
Clone Resistant Mutual Authentication for Low-Cost RFID
and Contactless Credit Cards

Stéphane Lemieux
Acadia University,

Department of Mathematics
and Statistics,

Wolfville, NS, Canada, B4P 2R6
stephane.lemieux@acadiau.ca

Adrian Tang
University of Calgary,
Centre for Information

Security and Cryptography,
2500 University Drive NW,

Calgary, AB, Canada

Abstract

With Radio Frequency Identification (RFID) tags being used to secure contactless
credit cards, great benefits but also serious security and information privacy issues have
arisen. Recently many attempts have been made to resolve these issues. In particular,
attempts have been made to provide a means for authentication between tag and reader.
However, none have yet have been able to provide resistance to cloning attacks. Further-
more, authentication on lowest range of low-cost RFID tags, also remains a challenge.
We propose a clone resistant, mutual authentication scheme that requires only 32 bits
of read write memory, 90 bits of read only memory and can be deployed using as few as
300 logic gates. We also propose a stream cipher with the same memory constraints and
magnitude of logic gates. These systems may also be scaled to provide a high level of
security, using relatively little computational resources, on larger hardware platforms.

Keywords: EPC, RFID, Cloning, Mutual Authentication, Stream Cipher, Electronic
Payments

AMS Classification: 94A62, 20L05, 94A60

1 Motivation

Radio Frequency Identification (RFID) is a wireless technology that stores and retrieves
data remotely from devices. Systems employing this technology usually take the form
of tiny RFID tags which communicate with hand-held or stationary RFID readers. This
technology is currently used for inventory and access control, to monitor commercial supply
chains, and for electronic payment systems such as E-Zpass and contactless credit cards.
Low-cost RFID tags are even expected to replace the barcodes that currently exist on most
commercial products.

Despite this widespread and growing deployment, serious security and privacy concerns
remain to be addressed. One such concern is the need for an adequately secure mutual au-
thentication protocol, particularly one which could be deployed on the lower cost EPC-type
RFID tags. Another is the susceptibility of RFID tags to cloning, even when authentication
algorithms are in place.

“tag memory is insecure and susceptible to physical attacks [29, 31] revealing
their entire contents. This includes a myriad of attacks such as shaped charges,
laser etching, ion-probes, TEMPEST attacks, clock glitching and many others.”
[8]

1

Clone resistant mutual authentication is particularly important for contactless credit
card systems where

“[Theoretically] A criminal could simply walk up behind you, position his reader
near your wallet, and steal your credit card data without you every knowing it.”
[1]

“Customer safety depends on protection from impostors who may attempt to
impersonate either the customer to the financial service, or the financial service
to the customer.” [1]

Current well trusted private key cryptosystems and mutual authentication algorithms
are too large or require too much memory or too much computing power to be effectively
deployed on RFID technology, particularly low-cost RFID tags. Furthermore, such cryp-
tosystems were not designed to prevent the cloning attacks that can be applied to RFID
technology.

We present a novel mutual authentication protocol and a novel private key cryptosystem
that are clone resistant and efficient enough to provide adequate security on the lowest range
of EPC-type RFID tags and readers. The efficiency of implementation and clone resistance
can both be attributed to two unique features of these algorithms. First, the algorithms use
unique algebraic structures to perform necessary calculations. Second, the implementation
of the algorithms allows part of the secret key to be stored in two different ways- on the
RFID tag as hardware in the form of logic gates, and on the RFID reader in its memory.

In section 2, we introduce the mutual authentication protocol and private key cryptosys-
tem in an easily understandable but insecure form: namely without the use of the unique
infinite, non-associative, and usually non-abelian, algebraic structuresalgebraic structures
that the authors have termed Abstractions of Integer Arithmetic and Parital Abstractions
of Integer Arithmetic. These terms will usually be abreviated as AIAs and PAIAs respec-
tively. In the section 3, we define AIAs and PAIAs and illustrate how to represent each as
a short binary string. In Section 4 we define the types of AIAs and PAIAs that we would
want to use for cryptographic algorithms. Section 5, describes a mutual authentication
algorithm suitable for low-cost RFID technology, or contacless credit cards. Section 6 lists
the Tag and Reader specifications necessary to perform the algorithm explained in section 5.
Section 7 gives a security analysis only of the mutual authentication. Section 8 introduces
a new stream cipher based on a single or multiple AIAs or PAIAs. In Section 9 we discuss
the logic gate consumption necessary to implement the algorithms. Finally in Section 10
we give a security analysis of the Stream Cipher.

2 Implementations using regular integer arithmetic

The following algorithms for authentication and encryption fail to achieve any security when
calculations are performed via regular integer arithmetic, i.e. the process by which two
integers are multiplied together, because the underlying “hard problems” become trivial.
Without yet introducing the actual novel hard problems that the secure protocols will be
based on, we comment that they become trivial over regular arithmetic because it then has
a fast and efficient division algorithm. It is therefore necessary to assume for the moment
that given two numbers M and E, one can not divide E by M even if it is known that M is
a factor of E. The authentication algorithm then, amounts to multiplying the two integers
as pictured below.

2

kn · · · k2 k1

×s mp · · · m2 m1

x1,p+1 x1,p · · · x1,2 x1,1

x2,p+1 x2,p · · · x2,2 x2,1

x3,p+1 x3,p · · · x3,2 x3,1

·
·

·
xp,p+1 xp,p · · · xp,2 xp,1

ep+n · · · ep+1 ep · · · e2 e1

We assume that Alice and Bob have a common secret number K = kn · · · k2k1 and a
common secret digit d. Alice and Bob take turns, in each round, concatenating a randomly
chosen digit onto the left hand side of the (changing) number M . M begins with only the
digit m1 = d but grows as each new digit is concatenated. Furthermore all of the digits of
M are public knowledge as they are produced, except of course m1. In each round, Alice
generates a new digit mi, resets M = mimi−1 · · ·m1 and calculates the product E = K×M .
She then transmits to Bob the ordered pair (mi, ei) where ei is the ith digit (from the right)
of E. Bob calculates the same product to verify that ei is in fact the correct digit that
corresponds to mi. If Bob is satisfied he randomly generates mi+1 and repeats the process.
After r rounds of consecutive successes, both parties are convinced that they share the same
secret number K and secret digit d. It is now apparent why regular integer arithmetic could
not be used because dividing E by M and guessing d if necessary, would produce K.

