describing different physical phenomena. Introducing nonlinearity into the

Schrödinger equation, we worked with the socalled selffocusing nonlinear Schrödinger equation.

We showed that when the nonlinearity is perfectly balanced with the dispersion, the selffocusing

nonlinear Schrödinger model describes the propagation of a soliton. In 1968 Peter Lax introduced the

”Lax Pair,” a pair of timedependent matrices/operators describing the nature of a nonlinear evolu

tion partial differential equation, to discuss solitons in continuous media. This procedure is what we

call the scattering method for describing mathematically nonlinear processes in physics. We used the

scattering method to find the Lax Pair for the nonlinear Schrodinger model, and we showed that the

equation is a compatibility condition for the AKNS system. In 1974, Ablowitz, Kaup, Newell, and

Segur (AKNS) introduced the inverse scattering transform to solve evolution nonlinear partial differ

ential equations arising from compatibility conditions for the AKNS system. Rather than using the

inverse scattering transform, we showed an intuitive approach in revealing the formation and propa

gation of a soliton for the selffocusing nonlinear Schrodinger equation, using a novel approach via

cnoidal waves. The work will also include a novel theorem describing the steepening of the wavefront

due to nonlinearity.



Contents

1 Introduction 1

1.1 Short History of Erwin Schrödinger’s Scientific Contributions . . . . . . . . . . . . 1

1.2 The Physical Nature of the Onedimensional Cubic Nonlinear Schrödinger Equation 4

1.2.1 DispersiveNature of theOnedimensional CubicNonlinear Schrödinger Equa

tion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.2 Nonlinearity of the Onedimensional Cubic Nonlinear Schrödinger Equation 10

2 Lax Pair 18

2.1 The AKNS System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2 TheCubicNonlinear Schrödinger Equation as a Compatibility Condition for theAKNS

System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3 Soliton Solution for the SelfFocusing Cubic Nonlinear Schrödinger Equation 31

4 Conclusion 36

References 37



1 Introduction

1.1 Short History of Erwin Schrödingers Scientific Contributions

Based on the references [3], [4], and [6], we provide a short history of Erwin Schrödinger’s scientific

contributions. Erwin Schrödinger was a Nobel Prizewinning AustrianIrish physicist who was one

of the founders of quantum mechanics. Schrödinger was born in 1887 in Vienna into a wealthy and

highly intellectual family. After receiving his doctorate in 1910, he published various papers ranging

from magnetism, radioactivity and Xrays to Brownian motion. In 1921 Schrödinger was appointed

to the chair for theoretical physics at the University of Zurich, during which period he published on

general relativity, probability theory, dielectric phenomena, three and fourcolor theories of vision,

and atomic theory in particular. Following this fruitful period, in 1926, Schrödinger invented wave

mechanics and publishedwhat is now known as the Schrödinger wave equation. The invention ofwave

mechanics is what got Schrödinger a Nobel Prize in Physics in 1933. However this year also brought

turmoil in his life when Adolf Hitler assumed power and Schrödinger was forced to settle in Oxford,

England. Following this brief and unproductive period, he accepted a position in Graz, Austria, in

1936. Unfortunately he fled Austria again in 1938 when he was abruptly dismissed and Hitler’s forces

invaded the country. In 1939 Schrödinger was appointed as the first director of the school of theoretical

physics at the Dublin Institute for Advanced Studies. What followed was vastly productive period in

his career, during which he published many works on the application and statistical interpretation

of wave mechanics and problems concerning the relationship between general relativity and wave

mechanics. During this time he also published a book ”What is Life?” which was of great importance

in molecular biology as it presented pioneering work on the relationship between physics and living

systems.

In modernday, Schrödinger is best remembered for his invention of wave mechanics and pub

lishing of his wave equation in 1926. However, in the same year, the development of quantum me
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chanics was further advanced when another theoretical physicistWerner Heisenberg, established foun

dations of the matrix mechanics. Heisenberg insisted that quantummechanics should only use directly

observable quantities, which is why he represented the variable describing the position of the electron

as Fourier series: the frequencies of the terms in the series were associated with the measurable

frequencies of radiation emitted by the atoms, and the amplitudes of these terms were inter-

preted as the measurable strength of these transitions, [3]. Both frequencies and amplitudes, as

well as position variables, were represented by matrices. This new interpretation of quantum

mechanics made the new wave mechanics odd and difficult to interpret, but the model still suc-

cessfully reproduced the hydrogen spectrum. This result was of great importance as the very

motivation behind Schrödinger’s invention of wave mechanics was to overcome some difficulties

associated with Niels Bohr’s theory of the hydrogen atom. However in 1926 Schrödinger was

thirty-nine, and feeling pressure of the age gap between him and Heisenberg, he was disheart-

ened by the novelty of matrix mechanics. He wrote, [3]:

I was discouraged (abgeschrekt), if not repelled (abgestossen), by what ap-

peared to me a rather difficult method of transcendental algebra, defying any

visualization (Anschaulichkeit).

In response to Heisenberg’s and Schrödinger’s models, the Danish physicist Niels Bohr

suggested that both particle and wave physics were equally valid models, and depending on

each context, both models could be used to describe the world. However Schrödinger believed

in the fundamental continuity of matter, while Bohr was insistent that electrons made jumps

between quantum states. Consequently, there was a dispute over the interpretation of the wave

function. Schrödinger attempted to interpret the square of the function in terms of a spatial

charge density, however, this interpretation was widely rejected. On the other hand, German
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physicist Max Born suggested that the wave function should be interpreted as a probability

amplitude, where the square of the wave function gives the probability that an electron can be

found at a certain point in space. This controversial interpretation implied that the location of

a particle can not be ascertained with certainty, but the wave function enables one to work out

the probability that the particle will be found in a certain place. Heisenberg, in his Uncertainty

Principle, proposed that one can not measure both the position and momentum of an electron

at the same time. Since in the Schrödinger’s equation only the position of the particle is

well defined, the momentum satisfies the Uncertainty Principle, i.e., the particle can start

moving in any direction. In this respect, it is commonly accepted that Schrödinger’s equation

is probabilistic in nature.

