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INVARIANT SUBSPACE PROBLEM FOR RANK-ONE
PERTURBATIONS: THE QUANTITATIVE VERSION

ADI TCACIUC

Abstract. We show that for any bounded operator T acting on an infinite dimen-
sional complex Banach space, and for any ε > 0, there exists an operator F of rank
at most one and norm smaller than ε such that T + F has an invariant subspace
of infinite dimension and codimension. A version of this result was proved in [T19]
under additional spectral conditions for T or T ∗. This solves in full generality the
quantitative version of the invariant subspace problem for rank-one perturbations.

1. Introduction

This paper is a continuation of the work in [T19], which showed the existence of

invariant subspaces for rank-one perturbations for general Banach spaces. A partial

solution was given in [T19] to the quantitative version of this question. Here we solve

in full generality this quantitative version as well.

The Invariant Subspace Problem, asking whether every bounded operator acting on

a separable complex Banach space has a non-trivial closed invariant subspace, is one of

the most famous problem in Operator Theory. It is still open for the most important

case of a separable Hilbert space. There is a vast literature on the Invariant Subspace

Problem and, for brevity, we refer the readers to the monographs by Radjavi and

Rosenthal [RR03] and by Chalendar and Partington [CP11], for a more comprehensive

review of this topic, as well as for more recent results and approaches.

A related problem, the existence of invariant subspaces for perturbations of bounded

operators has been studied for a long time, in particular in the context of separable

Hilbert spaces. For example, Brown and Pearcy [BP71] showed that for any T ∈ B(H),

where H is an infinite-dimensional separable Hilbert space, and for any ε > 0, there

exists a compact operator K with norm at most ε such that T +K has an invariant

subspace of infinite dimension and codimension. As an immediate consequence of

Voiculescu’s [V76] famous non-commutative Weyl-von Neumann Theorem it follows

that K as above can be chosen such that T + K has a reducing subspace of infinite
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2 A. TCACIUC

dimension and codimension, that is, a subspace that is invariant for both T +K and

its adjoint.

A new approach to the existence of invariant subspaces for finite-rank perturba-

tions was introduced by Androulakis, Popov, Tcaciuc, and Troitsky [APTT09]. It is

easy to see that, given a bounded operator T ∈ B(X), where X is an infinite dimen-

sional complex Banach space, any finite dimensional or finite codimensional subspace

is invariant under some suitable finite rank perturbation. Thus, in this context of

searching for non-trivial closed invariant subspaces for a finite rank perturbations, a

”non-trivial” subspace is a subspace of infinite dimension and codimension. Such a

subspace will be henceforth called a half-space. A half-space that is invariant for some

finite rank perturbation of T is called almost-invariant for T (see Section 2 for more

details). In [APTT09] the authors showed that certain weighted shifts admit rank-one

perturbations that have invariant half-spaces. For reflexive Banach spaces, Popov and

Tcaciuc [PT13] proved that every bounded operator admits a rank-one perturbation

that has an invariant half-space. In the same paper, the authors show the existence of

suitable perturbations that also have small norms, provided certain spectral conditions

are satisfied; in particular this gave a substantial improvement over the aforementioned

result of Brown and Pearcy. For general Banach spaces, partial solutions were given

in [SW14], [SW16], and [TW17]. The question was also studied for algebras of oper-

ators in [P10],[MPR13], and [SW16]. Please see the Introduction of [T19] for a brief

overview.

The question was solved for general Banach spaces in [T19], by showing that every

bounded operator acting on an arbitrary (separable) complex Banach space, admits a

rank-one perturbation that has an invariant-half-space. Similarly with the solution in

the reflexive case in [PT13], the existence of rank-one perturbations that have small

norms was also proved, provided again that certain spectral conditions hold. In this

paper we solve this quantitative question in full generality, removing these limiting

spectral conditions, and prove the following theorem:

Theorem 1.1. Let X be a complex Banach space and T ∈ B(X). Then for any ε > 0,

there exists F ∈ B(X) of rank at most one and ∥F∥ ≤ ε such that T + F has an

invariant half-space.