The encryption and decryption operate in a similar manner but put an extra restriction
on the type of arithmetic chosen. We must now assume that multiplication is not commu-
tative and that we can not divide integers on the left but that given the digit ei as above,
and K and d, Bob can uniquely identify mi. The algorithm is then similar to authentication
except that Alice, instead of generating a random digit mi uses the next digit in the message
she wishes to send to Bob, encrypts it to get ei and sends it to Bob. Bob then decrypts
ei to recover mi and Alice begins again by encrypting mi+1. Here again, if division were
possible this stream cipher would fall quite easily to a known text attack.

In the next section we introduce classes of infinite non-abelian groupoids and quasi-
groups that can be used to efficiently implement these algorithms. Much work has been
done in [5, 6, 9] on the classification of groupoids and quasigroups. The use of groupoids
and quasigroups in cryptography is not even new, see [2, 3] for example. This may however
be the first time that infinite groupoids and quasigroups (excluding semigroups and groups
of course) have been proposed for cryptographic use.

3 Abstractions of Integer Arithmetic

Almost every school aged child can perform basic arithmetic. However, the specific set of
steps by which two integers are multiplied together, can actually be viewed as a complex
binary operation on strings of digits involving multiple iterations of two interlocking binary
operations (⊕,⊗) which act on pairs of digits. For example, we re-consider the product of
an n digit integer kn · · · k2k1 and a p digit integer mp · · ·m2m1 in some unspecified base b.
The product is labeled ep+n · · · e2e1.

3

kn · · · k2 k1

×s mp · · · m2 m1

x1,p+1 x1,p · · · x1,2 x1,1

x2,p+1 x2,p · · · x2,2 x2,1

x3,p+1 x3,p · · · x3,2 x3,1

·
·

·
xp,p+1 xp,p · · · xp,2 xp,1

ep+n · · · ep+1 ep · · · e2 e1

In the above product, each number xi,p+1xi,p · · ·xi,2xi,1 is the intermediate product of
the number kn · · · k2k1 and the digit mi. If we consider the product of two single digit
integers, say 3 and 7 in a fixed base, say 10, then the product can be viewed as a binary
operation ⊗ that maps the set of ordered pairs of digits to the set of ordered pairs of digits
between 0 and 9. In this case ⊗ : (3, 7) → (2, 1) or 3 ⊗ 7 = 21. An addition operation ⊕,
can be similarly defined on ordered pairs of digits so that, for example ⊕ : (3, 7) → (1, 0)
or 3⊕ 7 = 10. If we label the coordinates of the output as the carry and remainder of the
operation, then we can write ⊗ : (3, 7) → ((3⊗ 7)c, (3⊗ 7)r). We can then use the regular
steps commonly accepted for multiplying two integers ‘by hand’ to write each digit in the
product of number kn · · · k2k1 and the digit mi as a composition of these two operations.
For example,

xi,1 = (k1 ⊗mi)r,

xi,2 = ((k2 ⊗mi)r ⊕ (k1 ⊗mi)c)r,

xi,3 = ((m3 ⊗ k1)r ⊕ ((m2 ⊗ k1)c ⊕ ((m2 ⊗ k1)r ⊕ (m1 ⊗ k1)c)c)r)r.

We can then sum vertical columns of digits to derive a formula for each ei but the nesting
of remainders and carries will soon be unwielding.

Fortunately most of us already know the algorithm (arithmetic) by heart and so there
is no reason to display the results in such long hand. Doing so however, does elucidate a
number of interesting properties of integer multiplication:

1. Both digit-wise addition, ⊕, and digit-wise multiplication, ⊗, are binary operations
that map each pair of digits (with respect to a given base b) to another pair of digits,
namely the remainder and carry.

2. The algorithm for multiplication of integers (strings of digits) works independent of
the choices of output for the operations ⊕ and ⊗. That is, for each of ⊕ and ⊗, if we
change the output (carries and remainders) associated with one or more ordered pairs
of digits, then the integer multiplication algorithm will still work but will produce
different output strings.

3. Changing the outputs of⊕ and⊗ can, and in general will, alter the algebraic properties
of the resulting string-wise multiplication.

Given that the algorithm for basic arithmetic is common knowledge, in order to define a
new string-wise multiplication it is sufficient to simply list, in table format or as an ordered
string, the remainders and carries associated with each ordered pair of digits for the ⊕ and ⊗
operations. Figure 3 and the subsequent derived string, 000102010210021011000000000102
000211, give the remainders and carries for actual addition and multiplication in base 3.

Going in the opposite direction, if we randomly generate a string, s, of 4b2 digits (base
b) we can define tables for ⊕s and ⊗s and thus generate a new string-wise multiplication.

4

Addition Base 3, ⊕
a b carry remainder
0 0 0 0
0 1 0 1
0 2 0 2
1 0 0 1
1 1 0 2
1 2 1 0
2 0 0 2
2 1 1 0
2 2 1 1

Multiplication Base 3, ⊗
a b carry remainder
0 0 0 0
0 1 0 0
0 2 0 0
1 0 0 0
1 1 0 1
1 2 0 2
2 0 0 0
2 1 0 2
2 2 1 1

Derived String 000102010210021011000000000102000211

Figure 1: Base 3 Arithmetic

Definition 1 (Abstraction of Integer Arithmetic). Let B be the set of all base-b strings
of finite length. Then any base-b string, s, of length 4b2 defines a binary operation, ×s on
B using the algorithm for regular integer multiplication but with the remainders and carries
of digit-wise multiplication and addition taken from s as detailed above. We call the pair
(b,×s) an abstraction of integer arithmetic, or AIA for short. By AIAs we shall mean
abstractions of integer arithmetic.

Lemma 1. For any positive integer base-b, there exists a base-b string, sb, of length 4b2

such that (B,×s) is regular integer multiplication restricted to non-negative integers.

Proof. The string s for base 3 is given in Figure 3. Exhibiting the generic formula for
arbitrary positive integer base b is left to the reader.

We shall label regular integer multiplication restricted to the non-negative integers AIA0.
We now define a partial abstraction of integer arithmetic or PAIA.

Definition 2 (Partial Abstraction of Integer Arithmetic). Let B be the set of all
base-b strings of finite length. Then any base-b string, s, of length 2b2 defines a binary
operation, ⊕s on B using the algorithm for regular integer addition but with the remainders
and carries of digit-wise addition taken from s as detailed above. We call the pair (b, +s)
a partial abstraction of integer arithmetic, or PAIA for short. By PAIAs we shall mean
partial abstractions of integer arithmetic.

4 Choosing AIAs

For our algorithms, we will only use AIAs and PAIAs that are regular according to the
definitions below.

