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DIFFRACTION THEORY AND ALMOST PERIODIC

DISTRIBUTIONS

NICOLAE STRUNGARU AND VENTA TERAUDS

Abstract. We introduce and study the notions of translation bounded tempered

distributions, and autocorrelation for a tempered distrubution. We further intro-

duce the spaces of weakly, strongly and null weakly almost periodic tempered

distributions and show that for weakly almost periodic tempered distributions the

Eberlein decomposition holds. For translation bounded measures all these no-

tions coincide with the classical ones. We show that tempered distributions with

measure Fourier transform are weakly almost periodic and that for this class, the

Eberlein decomposition is exactly the Fourier dual of the Lesbegue decomposition,

with the Fourier-Bohr coefficients specifying the pure point part of the Fourier

transform. We complete the project by looking at few interesting examples.

1. Introduction

Diffraction is a key tool in the study of non-periodic long-range order, and the

mathematical theory of almost periodic measures and almost periodic functions

that underpins this is well-developed [9]; see [15] for a recent overview of the theory.

Physical structures that possess a diffraction pattern are generally represented by

translation bounded measures. Any translation bounded measure has at least an

autocorrelation and hence a diffraction [10]; see [2] for a comprehensive introduction

and overview of the subject.

Essential to the study of diffraction is the theory of the Fourier transform in the

setting of tempered distributions. In many of the established results, the proofs rely

on the fact that the original translation bounded measure is tempered as a distribu-

tion and that the autocorrelation is positive definite. Therefore, it is natural to ask

whether some results about the diffraction of translation bounded measures can be

extended to tempered distributions. In [17] it was proven that given any diffraction

measure supported on an infinite point set, one may construct non-measure tem-

pered distributions with that diffraction. Via this inverse problem technique [13]
1
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one obtains plenty of non-trivial tempered distributions with a diffraction, but not

a general theory in which they fit.

In this paper we consider when and how one may define autocorrelation (and hence

diffraction) for a tempered distribution, and whether known results about the diffrac-

tion of translation bounded measures can be extended to tempered distributions.

We note that the constructions given in [17] all have (translation bounded) measure

autocorrelation. However, the autocorrelation of a tempered distribution need not,

in general, be a measure. As long as a tempered distribution is positive definite, the

Bochner Schwartz theorem ensures that its Fourier transform is a positive tempered

measure and thus can be understood as a diffraction.

The concept of translation boundedness for tempered distributions is formally de-

fined in the second section. Here we consider some examples of such distributions

and show that they have some properties analogous to those of translation bounded

measures. In fact a translation bounded measure is always a translation bounded

tempered distribution, although of course the converse does not hold.

In the third section, we give a formal definition of autocorrelation for a tempered

distribution, and some sufficient conditions for existence of an autocorrelation. The

properties of positive definite tempered distributions are considered in Section 4,

and in Section 5 we introduce the concept of weak almost periodicity for tempered

distributions. We here construct the Eberlein decomposition for tempered distri-

butions: as for measures, a weakly almost periodic tempered distribution may be

uniquely decomposed into the sum of a null weakly almost periodic and a strongly

almost periodic tempered distribution.

A tempered distribution whose Fourier transform is a measure is necessarily weakly

almost periodic. In Section 6, we show that for such a distributions, the Fourier

transform carries the Eberlein decomposition of the distribution precisely into the

Lebesgue decomposition of the Fourier dual measure. In Section 7, by extending

the concept of mean to weakly almost periodic distributions, we further show that

for distributions with measure Fourier transform, the Fourier Bohr coefficients of

the distribution correspond to the intensity of the atoms in the pure point part of

the measure. We thus give a simple characterisation of null weakly almost periodic

tempered distributions with measure Fourier trasnform, and subsequently, in Section

8 use this to show that if a weakly almost periodic distribution has a diffraction,

it is necessarily pure point. In the final section, we apply the results of the paper
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in the consideration of several examples, and describe several classes of tempered

distributions for which an autocorrelation exists.

Throughout the paper we use S to denote the space of Schwartz functions on Rd

and S ′ for its dual, the space of tempered distributions on Rd. When we wish

to emphasise a particular Rd, we write S (Rd). By Cc(Rd), we mean the space of

all continuous functions of compact support, and D = S ∩ Cc(Rd) is the space

of infinitely differentiable functions of compact support on Rd. The space of all

bounded, uniformly continuous functions on Rd is denoted by Cu(Rd).

Recall that for ψ ∈ S ′, f ∈ S , the function ψ ∗ f ∈ C∞(Rd) is defined by

ψ ∗ f(t) = ψ(Ttf-) ,

where f-(s) := f(−s), s ∈ Rd. We use λ to denote Lesbegue measure on Rd.

2. Translation Boundedness for Tempered Distributions

In this section we introduce and study the notion of translation boundedness for

tempered distributions, based on the existing concept for measures. Tempered dis-

tributions, with Schwartz functions as test functions, are the natural objects to work

with here, as for many applications we need to work with Fourier transforms. In any

case, most of the results in this section can be extended to distributions by working

with functions in D . We plan to study this in a future project.