One of the more influential works at the time was the work of a French physicist Louis

de Broglie. He had had an idea that Einstein’s 1905 relation E = hv, between the energy of a

photon and its frequency, should be generalized to material particles such as electrons to which

he assigned a fictitious wave. Inspired by de Broglie’s suggestion that a particle is merely a wave

crest on a background of waves, Schrödinger used this idea to attempt to eliminate quantum

jumps, i.e., an abrupt transition of an electron from one level to another. So, given that it

is widely accepted that Schrödinger and Heisenberg fathered quantum theory, de Broglie and

Einstein can, consequently, be regarded as its godfathers.

While Schrödinger worked on the problem of wave mechanics, between January and June

1926, he sent a paper setting out his theory of wave mechanics to the Annalen der Physik, [3].

He presented a fundamental equation for the variable Ψ, which described the motion of electron

and is now known as wavefunction. Later in 1926, Schrödinger was able to show that there is

a formal equivalence between his model of wave mechanics and Heisenberg’s model of matrix
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mechanics.

Schrödinger’s legacy extends far greater than the invention of wave mechanics, as he

made contributions to nearly every branch of physics. However, Schrödinger was somewhat

conservative in his traditional way of thinking about physics, unable to let go of the ideal

of continuous and deterministic nature. For these reasons, he was never able to embrace his

intellectual child and remained isolated from the mainstream of quantum mechanics until his

death in 1961.

1.2 The Physical Nature of the One-dimensional Cubic Nonlinear Schrödinger

Equation

Note: Further on, throghout the present work, we will use the acronym NLS to stand for the

One-dimensional Cubic Nonlinear Schrödinger Equation.

1.2.1 Dispersive Nature of the One-dimensional Cubic Nonlinear Schrödinger Equation

In his article published in 1926, [15], Schrödinger developed a wave-equation for describing

dispersive wave-phenomena, which was suitable for micro-mechanical problems.

The one-dimensional Schrödinger equation can be represented through the following partial

differential equation (PDE):

iut + duxx = 0, d ̸= 0 constant (1)
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where u is a complex-valued function. The complex coefficient i of ut makes the term iut+duxx

correspond to dispersion, i.e., different wavelengths travel at different speeds. Indeed, the plane

wave

u(x, t) = ei(kx−ωt) (2)

is the solution of the equation (1) if and only if it satisfies the dispersion relation

ω = d · k2 (3)

which shows the dispersive behaviour of the wave-phenomena described by the equation (1).

The equation (1) describes the time evolution of a dispersive wave with a potential |u|2 =

u · u. u is the complex conjugate of u, which under only one initial condition that establishes

the initial position of the particle, may move in any direction.

The idea of developing such an equation, arose from scientific discussions regarding the

non-relativistic wave-phenomena, i.e., wave-phenomena in quantum mechanics.

From relativistic point of view, one can use the classic wave-equation

utt = c2uxx, c > 0 constant (4)

which requires two initial conditions, specifying the initial position and initial velocity of a

particle.

From micro-mechanics point of view, in 1924 De Broglie discovered the wavelike character

associated with electrons, [8], which can not assure the initial position and momentum of an
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electron at the same time. Thus, Schrödinger looked for the simplest wave equation that

would require only one initial condition, the initial position of a particle, and to describe the

wave-particle duality discovered by de Broglie. In 1927, Heisenberg, through the Uncertainty

Principle, formalized de Broglies observation, validating at the same time the Schrödingers

wave equation published in 1926.

Before Heisenberg, the scientists were in common accord that if one knows the initial

position and initial momentum of a particle, then from a theoretical point of view it is possible

to determine the position and momentum at any moment in time for that particle. Through his

principle, Heisenberg showed that that might not be the case, as in a micro-mechanics frame

one could not know, at the same time, the initial position and initial momentum of a particle.

His Uncertainty Principle states as follows, [13]:

The product of the uncertainty in position and the uncertainty in momentum

is necessarily greater than a quantity of order ℏ

which translates as follows

If ψ1 is a wave that occupies a region of order ∆x in the position space (i.e., x-space), and

ψ2 is a wave that occupies a region of order ∆p in the momentum space (i.e., p-space),

then

∆x ·∆p > O(ℏ) (5)

The equation (1) is integrable using the Fourier transform. Let us consider the following initial
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value problem (IVP)

iut + duxx = 0, d > 0 (6)

u(x, 0) = u0(x) (7)

Remark: The equation (6) is the equation (1) from this section on which we imposed initial

Cauchy data, i.e., the initial condition (7).

We choose the function u0 from the Schwartz space, S(R1), therefore it will vanish exponentially

at infinity; consequently, we will look for the solution to the IVP (6-7) that is vanishing at

infinity.

The integration technique for the IVP (6-7) is the Fourier transform integrating technique,

given by the following chain of operations

u0(x)
fft−→ û0(k)

integration−−−−−−−−−−−−−→
with respect to time (t)

û(k, t)
ifft−→ u(x, t) (8)

where u0(x) is the initial condition, and u(x, t) is the solution of the IVP (6-7).

Remark: fft stands for forward Fourier transform and ifft stands for inverse of Fourier transform.

Applying Fourier transform onto the equation (6) we obtain

iût + dûxx = 0 (9)

where

û(k, t) =

∫ ∞

−∞
u(x, t)e−ikxdx (10)
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is the Fourier transform of u(x, t) after the variable x.