Definition 3 (Regular AIA). An AIA will be called regular if the following hold.

1. The multiplicative carries, (i⊗ j)c, are any non-zero digits {1, 2, ..., b}.

2. Each of the additive carries, (i⊕ j)c are either 0 or 1.

3. The additive carries of the form (1⊕ i)c are all 0.

4. For each fixed i ∈ {1, 2, ..., b}, the multiplicative remainders (i⊗1)r, (i⊗2)r, ...,(i⊗b)r

are all distinct.

5

5. For each fixed i ∈ {1, 2, ..., b}, the additive remainders (i⊕ 1)r, (i⊕ 2)r, ...,(i⊕ b)r are
all distinct.

Remarks:

• In general, neither of ⊗ and ⊕ will be commutative.

• The digit 0 is a restricted, place-holding, digit that can not be accessed by either
party using the authentication algorithm. In fact, when we say base-b from now on,
we refer to the digits {1, 2, ..., b}.

• Properties 1, 2, and 4 will ensure that ∀x, y, z, w ∈ {1, 2, ..., b}, ((x⊕y)c+(z⊗w)c)c = 0
and ((x⊕ y)c + (z ⊕w)c)c = 0. In other words, the sum of a multiplicative carry and
an additive carry or the sum of two additive carries will not produce another non-zero
carry.

• Property 5 ensures that ⊗ is left-cancellative. Thus, if we know the two digits i and
(i ⊗ j)r then we can deduce j. Define σi to be the permutation of {1, 2, ..., b} such
that (i ⊗ j)r = σi(j) and hence σ−1

i ((i ⊗ j)r) = j. Similarly, property 6 ensures that
⊕ is left-cancellative. We define γi to be the permutation of {1, 2, ..., b} such that
γ−1

i ((i⊕ j)r) = j.

• Properties 5 and 6 together, ensure that the AIA is left-cancellative, and has a left-
division algorithm, thus allowing for unique decryption.

For ease we can express A1 as the concatenation of four strings C×C+R×R+ where:

a) C+, the carries under addition, is the concatenation of b zeros and a randomly chosen
binary string of length b2 − b.

b) R+, the remainders under addition, is the concatenation of b randomly chosen per-
mutations of {1, 2, ..., b}.

c) C×, the carries under multiplication, is a randomly chosen base-b string of length b2.

d) R×, the remainders under multiplication, is the concatenation of b randomly chosen
permutations of {1, 2, ..., b}.

Example 1. A sample regular AIA for b = 4, might be

A = 101101110100324124133142412323144431211321242341142343124123.

Of course, A can be more easily read as in Figure 2.

Definition 4 (Regular PAIA). A PAIA will be called regular if the following hold.

1. Each of the additive carries, (i⊕ j)c are either 0 or 1.

2. For each fixed i ∈ {1, 2, ..., b}, the additive remainders (i⊕ 1)r, (i⊕ 2)r, ...,(i⊕ b)r are
all distinct.

3. The additive carries of the form (1⊕ i)c are all 0.

Remarks:

• In general, ⊕ will not be commutative.

6

Add Base 4 ⊕
K M C R
1 1 0 3
1 2 0 2
1 3 0 4
1 4 0 1
2 1 1 2
2 2 0 4
2 3 1 1
2 4 1 3
3 1 0 3
3 2 1 1
3 3 1 4
3 4 1 2
4 1 0 4
4 2 1 1
4 3 0 2
4 4 0 3

Mult. Base 4 ⊗
K M C R
1 1 2 2
1 2 3 3
1 3 1 4
1 4 4 1
2 1 4 1
2 2 4 4
2 3 3 2
2 4 1 3
3 1 2 4
3 2 1 3
3 3 1 1
3 4 3 2
4 1 2 4
4 2 1 1
4 3 2 2
4 4 4 3

Figure 2: Example of a Regular AIA

• As with regular AIAs, the digit 0 is a restricted, place-holding, digit that can not be
accessed by either party using the authentication algorithm.

• As before properties 2 and 3 ensure that carries do not propagate

• As before, property 2 ensures that ⊕ is left-cancellative. We define γi to be the
permutation of {1, 2, ..., b} such that γ−1

i ((i⊕ j)r) = j. This ensures that the PAIA is
has a left-subtraction algorithm, thus allowing for unique decryption.

5 Mutual Authentication

There are several possible ways to implement a mutual authentication scheme with a shared
secret key comprised of one or more base b strings and one or more AIAs and or PAIAs.
We will begin with what we believe to be the most efficient implementation. It runs over a
fixed number of PAIAs but could be implemented over a single PAIA. Furthermore, after
viewing the algorithm it should be obvious how it could be implemented using a single or
a fixed number of AIAs. The following assumptions are made:

1. The authentication will occur between an unconstrained platform, for example an
RFID reader, and a constrained platform, for example an RFID tag or label.

2. The reader will store many secret keys, each corresponding to a different RFID tag.
Further the reader will store the secret keys as strings in memory and use them as
imput to initialize a software implementation of the mutual authentication algorithm
in much the same way that most computer algorithms are traditionally implemented.

3. The tag however, will have a single secret key and will only store K and d (defined
below) in memory. The rest of the secret key, PA, will be implemented as hardware,
in the form of logic gates on the tag.

7

4. As given in the sample specifications above (Figure 1) the tag has a random number
generator and can perform simple calculations provided the maximum allowable gate
count to perform these calculations is not exceeded.

We begin by choosing a base b. Next, we randomly generate a secret key (K, PA, d)
where:

1. K is the concatenation of b strings K1,K2, ...,Kb each n + 1 digits long, i.e. (n +
1)log2(b) bits, such that(Ki)1 6= (Kj)1 for i 6= j where (Ki)1 is the rightmost digit of
Ki. In general the tth rightmost digit of Ki will be labeled (Ki)t.

2. PA is the concatenation of n strings PA1, PA2, ..., PAn each 2b2 digits long. Further
more each PAi will correspond to a regular partial abstraction of integer arithmetic.

3. d will be a single randomly chosen base b digit.

