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The Use of Compressive Sensing and Peak
Detection in the Reconstruction of

Microtubules Length Time Series in the
Process of Dynamic Instability

Majid Mahrooghy, Shantia Yarahmadian, Vineetha Menon, Vahid Rezania, and Jack A.
Tuszynski

Abstract

Microtubules (MTs) are intra-cellular cylindrical protein filaments. They exhibit a unique phenomenon of
stochastic growth and shrinkage, called dynamic instability. In this paper, we introduce a theoretical framework
for applying Compressive Sensing (CS) to the sampled data of the microtubule length in the process of dynamic
instability. To reduce data density and reconstruct the original signal with relatively low sampling rates, we
have applied CS to experimental MT lament length time series modeled as a Dichotomous Markov Noise
(DMN). The results show that using CS along with the wavelet transform significantly reduces the recovery
errors comparing in the absence of wavelet transform, especially in the low and the medium sampling rates.
In a sampling rate ranging from 0.2 to 0.5, the Root-Mean-Squared Error (RMSE) decreases by approximately
3 times and between 0.5 and 1, RMSE is small. We also apply a peak detection technique to the wavelet
coefficients to detect and closely approximate the growth and shrinkage of MTs for computing the essential
dynamic instability parameters, i.e., transition frequencies and specially growth and shrinkage rates. The results
show that using compressed sensing along with the peak detection technique and wavelet transform in sampling
rates reduces the recovery errors for the parameters.

Index Terms
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1 INTRODUCTION

Microtubules (MTs) are linear intra-cellular polymers made of tubulin protein dimers [1], [2], [3], [4].

Microtubules are found in all eukaryotic cells and play key roles in intra-cellular trafficking, mitosis [4],

cell motility [2], and chromosome segregation [5]. Aberrations in MTs functions have been correlated with

various diseases including Alzheimer’s disease [6], Parkinson’s disease [7], different forms of cancer [8],
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and transmission of bacterial infection [9]. Above a threshold concentration, tubulin dimers assemble

into a hollow cylinder, typically consisting of 13 protofilaments, which can extend by polymerization

to many thousands of subunits [2], [4], [10], [11], [12]. Mitchison and Kirschner found that MTs reach

a steady state under fixed external conditions with alternating periods of polymerization (growth) and

more rapid depolymerization (shrinking) [2], [4]. The individual microtubules in the steady state exhibit

stochastic transitions from growth to shortening (catastrophe) or shortening to growth (rescue) over time.

They termed this unique behavior dynamic instability [1], [4], [13], [14], [15]. Switching frequencies are

modulated during certain cellular transitions to change the length probability distribution and density

of the filaments [13].

This stochastic switching behavior is described by a molecular timer exposed at one end of the growing

MT. The exposed β-tubulin monomer undergoes a conformational change after association of the dimer

into the polymer, thus increasing the probability of hydrolyzing the associated guanosine 5-triphosphate

(GTP) to guanosine diphosphate (GDP). The GDP-bound subunits have a relatively low affinity for other

tubulin dimers; therefore, GTP hydrolysis is believed to act as a switch for changing the binding affinity

of the subunit. The competition between the rate of GTP hydrolysis in the MT and binding of new GTP-

bound dimers is believed to be the reason for the transition from a state of high affinity dimer binding

to very low affinity. Different mathematical models have been developed to evaluate quantities such as

the MT length distribution and dynamic parameters , but the stochastic nature of the switching process

between polymerization states complicates the procedure of sampling and construction of the distribution

of microtubule lengths [16]. The mechanisms governing dynamic instability are still an active subject of

both experimental and theoretical investigation [14], [16], [17], [18], [19], [20], [21], [22], [23], [24], [25],

[26], [27], [28], [29].

Optical microscopes have been used to collect time-lapse data of cellular processes for more than 100

years. In the modern era of single molecule sensitivity and microsecond frame rates, the major limitation

on data collection is typically the damage to the specimen or probe over the time course of the experiment.

The specimen or probe can only be illuminated for a finite accumulated period of time, and therefore,

the collected time-lapse data are often sparse with respect to the time scale of the intra-cellular events.

Note that high temporal resolution observation of dynamic behavior of MT parameters is very imper-

ative for understanding the MTs behavior and many other cellular activities. Since in practice we have

substantial limitations on the sampling of the MT parameters such as experimental equipment precision,
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and spatiotemporal resolution, therefore, we investigate the use of Compressed Sensing (CS) to improve

the resolution and the value of the time-lapse observations in life-sciences research.