In Section 2 we establish the notations and introduce the definitions and tools em-

ployed later in the paper. In particular, we review the relevant results in this direction

and present the assumptions we can make in view of these results. Section 3 contains
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the proof of Theorem 1.1; for the sake of clarity we isolate a important part of this

proof in a separate result, Proposition 3.1.

2. Definitions and Preliminaries

We are going to use the same definitions and notations as in [T19]; we briefly review

them here as well. For a Banach space X, we denote by B(X) the algebra of all

bounded operators on X. When T ∈ B(X), we write σ(T ), σp(T ), ρ(T ) and ∂σ(T )

for the spectrum of T , point spectrum of T , the resolvent set of T and the topological

boundary of the spectrum, respectively. The closed span of a set {xn}n of vectors in X

is denoted by [xn]. A sequence (xn)
∞
n=1 in X is called a basic sequence if any x ∈ [xn]

can be written uniquely as x =
∑∞

n=1 anxn, where the convergence is in norm (see

[LT77, section 1.a] for background on Schauder bases and basic sequences).

The following definition was introduced in [APTT09], providing an equivalent for-

mulation of the existence of finite rank perturbations having invariant half-spaces.

Definition 2.1. If T ∈ B(X) and Y is a subspace of X, we say that Y is almost-

invariant for T if there exists a finite dimensional subspace E of X such that TY ⊆
Y + E. The smallest dimension of such an E is called the defect of Y for T

Indeed, it is not hard to prove (see Proposition 1.3 in [APTT09]) that a half-space

Y is almost-invariant with defect k for a bounded operator T , if and only if there exists

a rank k operator F such that Y is invariant for T +F . The new approach introduced

in [APTT09] essentially studies techniques of constructing these almost-invariant half-

spaces, rather than directly the suitable finite-rank perturbations.

As we mentioned in the introduction, the main result in [T19] is that for any separa-

ble, complex, Banach spaces, and any T ∈ B(X), there exists a bounded operator F of

rank at most one, such that T + F has an invariant half-space. There are well-known

examples of bounded operators that have only finite dimensional or finite codimen-

sional invariant subspaces (e.g. certain weighted shifts on H). Therefore, when it

comes to existence of invariant half-spaces for all operators in B(X) , this result is the

most one can hope for.

The following quantitative version was also proved in [T19].

Theorem 2.2. [T19] Let X be a separable Banach spaces, and let T ∈ B(X) such that

∂σ(T ) \σp(T ) ̸= ∅ or ∂σ(T ∗) \σp(T
∗) ̸= ∅. Then for any ε > 0, there exists F ∈ B(X)

of rank at most one and ∥F∥ ≤ ε such that T + F has an invariant half-space. If the
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spectral condition does not hold, we can still find a finite-rank F with ∥F∥ ≤ ε, but not

necessarily rank-one.

In this paper we obtain rank at most one (and small norm), even when the spectral

condition does not hold. Therefore, we may assume that any value in ∂σ(T ) = ∂σ(T ∗)

is an eigenvalue for both T and T ∗. Note that for any λ ∈ ∂σ(T ), µ ∈ ∂σ(T ∗) with

λ ̸= µ, and for corresponding eigenvectors x and x∗ we have that x∗(x) = 0. Hence,

when ∂σ(T ) = ∂σ(T ∗) is infinite we can construct an invariant half-space for T ,

spanned by countably many eigenvectors for T (see Proof of Theorem 2.7 in [PT13])

for details.

Therefore, we can further assume that ∂σ(T ) = ∂σ(T ∗) is finite, therefore σ(T ∗) =

σ(T ) = ∂σ(T ) is finite and consists only of eigenvalues. In this case we can assume

without loss of generality that σ(T ) is a singleton. Indeed, one of the finitely many

Riesz projections associated to each of the eigenvalues in σ(T ) must have infinite di-

mensional range, and this infinite dimensional range is a T -invariant closed infinite

dimensional subspace, but not necessarily a half-space. The restriction of T to this

infinite dimensional subspace has singleton as its spectrum, and if we can find a suit-

able, small in norm, rank-one perturbation of this restriction, then clearly we can do

the same for T (please see the details in the proof of Theorem 3.3 in [T19]). Hence we

can assume σ(T ) = {λ}. Note that if the conclusion of Theorem 1.1 holds for T then

it hold for any T − λI. Therefore, by replacing T with T − λI, we can assume that

σ(T ) = {0}, that is, T is quasinilpotet.