In the authentication algorithm, two parties Alice and Bob, both having the same secret
key, (K, PA, d) described above, will simultaneously participate in an algorithm that is
similar to multiplying two base b integers. Referring to the example multiplication,

kn · · · k2 k1

×s mp · · · m2 m1

x1,n+1 x1,n · · · x1,2 x1,1

x2,n+1 x2,n · · · x2,2 x2,1

x3,n+1 x3,n · · · x3,2 x3,1

·
·

·
xp,n+1 xp,p · · · xp,2 xp,1

ep+n+1 · · · en+1 en · · · e2 e1

as mentioned earlier, each number xi,n+1xi,n · · ·xi,2xi,1 is really the product kn · · · k2k1×s

mi. We will define Kj = kn · · · k2k1 ×s mi if mi = j. In so doing, we do not need to use a
number kn · · · k2k1 in order to perform the multiplication. Instead, the number mp · · ·m2m1

will dictate the order in which we should add the rows xi,n+1xi,n · · ·xi,2xi,1 = kn · · · k2k1×s

mi = Kj .
Both Alice and Bob begin by making m1 = d so that Kd = x1,n+1x1,nx1,2x1,1. Notice in

the multiplication above, the digit x1,1 is not added to any other digit and we don’t want
to transmit this digit so we can discard it and only store the leftmost n digits of Kd which
we refer to as (Kd)′. We will label the register (volatile memory) as X.

Notation:

• For any base-b string X, we denote to the ith right-most digit by (X)i.

• If X has length n, by X ′, we denote the left-most n− 1 digits. Thus X = X ′(X)1.

Thus for both parties we have:

Step 1: X ← (Kd)′

Now one of the parties, Alice say, generates a random base b digit m2. In so doing she
effectively chooses x2,n+1x2,n · · ·x2,2x2,1 to be Km2 . She must now add X = (Kd)′ to Km2

8

using PA to indicate how she will perform the addition. Recall that PA is the concatenation
of n partial abstractions of integer arithmetic PA1, PA2, ..., PAn. Digits x1,2 and x2,1 will
be added by looking up the ordered pair of digits (x1,2, x2,1) in the table defined by PA1

to produce the remainder and carry ((x1,2 ⊕PA1
x2,1)c, (x1,2 ⊕PA1

x2,1)r). Notice that in
the multiplication above, e2 = (x1,2 ⊕PA1

x2,1)r. Alice can then transmit the pair of digits
(m2, e2) to Bob and continue to add the two strings (Kd)′ and Km2 .

The next step in this addition, depends on whether (x1,2 ⊕PA1
x2,1)c is a 0 or 1. If

(x1,2 ⊕PA1
x2,1)c = 0 there is no intermediate step and Alice can add the digits x1,3 and

x2,2 via PA2. If however, (x1,2 ⊕PA1
x2,1)c = 1, the intermediate step x′1,3 = (1⊕PA2

x1,3)r

needs to be calculated (essentially by looking up the ordered pair in the table generated by
PA2. Notice that (1⊕PA2

x1,3)c will be 0. In this instance, Alice can now add x′1,3 and x2,2

via PA2, and continue to add the rest of the digits in the strings (Kd)′ and Km2 . At each
stage, the (i − 1)th additive carry is added to (i + 1)th digit of (Kd)′ and then this sum is
added to the ith digit of Km2 with PAi indicating how to perform the addition. As a final
note for this step, the digit e1 does not need to be stored for the next round so only the n
rightmost digits of the sum are stored in X to update it for the next round. In summary
this step is:

Step 2a: Generate m2 ∈ {1, 2, ..., b}

Step 2b: Calculate X +PA Km2

Step 2c. Transmit (m2, e2).

Step 2d. Update X ← (X +PA Km2)
′

Bob can now receive (m2, e2), perform the same addition as Alice and check if (X +PA

Km2)1 = e2. If it does not, Alice fails to authenticate. If it does Bob initiates the next
round by randomly choosing m3, calculating (X +PA Km3)1 = e3, transmitting (m3, e3) to
Alice and updating his register to X ← (X +PA Km3)

′. The process can be repeated for a
preset number of rounds at which time both parties will be convinced that they share the
same secret key. Each time the ith round looks like:

Step 3a: Recieve (mi−1, ei−1)

Step 3b: IF {(X +PA Kmi−1)1 6= ei−1} then QUIT. ELSE:

Step 3c: Update X ← (X +PA Kmi−1)
′

Step 3d: Generate mi ∈ {1, 2, ..., b}

Step 3e: Calculate X +PA Kmi

Step 3f: Transmit (mi, ei)

Step 3g: Update X ← (X +PA Kmi)
′

9

5.1 Authentication over a single AIA

We comment that the above implementation can be run, with less security but requiring
less memory from the reader, over a single PAIA, simply by setting all PAi’s equal. The
algorithm can also be run over a single regular AIA, say A1, provided the strings Ki are
precomputed as Ki = K×A1

i where K is the single randomly generated string. If ⊗ and ⊕
are the digitwise addition and multiplication associated with A1 then this precomputation
is as follows.

Input: K = knkn−1 · · · k2k1, i ∈ {1, 2, ..., b}
Output: Ki = K ×A1

i

Step 1: t1 ← (k1 ⊗ i)r, carry ← (k1 ⊗ i)c

Step 2: For j = 2 to n
Step 2a: tj ← ((kj ⊗ i)r ⊕ carry)r

Step 2b: carry ← ((kj ⊗ i)c ⊕ ((kj ⊗ i)r ⊕ carry)c)r

End For

Step 3: tn+1 ← carry

Step 4: Output Ki = tn+1tn · · · t2t1, stop.

Figure 3: Precomputation

(Note: If n = length(K1), then K1 ×A1
i can have length n + 1.)

The authentication algorithm can now be run using only the additive table associated
with A1 in place of PA.

6 Necessary Specifications for Implementation

Sample EPC Specifications
Storage: 128− 512 bits of read-only storage.
Memory: 32− 128 bits of volatile read-write

memory.
Gate Count: 1000− 10000 gates.
Security Gate Count Budget: 200− 2000 gates.
Operating Frequency: 868− 956 MHz (UHF).
Scanning Range: 3 meters.
Performance: 100 read operations per second.
Power Consumption: 10 microwatts.
Features: Anti-collision Protocol Support.

Random Number Generator.

Figure 4: Sample EPC Specifications from [4]

The most severe of the restrictions, that the specifications in Figure 6 pose for potential
cryptographic solutions, are the small number of logic gates 200−2000 which can be devoted
to security algorithms, and the volatile memory available to store intermediate calculations.
The thriftiest implementation of the standard private key cryptosystem, AES (Advanced
Encryption Standard), currently requires approximately 4000 logic gates [7]. The one-way
private key authentication scheme proposed in [4], appears to meet the above requirements
for EPC type RFID tags but may fail to authenticate legitimate tags and readers with some

10

non-trivial probability, and provides only 24 bits of security for the lowest range of allowable
re-writable memory. The authentication scheme in [7] provides mutual authentication, and
claims to be within the necessary range of logic gate usage (approximately 300), but requires
480 bits of volatile memory, considerably more than the above specification allows.