In the case of measures, there are two equivalent definitions for translation bound-

edness: a measure µ on Rd is said to be translation bounded if the function µ ∗ f

is bounded for each f ∈ Cc(Rd), if and only if the set {|µ|(K + x) : x ∈ Rd} is

bounded for each compact K ⊆ Rd. We shall use a version of the first condition

to define translation boundedness for tempered distributions. Although the lat-

ter condition does not have a direct analogue in this setting, we will show that as

for measures, there are several equivalent conditions that may be used to test for

translation boundedness.

Let us start by recalling that the topology on the space of test functions S is given

by the family of norms ‖ · ‖M,N , defined for M,N ∈ Z+ and f ∈ S by

‖f‖M,N := sup
|α|≤M,|β|≤N

sup
x∈Rd

|xαDβf(x)| .

We may sometimes write ‖xαDβf‖∞ as shorthand for supx∈Rd |xαDβf(x)|. The

topology on S
′ is the weak-∗ topology, that is, the topology induced by the linear
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functionals {Lf : f ∈ S } on S ′, where for ψ ∈ S ′, Lf (ψ) := ψ(f). We are now

ready to define the notion of translation boundedness for a tempered distribution.

Definition 2.1. A tempered distribution ψ is said to be translation bounded on S

if for all f ∈ S the convolution ψ ∗ f is a bounded function.

The next result shows that, as for measures, a tempered distribution is transla-

tion bounded if and only if its convolution with every test function is uniformly

continuous and bounded.

Proposition 2.1. For a tempered distribution ψ ∈ S ′, the following are equivalent.

(i) ψ is translation bounded on S .

(ii) For all f ∈ S we have ψ ∗ f ∈ Cu(Rd).

(iii) There exist M,N ∈ Z+ and C > 0 such that for all f ∈ S

‖ψ ∗ f‖∞ ≤ C‖f‖M,N .

(iv) The functionals {Ttψ : t ∈ Rd} are equi-continuous on S .

Proof. (i) =⇒ (ii): Let ψ be translation bounded and take f ∈ S . Recall that for

any multi-index α, we have

Dα(ψ ∗ f) = ψ ∗Dαf .

As for each f ∈ S and multi-index α we have Dαf ∈ S , translation boundedness

provides for each f and α a constant C = Cf,α such that

‖Dα(ψ ∗ f)‖∞ ≤ C .

This implies that all the partial derivatives of ψ ∗f exist and are bounded, and thus

that ψ ∗ f is uniformly continuous.

(ii) =⇒ (i) and (iii) =⇒ (i) are trivial.

(ii) =⇒ (iii): We follow here the argument of [1, Thm. 1.1]. By (ii), the mapping

F (f) = ψ ∗ f is a linear transformation from S into Cu(Rd), which (as is easy to

check) has closed graph. Therefore it is continuous. Thus there exist M,N and C

such that for all f ∈ S ,

‖ψ ∗ f‖∞ ≤ C‖f‖M,N .

(iii)⇔(iv): Using the standard boundedness condition equivalent to equi-continuity

for functionals in locally convex topological vector spaces, {Ttψ : t ∈ Rd} is equi-

continuous if and only if there exist some M,N and C such that for all t ∈ Rd and
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all f ∈ S we have

|Tt(f)| ≤ C‖f‖M,N .

Replacing f by f−, this becomes exactly the equivalence (iii)⇔(iv). �

Proposition 2.1 (iii) implies that for each ψ ∈ S ′
∞, there exist constants M,N and

C such that for all f ∈ S , f 6= 0,

‖ψ ∗ f‖∞
‖f‖M,N

≤ C .

This suggests the following definition of a norm for translation bounded tempered

distributions.

Definition 2.2. For M,N ∈ Z+, we define ‖ · ‖M,N : S ′ → R+ by

‖ψ‖M,N := sup
f∈S ,f 6=0

‖ψ ∗ f‖∞
‖f‖M,N

, ψ ∈ S
′

and

S
′
M,N := {ψ ∈ S

′ : ‖ψ‖M,N <∞} .

When M = N we shall simply write ‖ · ‖N and S ′
N instead of ‖ · ‖N,N and S ′

N,N .

The following lemma summarises the properties of ‖ · ‖M,N and S ′
M,N .

Lemma 2.1. (i) If M1 < M2 and N1 < N2 then

‖ψ‖M2,N2
≤ ‖ψ‖M1,N1

for all ψ ∈ S
′
M1,N1

,

and

S
′
M1,N1

⊆ S
′
M2,N2

.

(ii) If M,N ∈ Z+ and P = min{M,N}, Q = max{M,N} then

S
′
P ⊆ S

′
M,N ⊆ S

′
Q .

(iii)

S
′
∞ =

⋃

M,N∈Z+

S
′
M,N =

⋃

N∈Z+

S
′
N

(iv) For any M,N ∈ Z+, ‖ · ‖M,N is a norm on S ′
M,N .

(v) For any M,N ∈ Z+, the norm ‖ · ‖M,N defines a topology stronger than the

weak-∗ topology on S
′
M,N .

(vi) For any M,N ∈ Z+, if {ψn} is a Cauchy sequence in (S ′
M,N , ‖ · ‖M,N) then

there exists some ψ ∈ S ′
M,N such that for all f ∈ S we have

ψn ∗ f → ψ ∗ f in (Cu(Rd), ‖ · ‖∞)
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Proof. (i) follows from Definition 2.2 and the observation that for f ∈ S we have

‖f‖M1,N1
= sup

|α|≤M1,|β|≤N1

‖xαDβf‖∞ ≤ sup
|α|≤M2,|β|≤N2

‖xαDβf‖∞ = ‖ψ‖M2,N2
.