To summarize, in order to prove the conclusion of Theorem 1.1, we can assume that

T (hence T ∗ as well) is quasinilpotent, and σp(T ) = σp(T
∗) = {0}.

For the proof we are going to use the following w∗-analogue of the Bessaga-Pelczynski

selection principle, due to Johnson and Rosenthal (see Theorem III.1 and Remark

III.1 in [JR72]). For a shorter proof see the more recent paper of González and

Martinez-Abejón [GM12]. Recall that a sequence (xn) in a Banach space is called

semi-normalized if 0 < inf ∥xn∥ ≤ sup ∥xn∥ < ∞.

Theorem 2.3. [JR72][GM12] If (x∗
n) is a semi-normalized w∗-null sequence in a dual

Banach space X∗, then there exists a basic subsequence (y∗n) of (x∗
n), and a bounded

sequence (yn) in X such that y∗i (yj) = δij for all 1 ≤ i, j < ∞.

3. Rank one perturbations with small norm

We first prove the following proposition, as a first step towards the general case.
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Proposition 3.1. Let X be a separable Banach space, T ∈ B(X) a quasinilpotent

operator, and Z an infinite dimensional, separable, T ∗-invariant subspace of X∗ such

that T ∗
∣∣
Z has dense range (as an operator from Z to Z) . Then for any ε > 0, there

exists F ∈ B(X) of rank at most one and ∥F∥ ≤ ε such that T + F has an invariant

half-space.

Proof. Denote by S := T ∗
|Z : Z → Z the restriction of T ∗ to Z, and by j : X → X∗∗

the canonical embedding of X in the double dual X∗∗. Since T is quasinilpotent, so is

T ∗, hence also S and S∗ : Z∗ → Z∗. Also, since S has dense range, it follows that S∗

is injective, so 0 /∈ σp(S
∗). Pick x ∈ X, ∥x∥ = 1, such that the restriction of j(x) to

Z, j(x)
∣∣
Z ̸= 0, and denote by x∗∗ := j(x)

∣∣
Z ∈ Z∗. Consider the local resolvent of S∗

at x∗∗, g : C \ {0} → Z∗ defined as:

g(z) := (zI − S∗)−1(x∗∗) =
∞∑
n=0

S∗nx∗∗

zn+1

The function g is analytic and non-zero on C \ {0}. From the Neumann series

expansion of the local resolvent it follows that z = 0 is either a pole or an essential

singularity for g. Therefore g is unbounded near z = 0, so we can find a sequence

λn → 0 such that ∥g(λn)∥ → ∞. Denote:

h∗∗
n := (λnI − S∗)−1(x∗∗) ∈ Z∗ and hn := (λnI − T )−1(x) ∈ X.

It is routine to check that h∗∗
n = j(hn)

∣∣
Z . Denote by y∗∗n := h∗∗

n /∥h∗∗
n ∥, and notice

that

(1) S∗y∗∗n = λny
∗∗
n − x∗∗

∥h∗∗
n ∥

We have from Banach-Alaoglu that BZ∗ , unit ball of Z∗, is w∗-compact (in the w∗-

topology of Z∗), and since Z is separable it follows that BZ∗ is also w∗-metrizable.

Without loss of generality assume that y∗∗n
w∗
−→ y∗∗ ∈ Z∗. Taking w∗-limits in (1), and

using the fact that λn → 0 and ∥h∗∗
n ∥ → ∞, easy calculations show that S∗y∗∗ = 0.

From the injectivity of S∗ it now follows that y∗∗ = 0.

From Theorem 2.3, we can assume that (y∗∗n ) is a basic sequence in Z∗, and that

there exists (y∗n) a bounded sequence in Z such that y∗∗i (y∗j ) = δij, for all 1 ≤ i, j < ∞.