Compressed sensing has recently found its applications in a variety of areas such as biomedical imaging,

communications, and remote sensing [30], [31], [32], [33], [34]. Using the commonly applied Nyquist-

Shannon sampling theorem, accurate capturing of a signal requires that samples to be taken at a rate at

least two times faster than the signal bandwidth to avoid losing information or aliasing [35]. The general

concept for CS is that signals can be represented by only a few non-zero coefficients, where the number

of samples required recovering a signal without error is determined by its bandwidth. In CS, a nonlinear

optimization can recover a signal by using considerably fewer measurements rather than suggested by

the Nyquist-Shannon sampling theorem [30], [36], [37], [38]. In this regard, CS will find its application

in many areas of life-sciences research, where time-lapse is a significant problem. To the best knowledge

of the authors, CS has not yet been applied to reconstruct MTs and improve the MT dynamic instability

parameterization.

This study is focused on using a CS based framework for the reconstruction of the MTs filament length

and estimation of the characteristic parameters based on minimum sampling measurements. MT length is

a stochastic signal which is also generally characterized by four parameters, growth and shrinkage rate,

catastrophe and rescue frequencies [28], [29]. These four parameters are also evaluated from sampled

data of the MTs length through microscopy. As such, an accurate estimation of them depends upon

the time-lapse observations (sampling) of the MT length and the frequency of this observation. We use

experimental data as the original signal, and by applying CS with different sample rates, we try to

recover the original signal and validate the method. The reason we are using the experiment data as the

original data is to evaluate the CS recovery method. We also apply the peak detection technique to the

wavelet coefficients to detect and closely approximate the growth and shrinkage of MTs for computing

the essential dynamic instability parameters, i.e., transition frequencies and growth and shrinkage rates.

We hope that this study combined with state-of-the-art experimental assays paves the way to the use

of CS-based methods for biologists interested in the observation and characterization of microtubules

and other biological filaments such as actin or intermediate filaments. We hope that this study combined

with state-of-the-art experimental assays paves the way to the use of CS-based methods for biologists

interested in the observation and characterization of microtubules and other biological filaments such as

actin or intermediate filaments.
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Fig. 1: Microtubules as a Dichotomous Markov Noise

2 METHODS

2.1 Dichotomous Markov Noise Model for Microtubules length Time Series

Microtubules are growing and shrinking with constant rates but the time spending in the growth and

shrinkage is random. This growth and shrinkage can be interpreted as random switching (transitions)

between growth and shrinkage state. Let X(t) be a continuous positive random variable, representing

the length of the MTs under study. The rate of change of X(t), the velocity v(t), is randomly switching

between positive and negative constant levels (vg and vs) measured from the zero scale for the growth

and shrinkage rate [39], [40] (See Figure 1). Dichotomous Markov Noise (DMN) is defined as a two-

valued stochastic process with the state space values vg and vs with constant transition frequencies of fg

and fs for the growth (g) and shrinking (s) rate. The switches of v(t) are modeled as a Poisson process.

The equilibrium point of the system is characterized by [28], [29]:

V =
vgfs − vsfg
fs + fg

(2.1)

Microtubule length distribution is exponential with the average length of [39]:

L =
vgvs

vsfg − vgfs
(2.2)

2.2 Wavelet Transform

Distinct from the Fourier transform, in which the basis functions are sinusoids, wavelet transforms are

based on small waves with varying frequency and limited duration, i.e., wavelets. These time-limited

basis functions help to determine the corresponding frequency and its usage in the expansion. Equation
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(2.3) describes a 1D-discrete-time function, which is expanded, by wavelet basis functions in the time

and frequency domain as [41]:

f(n) =
∑
k

∑
j

aj,kψj,k(n) (2.3)

where f(n) ∈ L2(R), k, j ∈ Z. k stands for time and j represents the frequency (or translating variables

and scale, respectively) [10]. The basis functions are defined as:

ψj,k(n) = 2
j
2ψ(2jn− k) (2.4)

where ψ(t) is the mother wavelet and the aj,k are the corresponding wavelet coefficients. Equation (2.3)

can also be expanded as the following formula:

f(n) =
∑
k

cj0(k)φj0,k(n) +
∑
j=j0

∑
k

dj(k)ψj,k(n) (2.5)

The first term of f(n) corresponds to the coarse resolution while the second term represents the detail

(or wavelet) resolution of the signal. cj0(k) and dj(k) are the corresponding approximation (or scale) and

detail (or wavelet) coefficients at scale j, respectively. These coefficients can be calculated by using the

following equations [41]:

cj0(k) = 〈f(n), φj0,k(n)〉 (2.6)

dj(k) = 〈f(n), ψj,k(n)〉 (2.7)

Note that j0 is an arbitrary starting scale. Also in this paper the maximum scale j is considered as the

decomposition level.