The following specifications are necessary, in terms of base b, and n + 1 = number of
digits in each Ki. For the tag, we require:

Necessary RFID Specifications
Storage: b(n + 1) log2(b) + 2 bits for K and d.
Memory: (n + 2) log2(b) bits of volatile read-

write memory.
Security Gate Count: 30n to 40n gates, when b = 4.
Features: Anti-collision Protocol Support.

Random Number Generator.

Figure 5: Necessary Specs for Authentication.

The reader is required to store PA as a binary string, each PAi consisting of b2 − b
additive carry bits (no carries for 1⊕i), and b of the b! possible permutations of {1, 2, . . . , b}.
This requires n((b2 − b) + b log2(b!)) bits plus b(n + 1) log2(b) + 2 bits for K and d.

For example if we choose b = 4, n = 10, the Tag will require 90 bits of Read only
memory, or periodically re-writable memory (see Section 7), 24 bits of Volatile memory,
and 300 to 400 logic gates, as explained in Section 9. The reader will require 410 bits of
memory to store (K, PA, d).

7 Security Analysis of Authentication Based on PAIAs

We give the security against brute force attacks under what be believe to be the relevant
security models. We will assume b = 4 and n = 10.

First note that at each round the probability of one party correctly guessing the correct
digit ei to transmit with mi is 1/4. Therefore, guessing correctly for 40 rounds would occur
with probability (1/4)40, i.e. requiring approximately 280 guesses. We hope to provide at
least 80 bits of security, against the various attack models so we will assume that the Tag
and Reader each perform 40 rounds of the authentication algorithm. Of course this number
is easily increased to the maximum that the following models allow.

7.1 Model 1

Model 1 will be the strongest implementation possible where each Tag is designed with
a unique set of logic gates to perform the authentication. In this instance the attacker
does not know ahead of time any portion of (K, PA, d). Brute force would then require
uncovering all four of K1, K2, K3, K4, as well as d and the table values for each of PA1,
PA2,..., PA10. Given this amounts to 444 guesses for K1, K2, K3, K4, 4 guesses for d and
(212 × (4!)4)10 guesses for PA1, PA2,..., PA10 for a total of 2255.85.

The associated hard problem, on which the authentication protocol is based, is as follows.

Definition 5 (Authentication Hard Problem). For all odd positive integers i < 2r
(or all even positive integers < 2r), given a finite set of ordered pairs of base-b digits
{(m2, e2), ..., (mi, ei)}, and a digit mi+1, predict with certainty, the digit ei+1 such that
((((Kd)′ ⊕Km1)

′...)′ ⊕Kmi+1)1 = ei+1 where ⊕ it is the addition by PA, the concatenated
list of secret PAIAs, K1, ...,Kb are secret base-b strings of known length n + 1, and d is a
secret digit.

11

The attacker must identify each ei with certainty, rather than just with non-zero prob-
ability, because they must successfully pass r consecutive challenges, where the probability
of randomly guessing correctly for one round is 1/b. We believe that this hard problem is
as difficult as uncovering (K, PA, d).

It bears mentioning that building a unique set of logic gates for each RFID Tag may
be cost prohibitive in some circumstances, but may be justified for applications such as
financial smart cards. In so doing the following security properties appear to be satisfied.

1. Mutual Authentication. As both the reader and tag are asking and answering
distinct challenges, the identity of both is simultaneously being tested.

2. Man in the middle attack prevention. The fact that mutual authentication is
demanded for each round of the protocol prevents a man in the middle attack.

3. Resistance to Cloning Attacks. Even if the secret string K is lifted from the tag,
an attacker wishing to clone the tag would need to read the logic gate configuration
on the tag, and produce new tags with this same logic gate configuration in order to
imitate the original tag.

4. Forward Security (optional.) As the secret string K is stored in memory, period-
ically, once authentication is successful the tag’s secret string could be updated.

5. Replay attack prevention. Storing all messages from the tag or reader and and
replaying them to the appropriate device (in order to fool that device) will not work
because because both parties participate in generating the string M .

7.2 Model 2

For Model 2 we assume that building a unique set of logic gates for each RFID Tag is cost
prohibitive. Instead, we propose mass producing one set of logic gates per product line or
per company, and maintaining this set of logic gates and the binary string PA associated
with it, as a trade secret. We make the following assumption from [8],

Tag memory is insecure and susceptible to physical attacks revealing their
entire contents. This includes a myriad of attacks such as shaped charges, laser
etching, ion-probes, TEMPEST attacks, clock glitching and many others. For-
tunately, these attacks require physical tag access and are not easily carried out
in public or on a wide scale without detection. Privacy concerns are rather moot
if someone can remove a tag or steal the item it is attached to without detection.
The key point is that tags cannot be trusted to store long-term secrets, such as
shared keys, when left in isolation.

In this attack model, we therefore assume that the memory of Tag A has been com-
promised and that the attacker knows K and d but not PA. In this instance, the attacker
would first observe numerous successful and unsuccessful authentication attempts and then
uncover K and d and use the combined information to determine PA. If the attacker is
successful in recovering PA, he or she will then be able to use this information to attack the
remaining tags that use the same PA as Tag A. The probability of success in this second
stage attack will be examined in Model 3. The total number of possible PA’s are then be
2165.85 however, there is a definite priority with which the attacker would like to uncover
the string (or logic gate configuration associated with the string) PA. The right-most digit
adder is used most often, and can be uncovered by only knowing the four possible pairs
(1, e11), (2, e12),(3, e13), and (4, e14). In fact, if K, and d are known, only the 222 pairs of the
form (j, eij) for i ∈ {1, ..., 11}, j ∈ {1, 2, 3, 4} are needed to recover PA. To compensate for

12

this we could either increase the size of PA by concatenating 40 PAIA’s, and thus requiring
1200 to 1600 logic gates or by simply requiring that K and d be reset after each successful
authentication, or after a preset number of authentications. We therefore have the same
security characteristics as the previous model, except that forward security is essential in-
stead of being optional. This would off course increase the necessary rewritable memory
constraints to cover the 24 bits needed for calculations and 90 bits need to store K and d.