Clearly both (y∗∗n ) and (y∗n) are linearly independent, and note that for any n ̸= k we

have that

(2) y∗n(hk) = j(hk)(y
∗
n) = h∗∗

k (y∗n) = 0

and
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(3) y∗k(hk) = j(hk)(y
∗
k) = h∗∗

k (y∗k) = ∥h∗∗
k ∥y∗∗k (y∗k) = ∥h∗∗

k ∥

From (2) it follows easily that (hn) ⊆ X are linearly independent, hence [hn] is an

infinite dimensional subspace of X. On the other hand, for any k ∈ N, we have that

y∗2k+1([h2n]) = 0, and since (y∗2k+1) are linearly independent it follows that [h2n] is an

infinite dimensional subspace of X. Therefore, by eventually passing to a subsequence,

we may assume that [hn] is a half-space.

Fix ε > 0 and let M such that ∥y∗n∥ < M . Since ∥h∗∗
n ∥ → ∞, by eventually passing

to a subsequence we may assume that
∑∞

n=1 1/∥h∗∗
n ∥ < ε/M . For any k ∈ N we have∥∥∥ k∑

n=1

1

∥h∗∗
n ∥

y∗n

∥∥∥ ≤
k∑

n=1

1

∥h∗∗
n ∥

∥y∗n∥ ≤ M
∞∑
n=1

1

∥h∗∗
n ∥

< M · ε

M
= ε.

Therefore f ∗ :=
∑∞

n=1
1

∥h∗∗
n ∥y

∗
n ∈ Z is well defined and ∥f ∗∥ < ε. Consider the

rank-one operator F := x⊗ f ∗ ∈ B(X). Then ∥F∥ < ε and for any k ∈ N we have

F (hk) = f ∗(hk)x =

(
∞∑
n=1

1

∥h∗∗
n ∥

y∗n(hk)

)
x =

1

∥h∗∗
k ∥

y∗k(hk)x = x

and hence

(T + F )hk = Thk + Fhk = λkhk − x+ x = λkhk

This shows that [hn] is an invariant half-space for T + F . □

Remark 3.2. The main difficulties to overcome in Proposition 3.1 are for the situation

when X is not reflexive, the proof can be simplified in the reflexive case.

We are now ready to prove Theorem 1.1

Proof of Theorem 1.1. From Theorem 2.2 and the discussion following it, we may as-

sume that T is quasinilpotent and σp(T ) = σp(T
∗) = {0}. We may also assume

that Ker(T ) is finite dimensional, as otherwise any infinite codimensional subspace of

Ker(T ) is an invariant half-space for T .

For a non-zero vector x ∈ X, denote by Cx the closed span of the orbit of x under T ,

that is Cx := [T nx]n≥0. Clearly, when Cx is finite dimensional we can find a polynomials

px such that px(T )x = 0. If Cx is finite dimensional for all x ∈ X, then T is said to be

locally algebraic and it follows from Kaplansky Lemma (see Lemma 14 in [K71]) that

it is actually algebraic. That is, there exists a polynomial p such that p(T ) = 0. In this

case, since T is quasinilpotent, it must be nilpotent, so ker(T ) is infinite dimensional,
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a contradiction with our initial assumptions. Therefore, there exists a non-zero x ∈ X

such that Cx is infinite dimensional. If the restriction of T to Cx, T
∣∣
Cx

: Cx → Cx,
satisfies the conclusion of the theorem, clearly so does T ; therefore without loss of

generality we may assume that Cx = X.

First note that if Cx = X then dimKer(T ∗) = 0 or dimKer(T ∗) = 1. Indeed, suppose

y∗ ∈ kerT ∗. Then, for any natural number n ≥ 0 we have that (T ∗y∗)(T nx) = 0,

therefore y∗(T nx) = 0 for any n ≥ 1. If x ∈ [T nx]n≥1, then [T nx]n≥1 = Cx = X, and

it follows that y∗ = 0. Otherwise, [T nx]n≥1 is a 1-codimensional subspace of X, and

from the fact that y∗(T nx) = 0 for all y∗ ∈ Ker(T ∗) we have that dimKer(T ∗) = 1.

From our initial assumption that σp(T
∗) = {0}, we cannot have that dimKer(T ∗) = 0,

therefore we must have that dimKer(T ∗) = 1.