Using [10], we get

ûxx = ikûx = (ik)2û(k) = −k2û(k) (11)

Then the IVP(6-7) becomes

iût − dk2û = 0 (12)

û(k, 0) = û0(k) (13)

where

û0(k) =

∫ ∞

−∞
u0(x)e

−ikxdx (14)

The equation (12) is a first order ordinary differential equation whose solution is obtained as

follows

iût − dk2û = 0 =⇒ ût = −idk2û =⇒
∫

1

û
dû =

∫
−idk2dt =⇒ ln |û| = −idk2t+ C, C ∈ R

(15)

Solving (15) for û, and redefining the constant of integration C, we obtain

û = Ce−idk2t, C ∈ R (16)

Imposing the initial condition (13), we get the solution of the IVP (12-13) to be

û(k, t) = û0(k)e
−idk2t (17)
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Applying inverse Fourier Transform to the function in (17), we obtain the solution of the IVP

(6-7)

u(x, t) =
1

2π

∫ ∞

−∞
û0(k)e

i(kx−dk2t)dk (18)

Using the MAPLE software we illustrate the dispersive nature of the PDE (1), see Figure 1,

by solving the IVP (6-7) for the following data

d = 1 and u0(x) = e−x2

(19)

Dispersion - MAPLE simulation

restart;
with(plots):
with(PDETools):
with(inttrans):

#1D Linear Schrodinger Equation - LS
LS:=I*diff(u(x,t),t)+d*diff(u(x,t),x$2)=0

#Parameter for LS
print(‘The value assigned for parameter d‘);
d:=readstat("Input the value of d");

#Assumptions on Variables
assume(t>0); assume(x,real);

#Forward Fourier of LS
fft:=inttrans[fourier](LS,x,k);

#PDE Derived from Forward Fourier of LS
PDE:=subs(fourier(u(x,t),x,k)=u_fft((k,t),fft);

#Initial Cauchy Data
print(‘The initial Cauchy data for LS‘);
u[0]:=readstat("Input the initial Cauchy data for LS");

#Forward Fourier of the Initial Condition
ic:=u_fft(k,0)=inttrans[fourier](u[0],x,k);

#Solving the IVP and Convert Output to ListTools
sol_fft:=convert(pdsolve(PDE,ic),list);
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#Appliying Inverse Fourier
sol_IVP:=simplify(invfourier(sol_fft[2],k,x));

#Potential
V:=simplify(evalc(Re(sol_IVP)2̂+Im(sol_IVP)2̂);

#Animation
r:=readstat("Input the x-range"):
w:=readstat("Input curve thickness"):
c_a:=readstat("Input curve colour"):
T_max:=readstat("Input maximum range for animation"):
opts:=thickness=w,color=c_:
plots[animate](plot,[V,x=r,opts],t=0..T_max,labels=[x,’V’],
caption="Dispersion Effect");

(a) (b) (c) (d)

Figure 1: The dispersion phenomenon described by the Schrödinger equation (1) for d = 1 and
u0(x) = e−x2 .

1.2.2 Nonlinearity of the One-dimensional Cubic Nonlinear Schrödinger Equation

The second type of physics in NLS is the nonlinearity. The nonlinearity in NLS is expressed

through the following PDE:

iut + κ|u|2u = 0 , κ ∈ R∗ (20)

where the term |u|2u is so-called cubic nonlinearity. The PDE (20) is nonlinear, therefore the

solutions of it will not satisfy the superposition principle, i.e., any change in the input will not

be proportional with changes in the output.
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The latter statement reveals a fundamental difference between linearity and nonlinearity; while

the output of a linear process is predictable, the output of a nonlinear process is unpredictable

as "anything can happen", and "anything" is strongly correlated to the nature of the nonlin-

earity. This is why we cannot create a general theory for nonlinear phenomena, as they are

intimately affected by the type of nonlinearity the process is experiencing.

As the next step in the understanding of the nonlinear nature of NLS, let us solve the following

IVP

iut + κ|u|2u = 0 (21)

u(x, 0) = u0(x) (22)

where u0 is a complex valued function such that |u0| belongs to S(R1).

Remark: The equation (21) is the equation (20) from this section on which we imposed initial

Cauchy data, i.e., the initial condition (22).

To solve the equation (21) we look for solutions of the following form

u(x, t) = r(x)eiωt (23)

Let us begin by first calculating ut and |u|2.

ut = r(x)eiωtiω (24)

|u|2 = |r(x)eiωt|2 = |r(x)|2|eiωt|2 = |r(x)|2| cosωt+i sinωt|2 = |r(x)|2(cos2 ωt+sin2 ωt) = |r(x)|2

(25)

We can solve for r(x) by substituting our initial condition (22) into the given solution form
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(23).

u(x, 0) = r(x)eiω0 = r(x) = u0(x) (26)

Next, we will substitute u, ut and |u|2 into the equation (21) and then solve for ω.

i(r(x)eiωtiω) + κ|r(x)|2r(x)eiωt =0

−r(x)eiωtω + κ|r(x)|2r(x)eiωt =0

−u0(x)eiωtω + κ|u0(x)|2u0(x)eiωt =0

−ω + κ|u0(x)|2 =0

ω = κ|u0(x)|2

(27)

Therefore substituting ω = κ|u0(x)|2 and r(x) = u0(x) into the given solution form (23) we get

the solution of the IVP (20-21):

u(x, t) = u0(x)e
iκ|u0(x)|2t (28)

The nonlinear term |u|2 in the equation (21) is a so-called correction term, [16], to the frequency

of a wave-solution for NLS.

For the IVP (20-21) the term |u|2u will induce a horizontal compression to the profile of the

input Cauchy data, adjusted by either a vertical stretch or a vertical compression, i.e., the term

|u|2u will narrow the profile of the input Cauchy data, and the narrowing will be subject to a

vertical stretch/compression.

Theorem 1 Let f be a complex valued function such that |f | belongs to S(R1). Let xl be the

x-coordinate of the most left hand side local maximum of |f |. Consider the following change of
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coordinate system

X = x− xl

Y = y

(29)

Then the transformation

|f(X)| → |f(X)|3 (30)

will induce a nonlinear horizontal compression of the profile of f = f(X), i.e., the graph of

|f(X)|, for X ∈ (−∞, 0) followed by a vertical stretch/compression adjustment. Similarly, if

xr is the x-coordinate of the most right hand side local maximum of |f |, and considering the

change of coordinate system

X = x− xr

Y = y

(31)

then the transformation (30) will induce a nonlinear horizontal compression of the profile of

f = f(X) for X ∈ (0,+∞) followed by a vertical stretch/compression adjustment.

Proof We will prove the case for xl.