(ii) is an immediate consequence of (i).

(iii): The equality

S
′
∞ =

⋃

M,N∈Z+

S
′
M,N

follows from Proposition 2.1. The second equality follows from (ii).

(iv): It is trivial to check that ‖ · ‖M,N is a norm.

(v): This follows immediately from

|ψ(f)| ≤ ‖ψ ∗ f−‖∞ ≤ ‖ψ‖M,N‖f‖M,N .

(vi): Let {ψn} be a Cauchy sequence in (S ′
M,N , ‖ · ‖M,N). Then there exists a

constant C such that ‖ψn‖M,N ≤ C for all n. By (v), {ψn} is also a vague Cauchy

sequence in S ′ and thus converges vaguely to some ψ ∈ S ′.

Let f ∈ S . We show that the sequence {ψn ∗ f} converges uniformly to ψ ∗ f .

Firstly, as ψn → ψ in the weak-∗ topology, we see that {ψn ∗ f} converges pointwise

to ψ ∗ f .

Moreover, for all m,n we have

‖(ψn − ψm) ∗ f‖∞ ≤ ‖ψn − ψm‖M,N‖f‖M,N .

Then {ψn ∗f} is a Cauchy sequence in (Cu(Rd), ‖ ·‖∞) and must converge uniformly

to some g ∈ Cu(Rd). As ψn ∗ f → g uniformly it follows that ψn ∗ f → g pointwise.

We have that ψn ∗ f converges pointwisely to both g and ψ ∗ f . Thus

ψ ∗ f = g ∈ Cu(Rd) ,

that is, ψn ∗ f converges uniformly to ψ ∗ f ∈ Cu(Rd).

Finally, as for all n,

‖ψn ∗ f‖∞ ≤ C‖f‖M,N ,

the limit ψ ∗ f must also satisfy this inequality: we have

‖ψ ∗ f‖∞ ≤ C‖f‖M,N ,

and see that ψ ∈ S ′
M,N . �
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From the lemma, we see that it is sufficient to consider the caseM = N . Accordingly,

for the remainder of the paper we shall work with the spaces S ′
N and norms ‖ · ‖N .

It is easy to find examples of translation bounded tempered distibutions. For exam-

ple, as with measures, all compactly supported tempered distributions are transla-

tion bounded. This is a direct consequence of the following lemma.

Lemma 2.2. Let f ∈ S and φ ∈ S ′ be a distribution with compact support. Then

φ ∗ f ∈ S .

Proof. We know that φ ∗ f ∈ S ′ ∩ C∞(Rd) [11, Thm. 4.1.1 and Thm. 7.1.15], and

that

φ̂ ∗ f = φ̂f̂ .

Also, we have f̂ ∈ S and φ̂ ∈ C∞(Rd) [11, Thm. 7.1.14].

Now, since φ̂ ∈ C∞(Rd) is tempered as a distribution and f̂ ∈ S , it follows imme-

diately that φ̂f̂ ∈ S (see for example the proof of [11, Thm. 7.1.14]). Therefore, its

inverse Fourier Transform, φ ∗ f , is also in S . �

Proposition 2.2. Let φ ∈ S ′ have compact support. Then φ is translation bounded

on S .

Proof. Let f ∈ S . By Lemma 2.2, φ ∗ f ∈ S and is therefore bounded. �

Applying Lemma 2.2 again, we see that the class of translation bounded tempered

distributions is closed under convolution with compactly supported distributions.

Proposition 2.3. Let ψ ∈ S ′
∞ and φ be a distribution with compact support. Then

φ ∗ ψ ∈ S ′
∞.

Proof. Let f ∈ S be arbitrary. Then, as φ has compact support, we have

(φ ∗ ψ) ∗ f = ψ ∗ (φ ∗ f) ,

and by Lemma 2.2 φ ∗ f ∈ S . Therefore, as ψ is translation bounded, the function

(φ ∗ ψ) ∗ f = ψ ∗ (φ ∗ f) is bounded. This completes the proof. �

The class of translation bounded tempered distributions is also closed under taking

derivatives.

Proposition 2.4. Let ψ ∈ S ′
∞. Then for any multi-index α, Dαψ ∈ S ′

∞.
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Proof. Recall that for a multi-index α, Dαψ is the tempered distribution defined for

f ∈ S by Dαψ(f) := (−1)|α|ψ(Dαf). Then for any f ∈ S , we have

‖Dαψ ∗ f‖∞ = ‖ψ ∗Dαf‖∞ ,

which is finite as Dαf ∈ S and ψ is translation bounded. �

We now examine the relationship between the two types of translation boundedness

available to a tempered measure and see that, somewhat counter-intuitively, it is

harder for a measure to be translation bounded as a measure than as a tempered

distribution. It is well known that a translation bounded measure is tempered;

we further show that such a measure must be translation bounded as a tempered

distribution. However, there exist tempered measures that are translation bounded

as tempered distributions but not as measures.

Proposition 2.5. For a measure µ on Rd, the following are equivalent.

(i) µ is a translation bounded measure.

(ii) |µ| is a translation bounded measure.

(iii) |µ| is a tempered distribution, which is translation bounded on S .