2.3 Peak Detection Using Wavelets

Unlike Fourier transforms, where we have either time or frequency resolution, Wavelets not only offers

the benefit of working with sparse coefficients, but also provides us with simultaneous time-frequency

resolution. This property of simultaneous time-frequency resolution in wavelets, can be exploited in our

case to find the peaks present in the MTs length time series. Peak detection plays an important role in

detecting the switching points in MTs, and thus by using that information we can fit MTs time series

to the DMN model. Peak detection in wavelet domain is done based on the Energy Packing Efficiency

(EPE) as in [42]. EPE gives us a measure of total energy preserved in a specific sub-band after some

thresholding condition is applied with respect to the total energy preserved in the sub-band before any
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thresholding. EPE is defined as follows [42], [43]:

EPEi =
ETHi

ETOTi

∗ 100 (2.8)

where for every sub-band i, EPEi stands for Energy packing efficiency, ETHi
stands for the energy

preserved in sub-band after thresholding, and ETOTi
stands for the total energy preserved in sub-band

before thresholding.

Since we are interested in the time instants where switching occurs, we sort the significant wavelet

coefficients in the lowest level in an ascending order to exploit time resolution property of wavelets. A

threshold is then applied to retain a specific percentage of the significant coefficients, where each of the

retained coefficients correspond to peaks in the time domain. The information from the estimated peaks

are further encoded to fit our MT signal to the DMN model.

2.4 Compressive Sensing

Consider x[n] ∈ RN , n = 1, 2, . . . , N and assume x ∈ RN , a real-valued, 1-D, finite-length N × 1 signal.

This signal can be projected on a basis of N × 1 vectors, {ψi}Ni=1. The basis can be orthonormal, in which

case, x is represented by:

x =

N∑
i=1

siψi (2.9)

or

x = Ψs (2.10)

where s = 〈x, ψi〉. Signal x is a K−sparse signal if and only if K of the si coefficients in (2.9) are nonzero

and (N −K) of them are zero [38], where K � N . In fact, signal x is defined to be compressible when

only few coefficients in (2.9) are large and the others are relatively small [38]. In compressive sensing,

the M(< N) inner products between the signal and a collection of the measurement vectors {φi}Ni=1, i.e.,

yi = 〈x, φi〉, are computed, where yi is the measurements which can be a N × 1 vector y. Therefore, we

have:

y = Φx = ΦΨs = θs (2.11)

where θ = ΦΨ is a M ×N matrix. Note that Φ is independent of the signal and fixed. Φ must be selected

such that using M samples, dimensionality reduction does not degrade the important information in s or
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the compressible signal. In addition, to recover x from M samples (M almost equal to K), a reconstruction

algorithm is required.

In CS, the signal and images can be recovered from very few samples when two main conditions of

incoherency and sparsity are satisfied [36]. In regard to incoherency, the coherency between the sensing

basis (Φ) and the representation basis Ψ is defined as follows (assuming Φ, and Ψ are orthogonal bases

of Rn):

µ(Φ,Ψ) =
√
n max

1≤i,j≤n

∣∣〈φi, ψj〉
∣∣ (2.12)

The coherency measures the largest correlation between the elements of Φ and Ψ. Therefore, when Φ

and Ψ have correlated elements, µ will be large. Note that (Φ,Ψ) ∈ [1,
√
n]. If ψi is wavelets basis and

φk(t) = δ(t − k) is the canonical or spike basis, then the coherency between the sensing basis and the

Haar wavelet is
√

2. For Daubechies D4 and D8 wavelets, the coherency is about 2.2 and 2.9, respectively

[30]. If Ψ is the Fourier basis, then µ(Φ,Ψ) = 1. If Φ is a random matrix, it is largely incoherent with any

basis. By selecting Φ as a uniformly random orthogonal basis, the coherence between Φ and Ψ is about
√

2 log n with a high probability. If Φ is selected with independent identically distributed (iid) entities, it

is shown that a very low coherence between Φ and Ψ is obtained [30], [44].

2.5 Reconstruction

The reconstruction algorithm evaluates the sparse coefficients of the signal by minimizing the lp norm of

the signal. The lp norm is defined as ‖sp‖p =
N∑
i=1

|si|p. In order to obtain the sparse signal from y we use:

ŝ = argmin
∣∣∣(|s′|)∣∣∣

p′
such that y = ΦΨs′ = θs′ (2.13)

For l2−minimization, no K−sparse solution should be found. l0, which counts the number of non-zero

entries in s, can cover the K−sparse signal. When p = 0, solving (2.13) is numerically unstable and also

NP-complete [36], [38], but it still can be solved by l1 optimization. Based on a theorem developed by

Candes and Ramberg [30], if x ∈ RN is K−spare in the Ψ basis, and M measurements in the Φ domain

are uniformly randomly selected based on the following equation:

M ≥ CKµ2(Φ,Ψ) logN (2.14)
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for a positive constant C, then by using the l1 recovery method, x can be recovered with a high probability

from (2.13). It can be inferred that the smaller the coherency is, less M needed to reconstruct the signal.