7.3 Model 3

Model 3 can be viewed as a continuation of Model 2, where the logic gate configuration
for Tag A has been determined and the secret key for Tag B, with the same logic gate
configuration, is now desired. Thus we can assume PA is known, and try to determine K,
and d. By brute force there are 290 such keys. This could also be a valid attack if the
logic gate configuration was mass produced for every product thus rendering PA essentially
public knowledge. However, in this instance there are many ways to further optimize the
implementation. For example, using the same PAi for each digit would shorten the key
stored on the reader. Periodically reseting K and d would be essential in this case.

8 Stream Cipher

We now demonstrate a stream cipher on a single regular AIA, labeled A1. Likewise, several
variations can be implemented on AIAs or PAIAs. It is currently common practice in
securing RFID technology, to store only already encrypted data on the RFID tag, thus
minimizing the computational work that the tag must do. However, we shall demonstrate
the computational cost of encrypting data using the stream cipher, we describe below, is
so small that the tag can efficiently perform this encryption on already encrypted data,
effectively allowing the tag to sign each of the messages it sends.

We will therefore need to call upon the algorithm in Figure 3, which precomputes Ki,
for i ∈ {1, ..., b}. Encryption works as follows.

8.1 Encryption

Notation:

• For any base-b string X, we denote to the ith right-most digit by (X)i.

• If X has length n, by X ′, we denote the left-most n− 1 digits. Thus X = X ′(X)1.

The encryption algorithm works as follows:

8.2 Decryption

By construction, the AIA, A1, is regular, so ⊕ and ⊗ are left-cancellative. I.e. ∀i, j ∈
{1, 2, 3, 4}, let σi, γi ∈ Symb such that (i× j)r = σi(j) and (i + j)r = γi(j). We now prove
the following.

Theorem 1. Every regular AIA (b,×s) is left-cancellative. I.e. if K, M1, and M2 are
base-b strings of length n, p and p respectively, then K ×s M1 = K ×s M2, then M1 = M2.
Furthermore (b,×s) has a left division algorithm.

Proof. We prove both ascertains simultaneously by uniquely recovering M from the product
D = K ×s M . We assume knowledge of K. Let K = knkn−1 · · · k1, M = mpmp−1 · · ·m1,
and let D = dp+ndp+n−1 · · · d1 = K ×s M. The formula for each digit of D could be give
recursively using remainders and carries of digits from K and M . However, to further

13

Input: K, d, M. (M can be read in digit by digit)
Output: Ciphertext C = K ×A1

M (digit by digit)
Step 1: Pre-compute Ki = K ×A1

i, ∀i ∈ {1, 2, ..., b}.

Step 2: Y ← Kd

Step 3: X ← Y ′

Step 4: j ← 1

Step 5: while (stream continues)
Step 5a: Y ← X +A1

Kmj

Step 5b: X ← Y ′, sj ← (Y)1
Step 5c: Send sj

Step 5d: j ← j + 1
end while

Figure 6: Encryption

demonstrate the similarity to integer arithmetic, we express the multiplication in long-hand
as follows.

kn · · · k2 k1

×s mp · · · m2 m1

x1,p+1 x1,p · · · x1,2 x1,1

x2,p+1 x2,p · · · x2,2 x2,1

x3,p+1 x3,p · · · x3,2 x3,1

·
·

·
xp,p+1 xp,p · · · xp,2 xp,1

dp+n · · · dp+1 dp · · · d2 d1

The variable xi,j , is used to denote the as of yet unknown digit (K ×s mi)j . We begin
recovering M , by noticing that (k1 ⊗s m1)r = x1,1 = d1. Therefore, σ−1

k1
(d1) = m1 and we

can compute K ×s m1 = x1,p+1x1,p · · ·x1,2x1,1.
The rightmost digit, x1,1 plays no further role in computation. It is for this reason that

we can transmit it during encryption and save only (x1,p+1x1,p · · ·x1,2x1,1)′. Continuing on,
we have (x1,2⊕sx2,1)r = d2. Therefore γ−1

x1,2
(d2) = x2,1. But we also have (k1⊗sm2)r = x2,1,

so σ−1
k2

(d2) = m2 and we can recover K ×s m2 = x2,p+1x2,p · · ·x2,2x2,1.
Continuing on in this way, we can recover all p of the rows and the number M .

This stream cipher could be easily adapted to use multiple Regular PAIA’s as described
in the authentication protocol. Successful decryption would still be possible because of the
stipulation that the strings K1, K2, K3, K4 that make up K, all have a different right-most
digit.

Figure 7 gives a more succinct description of the decryption algorithm.
Note that only the right-most p digits of the ciphertext are necessary to uniquely re-

cover M . This makes it necessary, when implementing the stream cipher, for the person

14

Description Decoding messages
Input: sj ,∀j ∈ N
Output: M
Step 1: X ← (K1 ×A1

d)′

Step 1a: m1 ← σ−1
k1

(γ−1
(X)1

(s1)).

Step 2: X ← (X +A1
Lm1)

′.

Step 3: j ← 2

Step 4: while (stream continues)
Step 4a: mj ← σ−1

k1
(γ−1

(X)1
(sj)), output mj

Step 4b: X ← (X +A1
Lmj)

′.
Step 4c: j ← j + 1

end while

Figure 7: Decryption

encrypting to append a variable length garbage string to prevent the poor avalanche prop-
erty discussed in section 10.1. However, the garbage string will be short compared to the
length of the message and so will not greatly reduce the efficiency of the stream cipher.

A tool for analyzing regular AIAs stems from the fact that only right-most p digits are
necessary for unique decryption. If we define a truncating operation, Tp, that projects any
string of p digits or more, onto the substring of its right-most p digits then the composition
of Tp and ×A1

associates to each fixed K1, an action on the base-b strings of length p. The
following theorem shows that with further restrictions on regular AIAs, we can produce a
permutation quasigroup.

Definition 6 (Restricted AIA). A regular AIA, (b,×s), is called restricted if it also
satisfies the following two properties.

1. The b× b table, whose (i, j) entry is (i⊗s j)r, is a latin square.

2. The b× b table, whose (i, j) entry is (i⊕s j)r, is a latin square.

Theorem 2. If (b,×s) is a restricted AIA, then (b,×s) is both left-cancellative and right-
cancellative. I.e., (b,×s) is a quasi-group. Furthermore, on strings of length p, the compo-
sition of Tp and ×s yields a non-associative permutation representation of (b,×s) of degree
dp.

Proof. The fact that (b,×s) is left-cancellative follows directly from Theorem 1. The proof
that (b,×s) is also right-cancellative is similar except we recover, at each step, the intermedi-
ate columns (diagonals) of the product instead of the intermediate rows. The details are left
to the reader. The final ascertain is easily deduced from the fact that restriction of Tp ◦ ×s

to strings of a fixed length p yields a finite quasigroup whose right regular representation
consists of non-associative permutations of base-b strings of length p.