Proof. (ii) ⇒ (i) is obvious and (i) ⇒ (ii) is standard; see for example [4, Proposition

1.12].

(iii) ⇒ (ii): For each compact K ⊆ Rd we pick some f ∈ S with f− ≥ 1K . Then,

for all t ∈ Rd we have

|µ| (t+K) ≤ |µ| (Ttf−) ≤ ‖|µ| ∗ f‖∞ .

By assumption, |µ| ∗ f is bounded, so that {|µ| (t + K) : t ∈ Rd} is bounded and

thus µ is a translation bounded measure.
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(ii) ⇒ (iii): Let f ∈ S . Firstly, any translation bounded measure is a tempered

distribution [1, Thm. 7.1]. Then for all t ∈ Rd we have

||µ| ∗ f(t)| =

∣∣∣∣
∫

Rd

f(s)d |µ| (t− s)

∣∣∣∣

≤
∑

n∈Zd

∫

n+[− 1

2
, 1
2
]d
|f(s)| d |µ| (t− s)

≤
∑

n∈Zd

∫

n+[− 1

2
, 1
2
]d

sup
s∈n+[− 1

2
, 1
2
]d
{|f(s)|}d |µ| (t− s)

≤
∑

n∈Zd

sup
s∈n+[− 1

2
, 1
2
]d
{|f(s)|} |µ| (t− n− [−

1

2
,
1

2
]d)

≤

(∑

n∈Zd

sup
s∈n+[− 1

2
, 1
2
]d
{|f(s)|}

)
‖µ‖[− 1

2
, 1
2
]d .

Now, since f is rapidly decaying,
∑

n∈Zd

sup
s∈n+[− 1

2
, 1
2
]d
{|f(s)|} <∞ .

Therefore

‖ |µ| ∗ f‖∞ ≤

(∑

n∈Zd

sup
s∈n+[− 1

2
, 1
2
]d
{|f(s)|}

)
‖µ‖[− 1

2
, 1
2
]d <∞ .

�

Corollary 2.1. If µ is a translation bounded measure then µ is a tempered distri-

bution which is translation bounded on S .

Proof. Since µ is translation bounded, it is tempered as a distribution. Also for all

f ∈ S we have

|µ ∗ f(t)| ≤ |µ| ∗ |f |(t) .

To complete the proof, we repeat the computation of Proposition 2.5, (ii) ⇒ (iii)

with f replaced by |f |, and obtain

|µ| ∗ |f | (t) ≤

(∑

n∈Zd

sup
s∈n+[− 1

2
, 1
2
]d
{|f(s)|}

)
‖µ‖[− 1

2
, 1
2
]d .
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Exactly as in the proof of Proposition 2.5, (ii) ⇒ (iii), this implies that

‖µ ∗ f‖∞ ≤ ∞ .

�

Remark 2.1. The converse of Corollary 2.1 is not true. In [1, Prop. 7.1], the authors

introduce a positive definite measure µ on R which which is a tempered distribution,

but is not translation bounded as measure. Corollary 4.2 below will show that this

measure µ is, however, translation bounded as a tempered distribution.

Directly from Corollary 2.1 and Proposition 2.4, we have the following.

Corollary 2.2. If µ is a translation bounded measure on Rd, then for any multi-

index α, Dαµ is a translation bounded tempered distribution.

Example 2.1. One can easily compute directly that ψ ∈ S ′(R) defined by

ψ(f) :=
∑

k∈Z

f ′(k) , f ∈ S (R) ,

is a translation bounded tempered distribution. Alternatively, by observing that

ψ = −DδZ, we may simply apply the above result.

We shall present some further examples of translation bounded tempered distribu-

tions in the subsequent sections.

3. Autocorrelation

As with translation boundedness, our definition of autocorrelation for a tempered

distribution will be based on that for measures. Recall that the autocorrelation of

a measure µ on Rd is defined as the volume averaged convolution µ ⊛ µ̃, where for

g ∈ Cc(Rd),

(µ⊛ µ̃)(g) := lim
R→∞

1
vol(BR)

(µR ∗ µ̃R)(g) .

Here, µR is the restriction of µ to the ball BR := BR(0), µ̃(g) := µ(g̃) and g̃ := g-.

The restriction of a measure to a set makes sense due to regularity; that is, regularity

ensures that µR(g) = µ(1BR
g) is well-defined for any g ∈ Cc(Rd). For an arbitrary

tempered distribution ψ and g ∈ S , however, ψ(1BR
g) is not defined, so to generalise

the definition of autocorrelation, we need a different approach to restriction.

Definition 3.1. We say that {hR}R≥1 is a smooth approximate van Hove family if

for each R,
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(i) hR ∈ D and

(ii) 1BR
≤ hR ≤ 1BR+1

.

Given ψ ∈ S ′ and such a family {hR}, each tempered distribution hRψ, defined for

f ∈ S by hRψ(f) := ψ(hRf), has support contained in BR+1 and agrees with ψ on

the set {f ∈ S : supp(f) ⊆ BR}. Using this, we can define the autocorrelation of

a tempered distribution just as for a measure.

Definition 3.2. Given a tempered distribution ψ, we say that φ is an autocorrelation

of ψ if there exists a smooth approximate van Hove family {hR} and a positive

sequence {Rn} → ∞ such that

(1) φ = lim
n→∞

1

vol(BRn
)
(hRn

ψ) ∗ (h̃Rn
ψ)

in the weak-∗ topology in S
′.