For exact reconstruction of the signal x, the Restricted Isometric Property (RIP), should be satisfied by

the matrix θ in the following way:

(1− δk)‖x‖2l2 ≤ ‖θx‖ ≤ (1 + δk)‖x‖2l2 (2.15)

where δk is not close to one. When Φ is a M ×N iid Gaussian matrix (random Gaussian measurements)

and M ≥ cK log(N
K ), the K−sparse and compressible length signal can be recovered [1]. In fact, using

M ≥ cK log(N
K ) iid Gaussian measurements, the l1 optimization of equation (2.13) can exactly recover

the K−sparse signal with a high probability. Also this type of Φ (M × N iid Gaussian matrix) satisfies

the RIP [45].

There are two approaches for compressive sensing recovery. The first involves solving a linear programing

method to minimize the l1 norm of the signal, ‖x‖1, subject to the data constraint y = Φx. This method is

known as Basis Pursuit (BP) [46] and is computationally more complex than the other methods. However,

several fast convex relaxation algorithms based on BP, such as the gradient projection method [47] have

been proposed to solve or approximate BP. The l1 magic recovery is a BP- based recovery package [48],

which uses a convex Linear Programing (LP) and a Second-Order Cone Programing (SOCP) for seven

contexts: 1) l1−minimization with equality constraints, 2) l1−minimization with error approximation,

3) l1−minimization with quadratic constraints, 4) l1−minimization with bounded residual correction, 5)

Minimizing-Total Variation (TV) with equality constraints, 6) TV-minimization with quadratic constraints,

and 7) Dantzig TV. The l1 magic solves the above problems separately for maximum computational effi-

ciency. In l1−minimization with bounded residual correlation (also called Dantzig Selector), the program

finds the vector with minimum l1 norm such that:

min ‖s‖1 subject to ‖θ∗(θs− y)‖∞ ≤ γ (2.16)

where γ is a user specific parameter [48]. The other approach is through using greedy pursuit algo-

rithms, which are less complex than the BP algorithms [49]. However, the greedy pursuit algorithms

usually have less stability than BP algorithms [49]. These algorithms iteratively try to refine and yield a

better approximation of the signal. Examples of these algorithms are the Orthogonal Matching Pursuit

(OMP) [50], Stagewise OMP (StOMP) [51], Regularized OMP (ROMP) [52], Subspace Pursuit (SP) [53],

and Compressive Sampling Matching Pursuit (CoSaMP) [52]. The reconstruction complexity of these

8



0 2 4 6 8 10
0

1

2

3

4

5

6

7

8

9

10

L
e

n
g

th
(M

ic
ro

m
e

te
r)

Time(min)

 

 

Original signal

Fig. 2: Original Signal

algorithms are significantly lower than the complexity of BP.

3 RESULTS AND DISCUSSION FOR EXPERIMENTAL DATA

We have used a real experimental data in this study. Tubulin proteins were first purified from the bovine

brain and then seeded to polymerize at 37◦C. The growing and shortening dynamics of individual

purified MTs were then recorded at their plus ends using the differential interference contrast video

microscopy. Data points representing MT lengths were collected at 2 − 6 s intervals. MT lengths were

analyzed using the Real Time Measurement program. Any length changes equal to or less than 0.2 µm

over the duration of six data points were considered attenuation phases (phases in which length changes

were below the resolution of the microscope). It should be noted that the experimental detection limit for

length changes corresponds to about 400− 800 tubulin dimers. See Rezania et. al [35] for further details.

We first apply discrete wavelet transform to get a sparse representation for MT length signal. In our

work we have used Daubechies D2 (db2) mother wavelet with 8 levels of signal decomposition, which

performs better than other mother families and decomposition levels in our work. The resultant sparse

wavelet coefficients are sampled at varying rates using compressed sensing. The advantage of compressed

sensing here is in being able to reconstruct the signal from far fewer measurements than the traditional

Nyquist criteria. The recovering of the sparse signal is performed by minimizing l1-norm with bounded

residual correlation in the l1-magic package [48].
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(c) CS recovery for subrate=0.8 (d) CS recovery for subrate=1.0

Fig. 3: Reconstructed signal using CS for different sampling rates.