Because |f | belongs to S(R1), we have that for each positive integer N , there exists a positive

constant CN such that

|f(X)| ≤ CN(1 + |X|)−N ∀ X < 0 (32)

Because both sides of the inequality (32) are nonnegative for all X < 0, we have

|f(X)|3 ≤ DN(1 + |X|)−3N ∀ X < 0 (33)

where DN = C3
N .
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The inequalities (32) and (33) tell us that for each positive integer N , |f(X)| and |f(X)|3 are

at most a positive constant multiple of (1 + |X|)−N and (1 + |X|)−3N respectively. Then, the

way the graph of |f(X)| will be affected by the transformation (30) will be similar to the way

the graph of (1 + |X|)−N will be affected by the transformation (30).

Let us see how the graph of (1 + |X|)−N is affected by the transformation (30).

Let Xi ∈ (−∞, 0), i = 1, 2 such that

(1 + |X2|)N = (1 + |X1|)−3N

⇓

(1−X2)
−N = (1−X1)

−3N (34)

We will prove that (34) implies X1 ≥ X2. This means that the graph of (1 + |X|)−3N can be

viewed as a nonlinear horizontal compression of the graph of (1+ |X|)−N for X < 0. Therefore,

the graph of |f(X)|3 can be viewed as a nonlinear horizontal compression of the graph of |f(X)|.

The Y-values of the graph of |f(X)| for X < 0 will have the "final" impact in determining the

graph of |f(X)|3.

If |f(X)| ∈ (0, 1), then the graph of |f(X)|3 will be a nonlinear horizontal compression of the

graph of |f(X)| followed by a vertical compression, so the graph of |f(X)|3 will still be to the

right with respect to the graph of |f(X)|

If |f(X)| = 1 then |f(X)|3 = 1, so no vertical stretch/compression

If |f(X)| > 1, then the graph of |f(X)|3 will be a nonlinear horizontal compression of the graph

of |f(X)| followed by a vertical stretch, which will position the graph of |f(X)|3 to the left with

respect to the graph of |f(X)|.

Now we are going to prove that X1 ≥ X2.
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Let’s assume by contradiction that X1 < X2, where X1 < 0 and X2 < 0.

X1 < X2 =⇒ −X1 > −X2 =⇒ 1−X1 > 1−X2 =⇒ (1−X1)
−3N < (1−X2)

−3N (35)

Then using (34) we have (1−X2)
−N = (1−X1)

−3N . Therefore the inequality 35 becomes

(1−X2)
−N < (1−X2)

−3N (36)

Clearly, (36) is a false inequality since 1 − X2 > 1 =⇒ (1 − X2)
−N > (1 − X2)

−3N . Hence,

we have reached our contradiction, which means that our assumption X1 < X2 was false, i.e.,

X1 ≥ X2 must be true.

In a very similar manner we can prove that, for xr, the graph of |f(X)|3 can be viewed as a non-

linear horizontal compression of the graph of |f(X)|, followed by a vertical stretch/compression

adjustment.

Returning to the IVP (20-21) using formula (28), let us evaluate |u|2u.

We have,

|u|2u = |u0(x)eik|u0(x)|2t|2u0(x)eik|u0(x)|2t

= |u0(x)|2|eik|u0(x)|2t|2u0(x)eik|u0(x)|2t

= |u0(x)|2| cos (k|u0(x)|2t) + i sin (k|u0(x)|2t)|2u0(x)eik|u0(x)|2t

= |u0(x)|2
√
cos2 (k|u0(x)|2t) + sin2 (k|u0(x|2t)u0(x)eik|u0(x)|2t

= |u0(x)|2u0(x)eik|u0(x)|2t

(37)

Hence,

|u|2u = |u0(x)|2u0(x)eik|u0(x)|2t (38)
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The profile of |u|2u is then

A(x) =

√
|u|2u |u|2u

=

√
|u0(x)|2u0(x)eik|u0(x)|2t |u0(x)|2u0(x)eik|u0(x)|2t

= ||u0(x)|2u0(x)eik|u0(x)|2t|

= |u0(x)|2|u0(x)||eik|u0(x)|2t|

= |u0(x)|3| cos (k|u0(x)|2t) + i sin (k|u0(x)|2t)|

= |u0(x)|3
√
cos2 (k|u0(x)|2t) + sin2 (k|u0(x)|2t)

= |u0(x)|3

(39)

Thus,

A(x) = |u0(x)|3 (40)

Then, using Theorem 1, the profile of |u|2u, i.e., the graph of A(x) = |u0(x)|3, is a nonlinear

horizontal compression of the profile of the input Cauchy data, i.e., the graph of |u0(x)|, followed

by a vertical stretch/compression adjustment.

Using the MAPLE software we exemplify the nonlinear nature of NLS. Figure 2 illustrates the

steepening of the wave front due to nonlinearity for the waves described by the equation (20).

Nonlinearity-MAPLE Simulation

restart;
with(plots):

#Assumptions on Variables
assume(x,real); assume(t,real);

#The initial condition must vanish at +/- infinity
IC:=u[0][1]+I*u[0][2];

#Example 1
u[0][1]:=cos(x)*exp(-x2); u[0][2]:=sin(x)*exp(-x2);

#Amplitude of the input data
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A:=simplify(sqrt(evalc(IC*conjugate(IC))));

loc_max:=evalf(maximize(CA,x=-2..2,location));

loc_max_x:=convert(loc_max[2][1][1][1],list);
loc_max_x[2];

#How the nonlinearity affects the input data
A_nonlin:=simplify(CA3);

p:=plot(CA, x=-5..5):
p_nonlin:=plot(CA_nonlin, x=-5..5, color=blue):
p_axis:=implicitplot(x=loc_max_x[2],
x=-5..5, y=0..1.5, color=black, coloring=["SteelBlue"]=true):
display(p,p_nonlin, p_axis, labels=[‘x,X‘,‘y,Y‘]);

#Example 2
u[0][1]:=(x2+x+1)*exp(-x2); u[0][2]:=sin(x)*exp(-x2);
IC:=u[0][1]+I*u[0][2] ;

#Amplitude of the input data
A:=simplify(sqrt(evalc(IC*conjugate(IC))));

loc_max:=evalf(maximize(CA,x=-2..2,location));

loc_max_x:=convert(loc_max[2][1][1][1],list);
loc_max_x[2];