It is not clear to us if every translation bounded tempered distribution possesses

an autocorrelation. We can show that any translation bounded tempered distribu-

tion would have an autocorrelation in the weak-* topology of D ′, but then the limit

would be a distribution that is not necessarily tempered, and hence we could not use

the Fourier transform. We will show later that every translation bounded measure

possesses autocorrelations in the tempered distribution sense, and that the auto-

correlations as tempered distribution and translation bounded measures coincide.

Anyhow, for tempered distributions in general the existence of an autocorrelation is

still an open problem.

We shall return to such considerations presently. In general we shall assume the

existence of an autocorrelation.

As with measures, a tempered distribution may have many autocorrelations, each

being a cluster point when R → ∞ of the set
{

1
vol(BR)

(hRψ) ∗ (h̃Rψ) : R ≥ 1
}

in S ′, for some smooth van Hove family {hR}.

Lemma 3.1. Let ψ ∈ S ′ and let {hR} be a smooth approximate van Hove family.

Then ψ has an autocorrelation with respect to {hR} if and only if there exists some

sequence {Rn} → ∞ such that the set
{

1
vol(BRn

)
(hRn

ψ) ∗ (h̃Rn
ψ) : n ∈ N

}

is pre-compact in the weak-∗ topology.
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Proof. The proof is straightforward, and we will skip it. �

This lemma suggests the following definition.

Definition 3.3. Given a tempered distribution ψ and a smooth approximate van

Hove family {hR}, we say that {hR} is a strong smooth approximate van Hove family

for ψ if the set {
1

vol(BR)
(hRψ) ∗ (h̃Rψ) : R ≥ 1

}

is weak-∗ pre-compact in S ′.

If a tempered distribution admits a strong smooth approximate van Hove family,

then it has an autocorrelation. We will show that the autocorrelation(s) of a tem-

pered distribution are independent of the choice of strong smooth van Hove family.

The following lemma allows us to work with functions of the form f ∗ g, f, g ∈ D .

Lemma 3.2. Let X ⊆ S ′ be weak-∗ compact, {ψn} ⊆ X and ψ ∈ S ′ be such that

ψn(f) → ψ(f)

for all f in a dense set D ⊆ D. Then ψ ∈ X and for all f ∈ S , we have

ψn(f) → ψ(f) .

Proof. We first prove that ψn(g) → ψ(g) for all g ∈ S .

Indeed, assume by contradiction that for some g ∈ S , {ψn(g)} does not converge to

ψ(g). Then we can find an open set U ∋ ψ(g), and some increasing sequence {kn}

such that {ψkn(g)} * U . Since {ψkn} ⊆ X , which is weak-∗ compact, we can find

a subsequence {ψln} that converges weak-∗ to some ψ′ ∈ X . In particular, {ψln(g)}

converges to ψ′(g). As {ψln(g)} * U and U is open, it follows that ψ′(g) /∈ U , so

that ψ′(g) 6= ψ(g).

Now for all f ∈ D we have

ψ(f) = lim
n
ψn(f) = lim

n
ψln(f) = ψ′(f) .

But D is dense in D and hence also in S , so as ψ, ψ′ ∈ S ′, by continuity we get

ψ = ψ′, which contradicts ψ′(g) 6= ψ(g).

This shows that ψn → ψ in the weak-* topology of S ′. By compactness of X we

also get ψ ∈ X . �
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Lemma 3.3. Let ψ ∈ S ′ and {hR}, {h
′
R} be smooth approximate van Hove families.

Then

lim
R→∞

(
1

vol(BR)
(hRψ) ∗ (̃hRψ)−

1
vol(BR)

(h′Rψ) ∗ (̃h
′
Rψ)

)
(f ∗ g) = 0 .

for all f, g ∈ D.

Proof. Let f, g ∈ D and choose R0 > 1 large enough such that the supports of

both f and g lie within BR0
. For R > R0, we have supp(Ttf) ∩ BR+1 = ∅ for all

t 6∈ BR0+R+1 and supp(Ttf) ⊆ BR for all t ∈ BR−R0
. Hence

(hRψ − h′Rψ) ∗ f(t) = 0 for t /∈ BR+R0+1\BR−R0
,

and, similarly,
(
h̃Rψ − h̃′Rψ

)
∗ g(t) = 0 for t /∈ BR+R0+1\BR−R0

.

Now, these functions are continuous and hence bounded on the compact set

BR+R0+1\BR−R0
, and we have

(
(hRψ ∗ h̃Rψ)− (h′Rψ ∗ h̃′Rψ)

)
∗ (f ∗ g)

=
(
(hRψ ∗ f) ∗ (h̃Rψ − h̃′Rψ) ∗ g

)
+
(
(hRψ − h′Rψ) ∗ f ∗ (h̃′Rψ ∗ g)

)
.

Therefore, by the van Hove property of BR, we have for all t ∈ Rd that

lim
R

1
vol(BR)

(hRψ) ∗ (̃hRψ) ∗ f ∗ g(t)− 1
vol(BR)

(h′Rψ) ∗ (̃h
′
Rψ) ∗ f ∗ g(t) = 0 .