Figure 2 depicts one of the MT length datasets used for our experiments. We first used wavelet transform

to get a sparse representation of the given signal and then applied CS recovery through l1 minimization

for different sampling rates. Figures 3 illustrates the effectiveness of CS recovery on MTs. We see that for

subrates greater than 0.5, the recovered signal begins to closely trace the original signal. Although we

are taking far fewer measurements than traditional Nyquist theory, it can be observed that we are able

to achieve a very good approximation of the original signal at lower subrates.

As discussed in section 2.3, we use the rich information in the wavelet domain to detect peaks in the

MT signal, which in turn will help us to derive the switching states of DMN. We know that wavelet

decomposition provides us with both time and frequency resolution.We will make use of the fact that

here we are looking for wavelet levels with better time resolution to distinguish between different time

bins where the peak instances may be detected. Therefore, we look at the significant wavelet coefficients

present at the lowest level to achieve best time resolving capability. We then employ EPE as a measure to

threshold the necessary significant wavelet coefficients after sorting them from highest to lowest values.

We have set the threshold parameter as ETH ≥ 0.85 ∗ ETOT . The thresholding procedure involved is as

given below:
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• Step 1: Sort the wavelet coefficients in the lowest level in descending order.

• Step 2: Compute the total energy present in the wavelet coefficients (wc) in the desired level. Where

total energy is calculated by :

ETOT =
∑

wc2 (3.1)

• Step 3: Fix the desired threshold percentage of significant wavelet coefficients that should be retained.

In our case, we retain values such that 85% of the total energy of the coefficients in that level is

preserved. That is :

ETH ≥ 0.85 ∗ ETOT (3.2)

• Step 4: Sum up energy of the sorted coefficients until the threshold condition is reached.

Thus, the number of significant wavelet coefficients selected depends on our threshold parameter, which

in turn regulates the number of peaks detected. Thereby, thresholding forms an important aspect in

estimating the switching parameters of the DMN based MT signal. The final reconstructed signal can be

obtained by applying the inverse wavelet transform on the sparse signal recovered using CS. Figure 4

illustrates different levels of wavelet decomposition and peaks detected using the significant coefficients

by applying both discrete wavelet transform(DWT) and continuos wavelet transform (CWT ). We have

then sorted and combined the resultant peaks detected by both DWT and CWT . Thereby, providing us

the best possible peak detection in wavelet domain. All the bright spots in Figure 4 (a), indicates the

significant coefficients with high values, implying possible peaks in the original.

Once the peaks are estimated from wavelet domain, we round off the recovered MT length signal to its

nearest peak value to obtain an encoded signal. This encoded signal is used for our further calculations

of parameters. Figure 5 shows the resultant MT length signal after peak detection and rounding off the

peaks for subrate 1.0. This process is done across all the subrates to obtain a MT signal to fit our DMN

model. The significance of doing peak detection and encoding the MT signal underlines the fact that

by this process we are trying to detect and closely approximate the shrinkage and growth of MTs for

varying subrates. Thus, the overall proposed method can be summarized as in Figure 6.

From a biological perspective, it is very important to estimate some parameters pertaining MTs such as

growth/shrinkage rate, their respective transition frequencies and average length of the MT to determine

the state of the system. In this section, we present the error parameters and other important parameters

estimated using our approach. Figure 7 portrays the error estimates of the parameters calculated. As
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Fig. 7: Estimated MT error parameters .
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Fig. 8: RMSE of the reconstructed MT signal with/without wavelet transform
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Fig. 9: SNR of the reconstructed MT signal with/without wavelet transform

Parameter data max vs min vs avg vs max vg min vg avg vg

Mean Original ABII 30.24 105.26 1.34 45.39 25.21 34.36

Mean CS-0.1 39.92 152.60 1.94 123.32 56.47 84.12

Mean CS-0.2 28.30 94.55 1.34 52.97 26.41 37.81

Mean CS-0.3 31.24 95.88 1.25 44.35 25.62 33.84

Mean CS-0.4 38.79 90.89 1.16 43.10 24.50 32.46

Mean CS-0.5 38.15 98.93 1.22 42.79 22.84 30.52

Mean CS-0.6 41.83 100.91 1.24 46.34 21.89 31.42

Mean CS-0.7 44.71 106.23 1.25 44.25 24.74 32.89

Mean CS-0.8 45.03 107.15 1.28 43.15 24.15 32.31

Mean CS-0.9 47.35 110.13 1.32 49.02 27.06 36.85

Mean CS-1.0 31.39 106.40 1.33 45.39 25.21 34.36

Table 1: Mean of the original and estimated velocity parameters across all subrates

discussed earlier, peak detection is done to locate the switching instants from growth to shrinkage and

vice versa (catastrophe and rescue). Thus, peak detection plays a crucial role in estimating the MTs

dynamic parameters. We see that fs and fg errors are very small and for subrates higher than 0.5 it

almost reduces to 0. As expected vs and vg show some errors due to loss of data involved in the CS

recovery and encoding process. Table 1 and Table 2 give us the original and estimated parameters of