#How the nonlinearity affects the input data
A_nonlin:=simplify(CA3);

p:=plot(CA, x=-5..5):
p_nonlin:=plot(CA_nonlin, x=-5..5, color=blue):
p_axis:=implicitplot(x=loc_max_x[2], x=-5..5,
y=0..3, color=black, coloring=["SteelBlue"]=true):
display(p,p_nonlin, p_axis, labels=[‘x,X‘,‘y‘]);
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(a) (b)

Figure 2: (a)Nonlinear horizontal compression of the profile of the input Cauchy data, followed
by a vertical stretch adjustment for u(x, 0) = cos(x)e−x2

+i sin(x)e−x2 . (b) Nonlinear horizontal
compression of the profile of the input Cauchy data, followed by a vertical stretch adjustment
for u(x, 0) = (x2 + x+ 1)e−x2

+ i sin(x)e−x2

2 Lax Pair

The Lax pair was introduced by Peter Lax in 1968, [12], to generalize a new method, the

scattering method, developed by Gardner, Greene, Kruskal and Miura, [9]. The aim of this

method was to find solitary wave (soliton) solutions for "nonlinear equations of evolution".

The concept of Lax’s generalization is presented from, [1], as follows:

Consider two differential operators L and M , where L is the operator of the spectral problem

Lψ = λψ (41)

and M is the operator governing the associated time evolution of the eigenfunctions ψ(x, t)

ψt =Mψ (42)
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Differentiating (41) with respect to time, we obtain

∂

∂t
(Lψ) =

∂

∂t
(λψ) =⇒ ∂L

∂t
ψ + L

∂ψ

∂t
=
∂λ

∂t
ψ + λ

∂ψ

∂t
=⇒ Ltψ + Lψt = λtψ + λψt (43)

From (42) and (43) we obtain

Ltψ + LMψ = λtψ + λMψ =⇒ Ltψ + LMψ = λtψ + λψM (44)

Using (41) the equation (44) becomes

Ltψ+LMψ = λtψ+LψM =⇒ Ltψ+LMψ−λMψ = λtψ =⇒ (Lt+LM−ML)ψ = λtψ (45)

which is equivalent to

(Lt + [L,M ])ψ = λtψ (46)

where [L,M ] is the operator commutator representing LM −ML.

The operators L and M are called Lax pair, and Lax’s method was based on the following idea,

[12]: Given a linear differential operator L, which satisfies the spectral equation (41), we find

an operator M , such that

1. The eigenvalues λ, called the spectral parameter, are time-independent, i.e., λt = 0.

Then the equation (46) becomes

(Lt + [L,M ])ψ = 0 (47)

2. The operator Lt+[L,M ] is not a differential operator, i.e., it is a multiplicative operator.
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Then from equation (47) we obtain

Lt + [L,M ] = 0 (48)

The equation (48) is called Lax equation, and it contains an evolution equation with a first

order derivative in time, for suitably chosen differential operators L and M . Lax equation is

viewed as a compatibility condition for an integrable evolution equation.

2.1 The AKNS System

In order to find the Lax pair (L,M) for NLS, we need to write the compatibility condition (48)

in the matrix form. The matrix form can be viewed as a generalization of Lax equation, and

it was developed by Ablowitz, Kaup, Newell, and Segur in their paper published in 1974, [2].

Let us consider two linear equations

ux = Ru (49)

ut = Tu (50)

where u is a n−dimensional vector, and R and T are n× n matrices.

The compatibility condition between the system (49-50) and Lax equation (48), which is

equivalent to the equations (41) and (42), is the existance of a fundamental matrix Φ(x, t) for

the system (49-50), i.e., Φ(x, t) is a non-singular matrix-valued function whose columns are

linearly independent solutions of the system (49-50).

Then we have, [5]

Φ(x, t) is a fundamental matrix of the system (49-50) if and only if

Φx = RΦ and Φt = TΦ for all (x, t) (51)
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For the compatibility of the equation in (51) we require Φxt = Φtx.

The matrix form of the compatibility condition (48) is obtained by cross differentiation of

equations (49) and (50).

uxt = Rtu+Rut

utx = Txu+ Tux

(52)

Equating the cross derivatives, and using (49) and (50), we obtain

Rtu+Rut − Txu− Tux = 0 =⇒ Rtu+RTu− Txu− TRu = 0 (53)

which can be written as

Rt − Tx + [R, T ] = 0 (54)

where [R, T ] = RT − TR.

To find the Lax pair (L,M) for a given evolution equation is equivalent to finding the

pair (R, T ) satisfying the matrix equation (54), which will be expected to generate the same

evolution equation. The matrix R is found by considering a linear differential operator L, and

assuming that the equations (49) and (41) are equivalent.

Assuring that the equations (50) and (42) are equivalent, we are able to find the matrix T ,

implicitly to find the operator M , which creates the Lax pair (L,M) of the evolution equation

that we study.

As a theoretical exercise, let us consider a linear differential operator L of n-th order, given

as follows

L = an
∂n

∂xn
+ an−1

∂n−1

∂xn−1
+ ...+ a1

∂

∂x
+ V (55)

where ai ∈ C (R2), i = 1..n, an nonvanishing function, and V ∈ Cn(R2). Then the equation

(41) is equivalent with the equation (49), where
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R =



0 1 0 0 . . . 0 0

0 0 1 0 . . . 0 0

0 0 0 1 . . . 0 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 0 0 0 . . . 0 1

1
an
(λ− V ) − a1

an
− a2

an
− a3

an
. . . −an−2

an
−an−1

an



(56)

In order to derive the matrix R let us first begin with the n−dimensional vector u

u =



u1

u2

. .

un


= (u1, u2, ..., un)

T (57)

Equating equations (49) and (41) we let

u1 = ψ, u2 = ψx, u3 = ψxx , ..., un−1 = ψx(n−2) , un = ψx(n−1) (58)

Then, taking the partial derivative of u with respect to x, we obtain

u1x = ψx = u2, u2x = ψxx = u3 , ..., u(n−1)x = ψx(n−1) = un (59)

Now in order to find the term unx let us consider equation (41), where L is a differential operator
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given by (55).

anψxn + an−1ψxn−1 + ...+ a1ψx + V ψ = λψ =⇒ anψxn + an−1un + ...+ a1u2 + V u1 = λu1

=⇒ ψxn =
λu1
an

− V u1
an

− a1u2
an

− ...− an−1un
an

=
(λ− V )u1

an
− a1u2

an
− ...− an−1un

an
= unx

(60)

Then the n−dimensional vector ux can be written as

ux = (u1x , u2x , ..., unx)
T = (ψx, ψxx, .., ψxn)T = (u2, u3, ...,

(λ− V )u1
an

− a1u2
an

− ...− an−1un
an

)T =

0 1 0 0 . . . 0 0

0 0 1 0 . . . 0 0

0 0 0 1 . . . 0 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 0 0 0 . . . 0 1

1
an
(λ− V ) − a1

an
− a2

an
− a3

an
. . . −an−2

an
−an−1

an





u1

u2

u3

. .

un


= Ru

(61)

which is the equation (49).