In particular (taking t = 0), we have

lim
R

(
1

vol(BR)
(hRψ) ∗ (̃hRψ)−

1
vol(BR)

(h′Rψ) ∗ (̃h
′
Rψ)

)
(f ∗ g) = 0 .

�

Lemma 3.4. Let {hR}, {h
′
R} be smooth approximate van Hove families such that

hR is strong for ψ ∈ S ′
∞. Then any autocorrelation φ of ψ that is calculated with

respect to h′R is also an autocorrelation with respect to hR, and is given by the same

choice of sequence Rn → ∞.

Proof. We need to show that

lim
n

1
vol(BRn

)

(
h′Rn

ψ
)
∗ (h̃′Rn

ψ) = φ in S
′

implies

lim
n

1
vol(BRn

)
(hRn

ψ) ∗ (h̃Rn
ψ) = φ in S

′ .
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As

X :=
{

1
vol(BR)

(hRψ) ∗ (h̃Rψ) : R ≥ 1
}

is weak-∗ compact in S ′, and by the existence of the limit the set

{ 1
vol(BRn

)

(
h′Rn

ψ
)
∗ (h̃′Rn

ψ)|n}

is also pre-compact, the claim follows immediately by combining Lemmas 3.2 and

3.3. �

Proposition 3.1. Let {hR}, {h
′
R} be strong smooth approximate van Hove families

for ψ. If {Rn} → ∞, then

lim
n

1

vol(BRn
)
(hRn

ψ) ∗ (h̃Rn
ψ) exists

if and only if

lim
n

1

vol(BRn
)

(
h′Rn

ψ
)
∗ (h̃′Rn

ψ) exists ,

and in this case they are the same.

Proof. The claim follows immediately by applying Lemma 3.4 twice. �

The previous result shows us that whenever when we deal with strong smooth ap-

proximate van Hove families, the autocorrelation is independent of this choice.

If a tempered distribution does not admit an autocorrelation, it cannot have a

strong smooth approximate van Hove sequence. It is presently unclear to us if the

converse is true, and we do not have a nice characterisation of the distributions that

admit strong smooth approximate van Hove families. However, we will show that

for translation bounded measures, all smooth approximate van Hove families are

strong, and the autocorrelations that they give rise to correspond to those arising

from the standard definition for measures.

For the rest of the paper all the smooth approximate van Hove families will be

assumed to be strong. This allows us to use the following convention: whenever

ψ ∈ S ′
∞ and {hR} is a smooth van Hove family, we define

ψR := hRψ

for simplicity.

Proposition 3.2. Let µ ∈ M∞(Rd) and {hR} be a smooth approximate van Hove

family. Then {hR} is strong for µ.
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Proof. Let f ∈ S . Without loss of generality we can assume that f ≥ 0, otherwise

we can replace f by g ∈ S such that g ≥ |f |.

As µ is translation bounded, |µ| is translation bounded as a tempered distribution

by Proposition 2.5 and thus there exist some M,N and C such that

‖|µ| ∗ f‖∞ ≤ C‖f‖M,N .

Then we have

‖ 1
vol(BR)

(hRµ) ∗ (h̃Rµ) ∗ f‖∞

= 1
vol(BR)

‖(h̃Rµ) ∗
(
(hRµ) ∗ f

)
‖∞

= 1
vol(BR)

sup
x∈Rd

∣∣∣∣
∫

Rd

(
(hRµ) ∗ f

)
(x− t)dh̃Rµ(t)

∣∣∣∣

≤ 1
vol(BR)

sup
x∈Rd

∫

Rd

|(hRµ) ∗ f | (x− t) d|̃hRµ|(t)

≤ 1
vol(BR)

sup
x∈Rd

∫

Rd

|hRµ| ∗ f(x− t)d|̃hRµ|(t)

≤ 1
vol(BR)

sup
x∈Rd

∫

Rd

|µ| ∗ f(x− t) d|̃hRµ|(t)

≤ 1
vol(BR)

sup
x∈Rd

∫

Rd

C‖f‖M,N d|̃hRµ|(t)

= 1
vol(BR)

C‖f‖M,N |̃hRµ|(Rd)

≤ 1
vol(BR)

C‖f‖M,N |̃µ|(BR+1) .

Now, a simple computation shows that for any translation bounded measure there

exists a constant C0 such that for all R > 1 we have

1

vol(BR)
|µ| (BR+1) ≤ C0 .

Therefore, for each f ∈ S we have for all R > 1 that
∥∥∥ 1
vol(BR)

(hRµ) ∗ (h̃Rµ) ∗ f
∥∥∥
∞

≤ C0C‖f‖M,N

and thus the set {
1

vol(BR)
(hRµ) ∗ (h̃Rµ) : R ≥ 1

}

is weak-∗ precompact, as required. �
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Next, we show that derivatives of translation bounded measures also admit strong

smooth van Hove sequences.

Proposition 3.3. Let {hR} be a smooth approximate van Hove family and let κ ∈

Zd
+. If there exists a constant C such that for all α ≤ κ and all R ≥ 1 we have

‖DαhR‖∞ < C ,

then for each µ ∈ M∞(Rd), the family {hR} is strong for the tempered distribution

Dκµ.