MTs. However, we can determine the overall performance of the system by looking at Root Mean Square

Error (RSME) and the Signal to Noise Ratio (SNR) for all subrates. The RSME and SNR are defined as

follows:
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Parameter data fg fs avg L

Mean Original ABII 20.00 0.40 4.02

Mean CS-0.1 20.10 0.30 17.36

Mean CS-0.2 20.03 0.37 4.56

Mean CS-0.3 20.06 0.34 3.99

Mean CS-0.4 20.06 0.34 3.73

Mean CS-0.5 20.03 0.37 3.44

Mean CS-0.6 20.06 0.34 3.57

Mean CS-0.7 20.01 0.39 3.81

Mean CS-0.8 19.99 0.40 3.93

Mean CS-0.9 20.01 0.39 4.53

Mean CS-1.0 20.01 0.39 4.02

Table 2: Mean of the original and estimated frequency parameters across all subrates
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Fig. 10: RMSE comparison for CS and piecewise linear interpolation technique for reconstructing MT

RMSE =

√√√√ 1

N

N∑
i=1

(x̂i − xi)2 (3.3)

SNR = 10log(
σ2(x)

1
N

∑N
i=1(x̂i − xi)2

) (3.4)

where, σ2(x) gives the variance of our input MT signal x and x̂ represents recovered MT signal.

Figure 8 shows the RMSE of applying CS with/without wavelet transform. As it is seen, the RMSE
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of CS with wavelet transform have less RMSE value at all sample rates. From Figure 8 and CS with

wavelet transform, it can be inferred that for sampling rates greater than 0.5, the reconstruction error

approaches 0. This implies that the reconstructed signal becomes a closer approximate of the original

signal as the sampling rate increases. This fact can also be noted in Figure 3 where the reconstructed

signal evolves as a better estimate of the original signal for subrates higher than 0.5. The efficacy of the

proposed approach can be further verified by looking at the systems SNR. Figure 9 provides the SNR of

reconstructed signal with/without wavelet transform. As it is seen, the SNR of CS with wavelet transform

has better performance than CS without wavelet in all sample rates. For CS with using wavelet transform,

for higher sampling rates, the SNR shoots high is indicating that our reconstructed signal is becoming a

closer approximate of the original signal. As such, this is showing that using wavelets followed by a CS

recovery is successful in recovering MTs with minimum error. In addition to this, wavelets offer lucrative

simultaneous time-frequency domain resolution, which aids in detection of switching time instances and

transition frequencies of MTs.

It should be noted that the MT length signal might not be sparse. Therefore, if we apply CS to non-

sparse MT signal, we would not obtain good reconstruction performance. However, we have shown

that if we apply CS to the wavelet transform of MT length data we can better reconstruct the signal. In

practice, since we have only MT length data, first we can estimate the wavelet transform of the MT-length

measures, and then, we can apply CS to the wavelet estimate.

To compare the performance of the CS with another method of reconstructing signal, we have applied

the piecewise linear interpolation [54] with random sampling to the MT data. Figure 10 shows a RMSE

comparison of CS and the interpolation technique. As the figure shows the CS technique has lower RMSE

in most sampling rate.

4 SUMMARY AND CONCLUSION

In this paper, we introduce a CS-based sampling method exploiting reconstructions of the microtubule

length in the process of dynamic instability with a minimal set of sampled measurements. We have

discussed how to use CS to be able to recover the MTs filament length out of a small set of sampled

data, which is obtained from the experimental data. The results show that using CS, we can reconstruct

the original signal with less sampling rate if CS is applied on wavelet-transformed data. In a sampling

rate ranging from 0.2 to 0.5, the Root-Mean-Squared Error (RMSE) decreases by approximately 3 times,
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and between 0.5 and 1, the RMSE is small. We have also applied a peak detection technique to the

wavelet coefficients to detect and closely approximate the growth and shrinkage of MTs for computing

the essential dynamic instability parameters, i.e., transition frequencies and growth and shrinkage rates.

The results also show that using CS along with the peak detection technique and wavelet transform in

sampling reduces the recovery errors for the MT length comparing when the wavelet transform is not

used. Our approach presents several advantages over traditional sampling methods (the regular periodic

sampling method of the data with the elapsed time and low temporal resolution) in the process of

sampling of dynamic instability of microtubules. In fact, this work shows a potential of reconstructing

the MT length time series as well as the dynamic parameters of the MTs with less RMSE by applying

CS to the measured signal of MT length sparse representation.