Next, we are going to show that for any n ∈ N, dimKer(T ∗n+1)−dimKer(T ∗n) ≤ 1.

Indeed, note that for any n ∈ N we have the short exact sequence

0 −→ Ker(T ∗n)
i−→ Ker(T ∗n+1)

T ∗n
−→ T ∗n(Ker(T ∗n+1)) −→ 0.

Hence, also taking into account that T ∗n(Ker(T ∗n+1)) ⊆ KerT ∗, it follows that

dimKer(T ∗n+1) ≤ dimKer(T ∗n) + dimKer(T ∗). Since dimKer(T ∗) = 1, we conclude

that for any n ∈ N, dimKer(T ∗n+1)− dimKer(T ∗n) ≤ 1.

For any n ∈ N, denote by Yn = Range(T n), and put Y0 := X. Clearly each Yn is

a closed invariant subspace of X, Yn+1 = TYn, and X ⊇ Y1 ⊇ Y2 ⊇ . . . . we can also

assume each Yj is infinite dimensional; indeed, otherwise, if j is the smallest index for

which Yj is finite dimensional, then any half-space of Yj−1 containing Yj is an invariant

half-space for T .

We consider two cases.

Case I: ∃n ∈ N such that Ker(T ∗n) = Ker(T ∗n+1)

In this situation we have that Yn = Yn+1; indeed, this is easy to see as for any y
∗ ∈ X∗

we have that y∗ ∈ Ker(T ∗n) if and only if y∗(Yn) = 0. Therefore S := T
∣∣
Y n

: Yn → Yn

has dense range, and hence S∗ : Y ∗
n → Y ∗

n is injective, and also quasinilpotent. From

Theorem 2.2 applied to S we conclude that S, hence also T , satisfies the conclusion of

the Theorem, and we are done.

Case II: ∀n ∈ N, dimKer(T ∗n+1)− dimKer(T ∗n) = 1. In this situation we are going

to show that T satisfies the hypotheses of Proposition 3.1.

Note that we have a strict inclusion Ker(T ∗) ⊂ Ker(T ∗2) ⊂ Ker(T ∗3) . . . , where

for any n ∈ N, dimKer(T ∗n) = n. Pick x∗
1 ∈ Ker(T ∗), and for any n ∈ N, n ≥ 2,

pick x∗
n ∈ Ker(T ∗n) \ Ker(T ∗n−1). Clearly (x∗

n) are linearly independent, and put
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Z := [x∗
n] ⊆ X∗. We have that Z is a separable subspace of X∗, and to finish the proof

remains to show that Z is T ∗-invariant and T ∗
∣∣
Z has dense range.

We have that for any n ∈ N, Ker(T ∗n) = [x∗
j ]1≤j≤n ⊆ Z and also that T ∗x∗

n ∈
Ker(T ∗n−1). Hence T ∗Z ⊆ Z, so Z is T ∗-invariant. To show that T ∗

∣∣
Z has dense

range, we first claim that for any n ∈ N, x∗
n ∈ T ∗Z. Since T ∗x∗

2 ∈ Ker(T ∗) = [x∗
1], it

follows that x∗
1 ∈ T ∗Z. Assume by induction that x∗

j ∈ T ∗Z for any 1 ≤ j < n and we

will show that x∗
n ∈ T ∗Z. Since T ∗x∗

n+1 ∈ KerT ∗n, we can write

T ∗x∗
n+1 = α1x

∗
1 + α2x

∗
2 + · · ·+ αnx

∗
n

Since x∗
1, x

∗
2, . . . , x

∗
n−1, and T ∗x∗

n+1 are all in T ∗Z, suffices to show that αn ̸= 0.

If αn = 0, then we have that T ∗x∗
n+1 ∈ [xj]1≤j≤n−1 = Ker(T ∗n−1), therefore x∗

n ∈
Ker(T ∗n). This is a contradiction with the choice of x∗

n, and the claim is proved.

Hence Z ⊆ T ∗Z ⊆ T ∗Z. Therefore T ∗Z = Z, that is, T ∗
∣∣
Z has dense range, and

we obtain the conclusion of the Theorem by applying Proposition 3.1.

This finishes the proof.

□
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