Proof. In this proof we will use the notation

0 := (0, 0, 0, ..., 0) and 2 := (2, 2, 2, ..., 2) ∈ Zd

in order to differentiate between these vectors and the numbers 0, 2 ∈ Z. We begin

by noting that since hR ≡ 1 on BR and hR ≡ 0 outside BR+1 we have for all non-zero

α ∈ Zd
+

DαhR(x) = 0 for all x /∈ BR+1\BR .

Moreover, for α = 0 ∈ Zd

+ we have ‖DαhR‖∞ = 1 for all R.

Now let µ ∈ M∞(Rd) and f ∈ S . Since ˜hRDMµ is a distribution with compact

support and f ∈ S , by Lemma 2.2 we have

g :=
(
h̃RDκµ

)
∗ f ∈ S .

Then for all x ∈ Rd,

∣∣∣ 1
vol(BR)

(hRD
κµ) ∗ g(x)

∣∣∣ = 1
vol(BR)

|〈hRD
κµ, Txg−〉|

= 1
vol(BR)

|〈Dκµ, hRTxg−〉|

= 1
vol(BR)

∣∣〈µ,Dκ
(
hRTxg−

)
〉
∣∣

= 1
vol(BR)

∣∣∣∣
∫

Rd

Dκ
(
hRTxg−

)
(t)dµ(t)

∣∣∣∣ .

Now, by the multivariate Leibnitz product rule we have

Dκ
(
hRTxg−

)
(t) =

∑

β≤κ

(
κ

β

)(
DβhR

)(
Dκ−βTxg−

)
(t) .
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Since for all β 6= 0 we have DβhR ≡ 0 outside BR+1\BR, we also have

∫

Rd

Dκ
(
hRTxg−

)
(t)dµ(t) =

∑

0<β≤κ

(
κ

β

)∫

BR+1\BR

Dβ
(
hR Txg−

)
(t)dµ(t)

+

∫

Rd

hR
(
DκTxg−

)
(t)dµ(t) .

Therefore we get

∣∣∣ 1
vol(BR)

(hRD
κµ) ∗ g(x)

∣∣∣ ≤ 1
vol(BR)

∑

0<β≤κ

(
κ

β

) ∣∣∣∣∣

∫

BR+1\BR

Dβ
(
hR Txg−

)
(t)dµ(t)

∣∣∣∣∣

+ 1
vol(BR)

∣∣∣∣
∫

Rd

hR
(
DκTxg−

)
(t)dµ(t)

∣∣∣∣

≤ 1
vol(BR)

∑

0<β≤κ

(
κ

β

)∑

α≤β

(
β

α

) ∣∣∣∣∣

∫

BR+1\BR

(DαhR)
(
Dβ−αTxg−

)
(t)dµ(t)

∣∣∣∣∣

+ 1
vol(BR)

∫

BR+1

|DκTxg−(t)| d|µ|(t)

≤ 1
vol(BR)

∑

0<β≤κ

∑

α≤β

(
κ

β

)(
β

α

)
C

∫

BR+1\BR

∣∣Dβ−αTxg−
∣∣ (t)d|µ|(t)

+ 1
vol(BR)

∫

BR+1

|DκTxg−(t)| d|µ|(t)

≤ C1

vol(BR)
sup
γ≤κ

∫

BR+1\BR

|DγTxg−(t)| d|µ|(t) +
1

vol(BR)

∫

BR+1

|DκTxg−(t)| d|µ|(t) .

(2)

where

C1 := C ·
( ∑

0<β≤κ

∑

α≤β

(
κ

β

)(
β

α

))

is a constant which only depends on C and κ.

To complete the proof we will show that there exists a constant C4 which depends

only on κ and µ, but it is independent of R and f , such that for all γ ≤ κ we have

‖Dγg‖∞ < C4‖f‖2d,2|κ| .

Let us emphasize here that while g ∈ S , g depends on R so should be seen as a

family of functions, not a single function.
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Now, for all γ ≤ κ we have

|Dγg(t)| =
∣∣∣Dγ

(
h̃RDκµ

)
∗ f
∣∣∣ (t)

=
∣∣∣
(
h̃RDκµ

)
∗Dγf

∣∣∣ (t)

=
∣∣∣〈h̃RDκµ, Tt(D

γf)−〉
∣∣∣

=
∣∣∣〈hRDκµ, T−t(Dγf)〉

∣∣∣

=
∣∣∣〈Dκµ, hRT−t(Dγf)〉

∣∣∣

=
∣∣∣〈µ,DκhRT−t(Dγf)〉

∣∣∣

=

∣∣∣∣∣〈µ,
∑

β≤κ

(
κ

β

)
(DβhR)T−t(Dκ−β+γf)〉

∣∣∣∣∣

≤
∑

β≤κ

(
κ

β

) ∣∣∣〈µ, (DβhR)T−t(Dκ−β+γf)〉
∣∣∣

=
∣∣∣〈µ, hRT−t(Dκ+γf)〉

∣∣∣+
∑

0<β≤κ

(
κ

β

) ∣∣∣〈µ, (DβhR)T−t(Dκ−β+γf)〉
∣∣∣

=
∣∣∣〈hRµ, T−t(Dκ+γf)〉

∣∣∣+
∑

0<β≤κ

(
κ

β

) ∣∣∣〈(DβhR)µ, T−t(Dκ−β+γf)〉
∣∣∣ .