ACKNOWLEDGMENTS

The authors would like to thank Prof. Jim Fowler (Mississippi State University) for helpful discussions

and Henry Family Research Fund (HFRF) in Mississippi State University for the partial support of this

project.

REFERENCES

[1] Desai A, Verma S, Mitchison TJ, Walczak CE (1999)Kin I kinesins are microtubule-destabilizing enzymes Cell 96: 6978.

[2] Mitchison T, Kirschner M (1984), Dynamic instability of microtubule growth Nature 312: 237242.

[3] Wuhr M, Dumont S, Greeny AC, Needelman DJ, Mitchison TJ (2009), How does a millimeter-sized cell find its center?, Cell cycle

8: 1115-1121.

[4] Mitchison TJ, Kirschner MW (1987), Some thoughts on the partitioning of tubulin between monomer and polymer under conditions of

dynamic instability, Cell Biophys 11: 35-55.

[5] Barton NR, Goldstein LSB (1996), Going mobile: Microtubule motors and chromosome segregation, Proc Natl Acad Sci 93: 1735-1742.

[6] Ballatore C, Virginia MYL, Trojanowski JQ (2007), Tau-mediated neurodegeneration in Alzheimer’s disease and related disorders Nature

Reviews Neuroscience 8: 663-672.

[7] Farrer M (2006), Genetics of Parkinson disease: paradigm shifts and future prospects Nature Reviews Genetics 306-318.

[8] Kops GJ, Weaver BA, Cleveland DW (2005), on the road to cancer: aneuploidy and the mitotic checkpoint, Nature Reviews Cancer

5: 773-785.

[9] Molloy S (2008), Bacterial pathogenesis: Chain of transmission Nature Reviews Microbiology 6: 93.

[10] Alberts B, Johnson A, Lewis J, Raff M (2007), Molecular Biology of the Cell Garland Science.

[11] Downing KH, Nogales E (1998), Tubulin and microtubule structure, Curr Opin Cell Biol 10: 1622.

[12] Li H, DeRosier DJ, Nicholson WV, Nogales E, Downing KH (2002), Microtubule structure at 8◦ resolution, Structure 10: 13171328.

[13] Schek HT, Gardner MK, Cheng J, Odde DJ, AJ H (2007), Microtubule assembly dynamics at the nanoscale, Current Biology 17:

14451455.

17



[14] Shaw SL, Kamyar R, Ehrhardt DW (2003), Sustained microtubule treadmilling in Arabidopsis cortical arrays, Science 300: 1715-1718.

[15] Burbank KS, Mitchison TJ (2006), Microtubule dynamic instability, Curr Biol 16: 516517.

[16] Fygenson DK, Braun E, Libchaber A (1994), Phase diagram of microtubules, Phys Rev E 50: 15791588.

[17] Kueh H Y, Mitchison TJ (2009), Structural plasticity in actin and tubulin polymer Dnamics, Science 325: 9609639.

[18] Zhu L, Zhang W, Elnatan D, Huang B (2012), Faster STORM using compressed sensing, Nature Methods 9: 721723.

[19] Yarahmadian S, Barker B, Zumbrun K, Shaw SL (2011), Existence and stability of steady States of a reaction convection diffusion

equation modeling microtubule formation, Journal of Mathematical Biology 63: 459-492.

[20] Margolin G, Gregoretti IV, Goodson HV, Alber MS (2006), Analysis of a mesoscopic stochastic model of microtubule dynamic instability,

Phys Rev E 74: 041920.

[21] Flyvbjerg H, Holy TE, Leibler S (1996), Microtubule dynamics: Caps, catastrophes, and coupled hydrolysis, Phys Rev E 54: 5538-5560.

[22] Brun L, Rupp B, Ward JJ, Ndlec F (2009), A theory of microtubule catastrophes and their regulation Proc of the National Academy

of Sciences 106: 21173.

[23] Mouro M, Schnell S, Shaw SL (2011), Macroscopic simulations of microtubule dynamics predict two steady-state processes governing

array morphology, Computational Biology and Chemistry 35: 269-281.

[24] Rezania V, Tuszynski J (2008), Modeling polymerization of microtubules: A semi-classical nonlinear field theory approach, Physica A:

5795-5809.

[25] Rezania V, Tuszynski J (2008), A first principle (3+1)-dimensional model for microtubule polymerization, Phys Lett 372: 7051-7056.

[26] Rezania V, Azarenko O, Jordan M, Bolterauer H, Luduena R, et al. (2008), Microtubule Assembly of Isotypically Purified Tubulin

and Its Mixtures, Biophys J 95: 1993-2008.