One implication of this result, is that rather than performing a bruteforce search to
recover the secret key, an attacker may restrict him/her-self to restricted AIAs and PAIAs,
thus possibly decreasing the keyspace. See Section 10 for details.

15

8.3 Speed

Performing the operations (i⊕ j) and (i⊗ j) can be viewed as looking up the (i, j) entry of
the respective table to find the corresponding remainder and carry. We can then speak of
the speed of encryption and decryption in terms of the number of table look-ups required to
perform the respective operations. Furthermore, for small enough base b, the table lookups
can be seen as comparable to bit operations. For example, if b = 4, then multiplication
table will have 16 ordered pairs and addition will have 25 (recall addition by 0 is allowed
but the value is pre-set and so does not have to be stored as part of A1.) Bit operations
(binary additions) can be view as table look-ups with a table of size 8, the set of all ordered
binary triples. Of course table look-ups for the present stream cipher, are ordered pairs
and so will have to be performed more often. The following theorem details the speed of
encryption and decryption.

Theorem 3. The number of table look-ups required for encrypting a base-b string of length
p is 3(n− 1)b+1+2n(p+ c− 1) where c is the variable (short) length of of a garbage string
appended to the message prior to encryption. Decryption requires 3(n − 1)b + 1 + 2n(p +
c− 1) + 2(p + c− 1) table-lookups.

Proof. Note that n and b are fixed constants so the constant, 3(n− 1)b+1, reflects the pre-
computation required to produce the b strings that represent K1 ×A1

i, for i ∈ {1, 2, ..., b}.
To see that this number is correct, notice that producing the right-most digit of K1 ×A1

i,
for fixed i, requires a single table look-up for digit-wise multiplication. For each subsequent
digit, j, of K1 ×A1

i, we have an additive carry, xj , from caculating the previous digit and
can perform the following table look-up substitutions.

1. (i, j)→ ((j ⊗A1
i)r, (j ⊗A1

i)c)

2. (xj , (j ⊗A1
i)r)→ ((xj ⊕A1

(j ⊗A1
i)r)r, (xj ⊕A1

(j ⊗A1
i)r)c)

3. (j ⊗A1
i)c, (xj ⊕A1

(j ⊗A1
i)r)c)→ (((j ⊗A1

i)c ⊕A1
(xj +⊕A1

(j ⊗A1
i)r)c)r, 0)

The first output digit of step two,(xj ⊕A1
(j ⊗A1

i)r)r, will be the digit of K1 ×A1
i and the

first ouput digit of step 3, ((j ⊗A1
i)c ⊕A1

(xj +⊕A1
(j ⊗A1

i)r)c)r will be the new carry.
The message, together with the appended garbage string is p + c digits long so we will

have to add p + c− 1 pairs of n + 1-digit strings together. for each string-wise addition, the
right-most digit is left unaltered and the two table look-ups are required to sum each pair
of subsequent digits. The first table look-up adds the carry to the corresponding digit of
the top row (note that this will not produce a carry), and the second will sum the result
of the first table look-up to the corresponding digit on the lower row. In total, summation
takes (n + 1− 1)× (p + c− 1) table look-ups.

Finally, decryption is performed in the same manner with two additional table look-ups
required for each string-wise addition. The first table look-up retrieves the right-most digit
of the current row, i, to be added. This table look-up corresponds to the appropriate inverse
permutation γ−1 of ⊕A1

. The second table look-up retrieves, via the appropriate inverse
permutation σ−1 of ⊗A1

, the digit mi.

It is noteworthy that n and b are constants and c can be bounded by n so that the
encryption and decryption are both linear in p which is logb of the length of the message.
Therefore, increasing b will decrease the number of table look-ups required for encryption
and decryption, but in general, this will probably not increase the over all speed of the
these algorithms because the size of the tables being searched will grow as a function of the
square of b.

16

9 Logic Gate Usage

Special thanks to Duane Currie for his contributions to the following analysis.
In this section we assume the multiple PAIA implementation, and show that the addition

of a pair of 11 digit (base-4) numbers can be performed using between 300 and 420 logic
gates, depending on the choice of K. We demonstrate an upper bound on the average
number of logic gates needed to perform a single digit adder. Concatenating ten of these
single digit adders produces the desired addition machine. Furthermore, adding the final
carry (left-most digit) can be performed using only a few gates. The upperbound we produce
is approximately 50 gates per digit adder, but simple logical reduction techniques can be
used to bring this average down to 42 gates. Furthermore, a large percentage of the adders
require 30 or fewer gates after this reduction. Given that there are 2165.85 possible ten digit
adders, we can restrict ourselves to those with 300 or fewer gates, without compromising
the 80 or 90 or even 128 bits of security we are after.

Note that in what follows ⊕ still refers to the digit-wise addition defined by K. As with
conventional adding machines We can link ten single digit adders in sequence so it suffices
to calculate the number of gates required to calculate the sum of one single-digit additive
carry ci and a pair of two-digit numbers a = a1a2 and b = b1b2. The steps will be as follows.

1. Calculate a′ = ci ⊕ a

2. Calculate a′ ⊕ 1, a′ ⊕ 2, a′ ⊕ 3, and a′ ⊕ 4

3. Use a multiplexer on input b to select a′ ⊕ b.

For step 1, recall that 0⊕ a = a and 1⊕ a does not produce a carry and so can be seen
as just a permutation of {00, 01, 10, 11}. Listing the possible bits of a′ we need to fill in the
last two columns of the following table where the rows are a permutation of {00, 01, 10, 11}.

a1 a2 a′1 a′2
0 0
0 1
1 0
1 1

It is clear that each of the columns must have two 1’s and two 0’s of which there are six
possible columns. The possible columns are listed below. The number of logic gates and
the logical operation needed to produce each from a′ appears below each column.

0 1 1 0 1 0
0 1 0 1 0 1
1 0 0 1 1 0
1 0 1 0 0 1
a′1 ¬a′1 a′1 XNOR a′2 a′1 XOR a′2 ¬a′2 a′2
0 1 4 4 1 0

Figure 8: Possible Permutation Columns

Once the first column of the permutation is chosen there remain 4 choices for the sec-
ond column as re-choosing the selected column or choosing its negation would not yield a
permutation. The average gate count is then 3.33.