In the next section we will obtain NLS as a compatibility condition for the AKNS system

(49-50). The only useful, yet essential information, that we need to learn from the theoretical

exercise presented above is that the matrix R is linear in λ. Indeed, from (56), we obtain easily

the following

R = λR1 +R0 (62)
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where

R1 =
1

an



0 0 . . . 0

0 0 . . . 0

. . . . . . . . . . . .

1 0 . . . 0


and R0 =



0 1 0 0 . . . 0 0

0 0 1 0 . . . 0 0

0 0 0 1 . . . 0 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 0 0 0 . . . 0 1

− V
an

− a1
an

− a2
an

− a3
an

. . . −an−2

an
−an−1

an



(63)

In the next section we will use R as prescribed by the formula (62), for different R1 and

R0, and we will consider the matrix T to be a quadratic structure in λ.

2.2 The Cubic Nonlinear Schrödinger Equation as a Compatibility Condition for

the AKNS System

Consider the Lax equation in the matrix form

Rt − Tx + [R, T ] = 0 (64)

where 0 has dual nature, as the number zero and as a zero matrix, and in (64) it represents a

zero matrix. Let us choose

R = λR1 +R0, R1 =

−i 0

0 i

 , R0 =

 0 u

±ū 0

 (65)

where u is a complex-valued function and ū is its complex-conjugate, i.e., uū = ūu = |u|2, and

let us consider

T = λ2T2 + λT1 + T0 (66)
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where T2, T1 and T0 are matrices to be determined.

Remark: Let us notice that

R1 = −i

1 0

0 −1

 = −iσ3 (67)

where

σ3 =

1 0

0 −1

 (68)

is the Pauli matrix, [17]; it is an elementary matrix of type 2 with σ3−1 = σ3.

From (65) we obtain

∂R

∂t
=

∂

∂t
(λR1 +R0) =⇒ Rt =

∂λ

∂t
R1 + λ

∂R1

∂t
+
∂R0

∂t
=⇒ Rt = λ

∂R1

∂t
+
∂R0

∂t
(69)

where ∂λ
∂t

= 0 since λ is time independent.

From (66) we obtain

∂T

∂x
=

∂

∂x
(λ2T2 + λT1 + T0) =⇒ Tx =

∂λ2

∂x
T2 + λ2

∂T2
∂x

+
∂λ

∂x
T1 + λ

∂T1
∂x

+
∂T0
∂x

=⇒ Tx = λ2
∂T2
∂x

+ λ
∂T1
∂x

+
∂T0
∂x

(70)

Then the commutator bracket in (64) becomes

[R, T ] = RT − TR = (λR1 +R0)(λ
2T2 + λT1 + T0)− (λ2T2 + λT1 + T0)(λR1 +R0) =

λ3R1T2 + λ2R1T1 + λR1T0 + λ2R0T2 + λR0T1 +R0T0 − λ3T2R1 − λ2T1R1 − λT0R1 − λ2T2R0+

λT1R0 − T0R0 = λ3[R1, T2] + λ2([R1, T1] + [R0, T2]) + λ([R1, T0] + [R0, T1]) + [R0, T0]

(71)
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Using (69),(70) and, (71) the equation (64) becomes

λ3[R1, T2] + λ2
(
[R1, T1] + [R0, T2]−

∂T2
∂x

)
+ λ

(
[R1, T0] + [R0, T1]−

∂T1
∂x

+
∂R1

∂t

)
+
∂R0

∂t
− ∂T0

∂x
+ [R0, T0] = 0

(72)

The left hand side of the equation (72) is a cubic polynomial in λ, and the equation (72) is

satisfied for all λ if and only if the coefficients of the polynomial are equal to zero matrix.

Then we have

For the coefficient of λ3

[R1, T2] = 0 (73)

For the coefficient of λ2

−∂T2
∂x

+ [R1, T2] + [R0, T2] = 0 (74)

For the coefficient of λ

∂R1

∂t
− ∂T1

∂x
+ [R0, T1] + [R1, T0] = 0 (75)

For the free term

∂R0

∂t
− ∂T0

∂x
+ [R0, T0] = 0 (76)

From (73) we have

[R1, T2] = 0 ⇐⇒ R1T2 − T2R1 = 0 ⇐⇒ R1T2 = T2R1 (77)

Because R1 = −iσ3 and σ3 is idempotent (i.e., σ32 = I), we will choose

T2 = i ·D = i

d1 0

0 d2

 (78)
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where d1, d2 ∈ R, d1 ̸= d2 (i.e., nonzero diagonal matrix), and we show that (73) is satisfied.

Let us show that R1T2 = T2R1

R1T2 = −i

1 0

0 −1

 · i

d1 0

0 d2

 = −i2

d1 0

0 −d2

 =

d1 0

0 −d2



T2R1 = i

d1 0

0 d2

 · (−i)

1 0

0 −1

 = −i2

d1 0

0 −d2

 =

d1 0

0 −d2


(79)

Thus [R1, T2] = 0, which means that (73) is satisfied under the choices of R1 and T2.

For (74) to be satisfied, let us choose

T1 = αR0, α =
d2 − d1

2
(80)

With the choice of T1 and T2 from above, let us show that (74) is satisfied.