[27] Hinow P, Rezania V, Tuszynski J (2009), Continuous model for microtubule dynamics with catastrophe, rescue, and nucleation processes,

Phys Rev E 80: 031904.

[28] Bicout DJ (1997), Greens functions and first passage time distributions for dynamic instability of microtubules, Phys Rev E 56: 66566667.

[29] Dogterom M, Leibler S (1993), Physical aspects of the growth and regulation of microtubule structures, Phys Rev Lett 70: 13471350.

[30] Cands E, Romberg J, Tao T (2006), Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency

information IEEE Trans Inform Theory 52: 489-509.

[31] Mamaghanian H, Khaled N, Atienza D, Vandergheynst P (2011), Compressed sensing for real-time energy-efficient ECG compression

on wireless body sensor nodes IEEE Trans Biomedical Engineering 58: 2456-2466.

[32] Donoho DL, Santos JM, Pauly JM , Compressed Sensing MRI IEEE Signal Processing Magazine 25: 72-82.

[33] Provost J, Lesage F (2009), The Application of Compressed Sensing for Photo-Acoustic Tomography IEEE Trans On Medical Imaging

28: 585-594.

[34] Miaou S, Chao S (2005), Wavelet-Based Lossy-to-Lossless ECG Compression in a Unified Vector Quantization Framework IEEE

Transactions on Biomedical Engineering 52: 539-543.

[35] Shannon C (1949), Communication in the presence of noise Proc IRE 37: 10-21.

[36] Eldar CY, Kutyniok G (2012)Compressed Sensing: Theory and Applications Cambridge University Press.

[37] Donoho D (2006), Compressed Sensing IEEE Trans Inform Theory 52: 1289-1306.

[38] Baraniuk R (2007), Compressive Sensing IEEE Signal Processing Magazine 24: 118-121.

[39] Luca R, D. Paolo D, Francesco L (2011), Noise-Induced Phenomena in the Environmental Sciences, Cambridge University Press.

[40] Bena I (2006), Dichotomous Markov noise: exact results in out-of-equilibrium systems, Int J Mod Phys 20: 28252888.

[41] Burrus CS, Gopinath RA, Guo H (1997), Introduction to Wavelets and Wavelet Transforms: A Primer, Upper Saddle River, NJ:

Prentice-Hall.

[42] Yip, P.; Rao, K.R. (1978), Energy Packing Efficiency for the Generalized Discrete Transforms, IEEE Trans Communications 26: 1257-

1262.

18



[43] Rajoub, B.A.(2002), An efficient coding algorithm for the compression of ECG signals using the wavelet transform, IEEE Trans

Biomedical Engineering 49: 355-362.

[44] Cands E, Romberg J (2007), Sparsity and incoherence in compressive sampling, Inverse Prob 23: 969985.

[45] Cands E, Wakin M (2008), An introduction to compressive sampling, IEEE Signal Processing Magazine 25: 21 30.

[46] Chen S, Donoho D, Saunders MA (1999), Atomic decomposition by basis pursuit, SIAM J Sci Computing 20: 3361.

[47] Figueiredo MAT, Nowak RD, Wright SJ (2008), Gradient projection for sparse reconstruction: Application to compressed sensing and

other inverse problems, IEEE Journal of Selected Topics in Signal Processing 1: 586597.

[48] Cands E, Romberg J (2005), l1-magic: Recovery of sparse signals via convex programming, [Online] Available:

http://usersecegatechedu/ justin/l1magic/downloads/l1magicpdf.

[49] Needell D, Tropp JA (2009), CoSaMP: Iterative signal recovery from incomplete and inaccurate samples, Appl Comput Harmon Anal

26: 301321.

[50] Needell D, Vershynin R (2009), Uniform uncertainty principle and signal recovery via regularized orthogonal matching pursuit, Found

Comput Math 9: 317334.

[51] Donoho DL, Drori I, Tsaig Y, Starck JL (2012), Sparse Solution of Underdetermined Linear Equations by Stagewise Orthogonal Matching

Pursuit, IEEE Trans Inform Theory 58: 10941121.

[52] Needell D, Vershynin R (2010), Signal Recovery From Incomplete and Inaccurate Measurements via Regularized Orthogonal Matching

Pursuit, IEEE journal of selected topics in signal processing 4: 310-316.

[53] Dai W, Milenkovic O (2009), Subspace pursuit for compressive sensing: Closing the gap between performance and complexity, IEEE

Trans Inform Theory 55: 2230-2249.

[54] C. de Boor (1978), A Practical Guide to Splines, Springer-Verlag, New York.

19


	Elsevier