For step 1, we will require four more permutations (one is duplicate but recopied) adding
13.33 more gates to the count and, for the carries, 4 extra columns chosen at random from

17

the 24 possibilities. Of these columns, two require 4 gates, six require 2 gates, four require
1 gate and four don’t require any gates. This gives an average of 1.5 gates for each carry
column and 6 gates in all.

For step 3, the multiplexer will require six gates to produce the four bits which essentially
select i for i ∈ {1, 2, 3, 4}. Each bit is then Anded with the appropriate a′ ⊕ i (where a′ ⊕ i
is three bits) requiring an additional 3× 7 = 21 gates for a total of 27 gates.

Thus the total is 27+3.33+13.33+6 = 49.66 gates per digit for an overall average gate
count of ≈ 500. However, as mentioned above, we can reduce this using logical reductions
to 420 gates and even further reduce this to 300 gates without compromising the desired
level of security.

10 Security Analysis of the Stream Cipher

Stream cipher ciphertext, resulting from the randomly generated plaintext, underwent the
sixteen statistical tests developed by the National Institute of Standards and Technology
to detect non-randomness in binary sequences. Each test was conducted on one hundred
samples, and all sixteen tests were passed.

The security is based on the following hard problem.

Definition 7 (Stream Cipher Hard Problem). Given base-b string E = eL · · · e2,
determine the base-b string M = mL · · ·m2m1 such that the rightmost L digits of the product
K ×A1

M are precisely E with a single extra base-b digit appended on the right. Kept secret
are the operation ×A1

, the string K and the digit m1 = d.

We believe this problem to be as difficult as recovering (K, A1, d).
In the least secure case, the set of all possible keys (K, A1, d), where A1 is a single

AIA, K is a string of n base-b digits, and d is a single digit, forms a keyspace of size
bn × bb2 × 2b2−b × (b!)2b × 22. However, an attacker may also choose to view the secret key
as a set of b strings of length n+1, together with only the addition portion of A1, which we
label PA1. Thus the we can also view the keyspace as the set of all ({K1, ...,Kb}, PA1) of
which there are 24 × b4n × 2b2−b × (b!)b. Therefore the security against exhaustive search is

min{bnbb22b2−b(b!)2b22, 24b4n2b2−b(b!)b}

= 2b2−b+2bn(b!)b ×min{22b3n, bb2(b!)b}
For n = 10 and b = 4, as in the example above, this gives approximately 2102.68

possible keys of the form (K, A1, d) and approximately 2114.34 possible keys of the form
({K1, ...,Kb}, PA1). However, there may exist another (or several) key(s) (K ′, A′

1, d
′) such

that K ×A1
M = K ′ ×

A′
1

M ′ for all M where M ′ is the same as M but with d′ instead of
d as the right-most digit. Equivalently there may be other ({K ′

1, ...,K
′
b}, PA′

1) which have
an action identical to ({K1, ...,Kb}, PA1), on all M .

For regular AIAs, (PAIAs), the operation ×A1
, (+PA1

) is left-cancellative but not nec-
essarily right-cancellative unless we use only restricted AIAs, (PAIAs). There are 576 Latin
squares using the digits 1, 2, 3, and 4. If we restrict possible A1 in this way we reduce the
keyspace to 410 × 442 × 242−4 × (576)2 × 22 ≈ 284.34. On this set we are guaranteed that
if A1 = A′

1 then d = d′ and K = K ′, so we can consider the actions of each (K1, d) to be
unique for fixed A1. However, the number of collisions where A1 6= A′

1 still needs to be in-
vestigated. To date however, there is no known efficient algorithm (other than brute force)
for identifying when such collisions occur. If we use only a restricted PAIAs to produce keys
of the form ({K1, ...,Kb}, PA1), then for n = 10, b = 4, we get approximately 2105.17 keys.

A final note is that concatenating n distinct AIAs or PAIAs to perform the encryption
will not significantly alter the logic gate count, or the speed of the algorithm but will greatly

18

increase the size of the keyspace. The only drawback to doing this is that the private key
stored in the readers memory will be longer.

10.1 Weaknesses as a block-cipher

It bears mentioning that the stream cipher described above could be adapted easily into a
block cipher. Simply break up the plaintext stream into blocks of length, say p, and encrypt
each block in turn by multiplying by K1 subject to the operation dictated by A1. However,
such a block cipher would have very poor plaintext avalanche properties since two plaintext
blocks, M1 and M2, that differ only in the leftmost digit would encrypt to ciphertexts where
the rightmost p− 1 digits are identical.

It is also worth noting that the flaw in the block-cipher does not appear to be exploitable
to attack the authentication scheme given above because even in an active attack, one of
either the tag or the reader would be considered a legitimate user and hence would be
producing every second digit of M at random.

References

[1] Atkinson, J., Contactless Credit Cards Consumer Report 2006,
http://www.findcreditcards.org/, 2006.

[2] Czeslaw Ko S Cielny, A New Approach to the Elgamel Encryption Scheme, Int. J.
Appl. Math. Comput. Sci., 14, No. 2, (2004), 265-267.

[3] Gligoroski, D., Stream cipher based on quasigroup string transformations in Z∗
p ,

accepted in Macedonian Academy of Science and Arts, Proceedings in Mathematical
and Technical Sciences (2004)

[4] Juels, Ari; Weis, Stephen A., Authenticating pervasive devices with human proto-
cols Advances in cryptology—CRYPTO 2005, 293–308, Lecture Notes in Comput.
Sci., 3621, Springer, Berlin, 2005.

[5] Kock, Anders, Classifying Surjective Equivalences, http://home.imf.au.dk/kock/
classf.pdf, (2004)

[6] Markovski, S.; Gligoroski, J., Classification of Quasigroups by Random Walk on
Torus, accepted for IJCAR workshop on Computer Supported mathematical Theory
Development, Cork, Ireland (2004)

[7] Pedro Peris-Lopez, Julio Cesar Hernandez-Castro, Juan Estevez-Tapiador, Arturo
Ribagorda., M2AP: A Minimalist Mutual-Authentication Protocol for Low-cost
RFID Tags International Conference on Ubiquitous Intelligence and Computing -
UIC’06, 2006.

[8] Weis, S.; Sarma, S.; Rivest, R.; Engles, D., Security and Privacy Aspects of Low-
Cost Radio Frequency Identification Systems, Lecture Notes in Comput. Sci. vol.
2802 (2004) ,pp. 201-212.

[9] Wenstein, Alan, Groupoids: unifying internal and external symmetry, Notices of
the AMS, 43, No. 7, 744-752

19