−i ∂
∂x

d1 0

0 d2

+ [R1, T1] + [R0, T2] = R1T1 − T1R1 +R0T2 − T2R0 =

−i 0

0 i

 ·

 0 (d2−d1)
2

u

± (d2−d1)
2

ū 0

−

 0 (d2−d1)
2

u

± (d2−d1)
2

ū 0

 ·

−i 0

0 i

+

 0 u

±ū 0

 · i

d1 0

0 d2



−i

d1 0

0 d2

 ·

 0 u

±ū 0

 =

 0 −i (d2−d1)
2

u

±i (d2−d1)
2

ū 0

−

 0 i (d2−d1)
2

u

∓i (d2−d1)
2

ū 0

+

 0 id2u

±id1ū 0



−

 0 id1u

±id2ū 0

 =

 0 −i(d2 − d1)u

±i(d2 − d1)ū 0

+

 0 i(d2 − d1)u

∓i(d2 − d1)ū 0

 = 0

(81)

27



We now need to find T0 such that (75) and (76) to be satisfied. Let us consider

T0 =

t11 t12

t21 t22

 (82)

Let us use (80) and (82) to simplify equation (75) as follows

∂

∂t

−i 0

0 i

− ∂

∂x

 0 αu

±αū 0

+ [R0, T1] + [R1, T0] = 0 =⇒

−

 0 αux

±αūx 0

+R0T1 − T1R0 +R1T0 − T0R1 = 0 =⇒

−

 0 αux

±αūx 0

+

±αūu 0

0 ±αuū

−

±αūu 0

0 ±αuū

− i

 t11 t12

−t21 −t22

+ i

t11 −t12

t21 −t22

 = 0 =⇒

−

 0 αux

±αūx 0

+ i

 0 −2t12

2t21 0

 = 0 =⇒

 0 αux

±αūx 0

+ i

 0 2t12

−2t21 0

 = 0

(83)

The equation (75) is satisfied unconditionally if and only if

αux + 2it12 = 0 =⇒ t12 =
α

2
iux

±αūx − 2it21 = 0 =⇒ t21 = ∓α
2
iūx

(84)

Hence, we found the off-diagonal entries of T0. To find the main diagonal entries of T0, we

will work with the equation (76). Replacing R0 =

 0 u

±ū 0

, T0 =

 t11
α
2
iux

∓α
2
iūx t22

 into (76)
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we obtain

∂

∂t

 0 u

±ū 0

− ∂

∂x

 t11
α
2
iux

∓α
2
iūx t22

+R0T0 − T0R0 = 0 =⇒

 0 ut

±ūt 0

−

 t11x
α
2
iuxx

∓α
2
iūxx t22x

+

 0 u

±ū 0

 ·

 t11
α
2
iux

∓α
2
iūx t22

−

 t11
α
2
iux

∓α
2
iūx t22

 ·

 0 u

±ū 0

 = 0

=⇒

 −t11x ut − α
2
iuxx

±ūt ± α
2
iūxx −t22x

+

∓α
2
iūxu t22u

±t11ū ±α
2
iuxū

−

±α
2
iuxū t11u

±t22ū ∓α
2
iūxu

 = 0 =⇒

 −t11x ∓ α
2
i(uūx + uxū) ut − α

2
iuxx + u(t22 − t11)

±ūt ± α
2
iūxx ± ū(t11 − t22) −t22x ± α

2
i(uxū+ uūx)

 = 0

(85)

Choose t11 and t22 such that

−t11x ∓
α

2
i(uūx + uxū) = 0 (86)

and

−t22x ±
α

2
i(uūx + uxū) = 0 (87)

From (86) we get

t11x = ∓α
2
i
∂

∂x
(uū) (88)

Choose

t11 = ∓α
2
iuū = ∓α

2
i|u|2 (89)

From (87) we get

t22x = ±α
2
i
∂

∂x
(uū) (90)

Choose

t22 = ±α
2
iuū = ±α

2
i|u|2 (91)
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Then the equation (86) is satisfied.

Hence, the equation (85) becomes

 0 ut − α
2
iuxx ± u(αi|u|2)

±ūt ± α
2
iūxx ± ū(∓αi|u|2) 0

 = 0 (92)

The equation (92) represents the equation (76), then the equation (76) will be satisfied uncon-

ditionally if and only if

ut −
α

2
iuxx ± αiu|u|2 = 0 (93)

and

±ūt ±
α

2
iūxx ± ū(∓αi|u|2) = 0 (94)

The equations in (94) are equivalent with the following equations

ūt +
α

2
iūxx ∓ ū(αi|u|2) = 0 (95)

Notice that the equations in (95) are the complex conjugates of the equations in (93). Hence,

(76) will be satisfied unconditionally if and only if the equations in (93) are satisfied, i.e.,

ut −
α

2
iuxx + αiu|u|2 = 0

⇕

iut +
α

2
uxx − αu|u|2 = 0 (96)

and

ut −
α

2
iuxx − αiu|u|2 = 0

⇕
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iut +
α

2
uxx + αu|u|2 = 0 (97)

The equations (96) and (97) are the compatibility condition for the AKNS system (Lax equation

in the matrix form) (64), and they are called the defocussing (96), and self-focussing, (97), cubic

nonlinear Schrödinger equations, respectively.

3 Soliton Solution for the Self-Focusing Cubic Nonlinear Schrödinger

Equation

Let us consider the self-focusing NLS model derived in section 2.2.

iut +
α

2
uxx + αu|u|2 = 0 (98)

where α ∈ R∗. The linearization (i.e., the linear part) of the equation (98) is

iut +
α

2
uxx = 0 (99)

which is the one-dimensional Schrödinger equation that describes the dispersive nature of the

NLS model (98), and it was thoroughly discussed in section 1.2.1. Introducing the cubic nonlin-

earity u|u|2 onto the dispersive waves described by (99), the waves will be subject to a "force"

(i.e., the nonlinear effect) that will act against the dispersion. The waves will be forced to

"tighten up," and the final result will be dispersive waves with steepend wave front. In the

case that a "perfect" balance has been created between the dispersion and nonlinearity we will

have the formation of a soliton.

In this chapter, we will intuitively show the formation of a soliton for the self-focusing NLS

model (98).
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Let us consider the self-focusing NLS model (98) with α < 0, and let us rewrite α as follows

α −→ −α, α > 0

Then the equation (98) becomes

iut −
α

2
uxx − αu|u|2 = 0, α > 0 (100)

Following the same idea as in section 1.2.2, first we will seek solutions for the equation (100)

of the following form

u(x, t) = r(x)e−it (101)

Let us begin by first calculating ut, uxx, and |u|2.

ut = −ir(x)e−it (102)

uxx = r′′(x)e−it (103)

|u|2 = |r(x)e−it|2 = |r(x)|2|e−it|2 = |r(x)|2| cos (−t) + i sin (−t)|2

= |r(x)|2(cos2 (−t) + sin2 (−t)) = |r(x)|2 = r(x)2
(104)

Hence, we can write the equation (100) as the following second order ordinary differential

equation

re−it − α

2
r′′e−it − αre−itr2 = 0 =⇒ r − α

2
r′′ − αr3 = 0 =⇒ r′′ + 2r3 − 2

α
r = 0 (105)

We want to find a solution of the ODE (105) with the following boundary conditions

r′(0) = 0 (106)
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r(x) −→ 0 as |x| −→ ∞ (107)

The boundry condition (107) reads as r is decreasing sufficiently fast at infinity. Intuitively, the

boundry condition (106) and (107) respectively, lead us to search for a solution of the equation

(105) of the following form

r(x) = β sech(λx), β ̸= 0, λ ̸= 0 (108)

We notice right away that the functions of the form (108) satisfy the boundary conditions (106)

and (107) respectively, for any β ̸= 0 and λ ̸= 0.

Note: The intuitive thinking in searching for solutions of the type (108) is strongly based on

the theory Korteweg and de Vries developed in 1895, [11], in explaining Russell’s solitary wave,

[14].

Substituting r(x) given in (108) into the ODE (105), we obtain the following

λ2β sech(λx) tanh2 (λx)− λ2β sech3(λx)− 2

α
β sech(λx) + 2β3 sech3(λx) = 0 =⇒

λ2β sech(λx)(tanh2 (λx)− sech2(λx))− 2

α
β sech(λx) + 2β3 sech3(λx) = 0 =⇒

λ2β sech(λx)(1− 2 sech2(λx))− 2

α
β sech(λx) + 2β3 sech3(λx) = 0 =⇒

λ2β sech(λx)− 2λ2β sech3(λx))− 2

α
β sech(λx) + 2β3 sech3(λx) = 0

(109)

In order for the left hand side of the equation (109) to equal to 0, we need

λ2β =
2

α
β (110)

and

2λ2β = 2β3 (111)

Looking at equation (111), we conclude that λ = β must hold, and from the equation (110) we
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find that the values of our parameters are λ = β =
√

2
α
.

Hence a solution of the ODE (105) satisfying the boundary conditions (106) and (107) is

r(x) = λ sech(λx), λ =

√
2

α
(112)

From (101) and (112), we obtain the following solution of the NLS (101)

u(x, t) = λ sech(λx)e−it, λ =

√
2

α
(113)

While the one-dimensional Schrödinger equation (99) is used to describe the wave function for

a free particle, the nonlinear model (98) is far from describing the quantum state of a particle.

While the typical use of NLS is in nonlinear optics, the model is used as well in describing

phenomena like surface gravity waves in deep water, or acoustic waves propagating in deep

water, etc., [7]. Thus, in the present case, we view the nonlinear model (100) in an inertial

reference frame where Galilean invariance is applicable, i.e., the laws of motion of an object

describe the same motion of the object in all inertial reference frames.

Let us rewrite the solution (113) as follows

u(x, t) = r(x)e−it (114)

where

r(x) = λ sech(λx), λ =

√
2

α
(115)

Applying scaling symmetry onto the solution (114), we obtain the following scaled solution for

the NLS (100)

u(x, t) −→ u(x, t|δ) = δu(δx, δ2t), δ ̸= 0 (116)
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The NLS (100) is Galilean invariant as follows: if u(x, t) is a solution of the NLS (100), then we

can obtain a new solution by changing the inertial reference frame, and adding a phase factor

as follows

u(x, t) −→ u(x, t|v) = u(x− vt, t)e−
i
2
λ2v(x− v

2
)t, v ∈ R (117)

where the parameter λ is given in (115).

Applying the Galilean invariance (117) onto the scaled solution (116), we obtain the soliton

solution of the NLS (100) as follows

u(x, t) : = u(x, t|δ|v) = u(x− vt, t|δ)e−
i
2
λ2v(x− v

2
)t = δu(δ(x− vt), δ2t)e−

i
2
λ2v(x− v

2
)t

= δr(δ(x− vt))e−iδ2te−
i
2
λ2v(x− v

2
)t = δr(δ(x− vt))e−

i
4
(2λ2vx+(4δ2−λ2v2))t

(118)

where r is given in (115). Thus the formula (118) gives us an exact solution of the self-focusing

NLS model (100), describing the time evolution of a soliton profile in deep water, see Figure 3.

(a) (b) (c) (d)

Figure 3: The time evolution of a soliton for the NLS model (100) following the formula (118)
for α = 2 (therefore λ = 1), v = 0.1, and δ = 0.02.
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4 Conclusion

The NLS models (96) and (97) are of great interest in studying nonlinear waves emerging

from areas of physics such as nonlinear optics or deep water wave propagation phenomena. As

mentioned, Zakharov and Shabat described the soliton profiles for the NLS models in 1972,

[16], which was the culminating point of the present work. Though they were first described

in 1834, much of the theory of solitons is still unknown. With their widespread applications

in areas such as fibre optics, nuclear physics, in magnets and biology, more extensive research

and advance studies of solitons, is of surging importance. With this, we conclude the current

work with the following quintessential remarks that summarize the successful outcomes of this

thesis.

• Schrödinger was a prominent scientist who contributed to the wave theory of matter and

to other fundamentals of quantum mechanics.

• This work leads us to discover the effect of the dispersion and nonlinearity in much more

depth, i.e., the steepening of the wavefront of the dispersive waves.

• We succeeded in showing how using the same type of intuitive grounds that Korteweg

and de Vries used in 1895 helped us to obtain the soliton profile for the self-focusing NLS

model.
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