Next, exactly as in the proof of Proposition 2.5 we get

∣∣∣〈hRµ, T−t(Dκ+γf)〉
∣∣∣ ≤

(∑

n∈Zd

sup
s∈n+[− 1

2
, 1
2
]d
{
∣∣Dκ+γf(s)

∣∣}
)
‖hRµ‖[− 1

2
, 1
2
]d

≤

(∑

n∈Zd

sup
s∈n+[− 1

2
, 1
2
]d
{
∣∣Dκ+γf(s)

∣∣}
)
‖µ‖[− 1

2
, 1
2
]d ,

and similarly, using also that |(DβhR)µ| ≤ C|µ|, we get

∣∣∣〈(DβhR)µ, T−t(Dκ−β+γf)〉
∣∣∣ ≤

(∑

n∈Zd

sup
s∈n+[− 1

2
, 1
2
]d
{
∣∣(Dκ−β+γf)(s)

∣∣}
)
‖(DβhR)µ‖[− 1

2
, 1
2
]d

≤

(∑

n∈Zd

sup
s∈n+[− 1

2
, 1
2
]d
{
∣∣(Dκ−β+γf)(s)

∣∣}
)
C · ‖µ‖[− 1

2
, 1
2
]d .
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Finally, using the convergence of the series

∑

n∈Zd\0

sup
s∈n+[− 1

2
, 1
2
]d
{
1

s2
} ,

we get
∑

n∈Zd

sup
s∈n+[− 1

2
, 1
2
]d
{
∣∣(Dκ−β+γf)(s)

∣∣} = sup
s∈[− 1

2
, 1
2
]d
{
∣∣(Dκ−β+γf)(s)

∣∣}

+
∑

n∈Zd\0

sup
s∈n+[− 1

2
, 1
2
]d
{

∣∣∣∣
1

s2
(
s2(Dκ−β+γf

)
(s)

∣∣∣∣}

≤ ‖f‖0,|κ−β+γ| +
∑

n∈Zd\0

sup
s∈n+[− 1

2
, 1
2
]d
{

∣∣∣∣
1

s2

∣∣∣∣ ‖f‖2d,|κ−β+γ|} ≤ C3‖f‖2d,2|κ| ,

where

C3 = 1 +
∑

n∈Zd\0

sup
s∈n+[− 1

2
, 1
2
]d
{
1

s2
} .

Combining, we get

|Dγg(t)| =
∣∣∣Dγ

(
h̃RDκµ

)
∗ f
∣∣∣ (t)

≤
∣∣∣〈hRµ, T−t(Dκ+γf)〉

∣∣∣+
∑

0<β≤κ

(
κ

β

) ∣∣∣〈(DβhR)µ, T−t(Dκ−β+γf)〉
∣∣∣

≤ C3‖f‖2d,2|κ|‖µ‖[− 1

2
, 1
2
]d +

∑

0<β≤κ

(
κ

β

)
C3‖f‖2d,2|κ|C‖µ‖[− 1

2
, 1
2
]d

= C4‖f‖2d,2|κ| .

Thus by (2), we have
∣∣∣ 1
vol(BR)

(hRD
κµ) ∗ h̃RDκµ ∗ f(x)

∣∣∣
≤ C1

vol(BR)
C4‖f‖2d,2|κ| |µ| (BR+1\BR) +

1
vol(BR)

C4‖f‖2d,2|κ| |µ| (BR+1) .

By translation boundedness of µ the sets

{ 1
vol(BR)

|µ| (BR+1\BR) |R ≥ 1}

and

{ 1
vol(BR)

|µ| (BR+1) |R ≥ 1}
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are bounded. Therefore, there exists a constant C5, which depends only on κ and

µ, such that, for all R ≥ 1 and all f ∈ S we have

‖ 1
vol(BR)

(hRD
κµ) ∗ h̃RDκµ ∗ f‖ ≤ C5‖f‖2d,2|κ| .

This completes the proof. �

By the observations at the start of the proof, we see that the boundedness con-

dition in the statement Proposition 3.3 is needed only for the coronas BR+1\BR.

The existence of such van Hove families is easy to prove. Therefore, all deriva-

tives of translation bounded measures admit strong smooth approximate van Hove

sequences.

We complete the section by showing that for a translation bounded measure µ, the

autocorrelations calculated for the tempered distribution µ coincide with those for

the measure µ.

Proposition 3.4. Let µ ∈ M∞(Rd), let {hR} be a smooth approximate van Hove

family, and let φ be an autocorrelation of µ calculated for µ as a tempered distribution

with respect to the sequence {Rn}. Then the measure autocorrelation

γ = lim
n

1
vol(BRn

)
(µRn

) ∗ (µ̃Rn
)

exists and

γ = φ .

In particular, φ is a translation bounded measure.

Proof. Exactly as in the proof of Lemma 3.3, we can prove that

(3) lim
n→∞

1

vol(BRn
)

(
(hRn

µ) ∗ (h̃Rn
µ)− (µRn

) ∗ (µ̃Rn
)
)
(f ∗ g) = 0 .

for all f, g ∈ D . As µ is a translation bounded measure, the sequence
{

1
vol(BRn

)
(µRn

) ∗ (µ̃Rn
)
}

is precompact in the vague topology and thus has a cluster point. We show that the

sequence is convergent by showing that the cluster point is unique.

Let γ1, γ2 be two cluster points of
{

1
vol(BRn

)
(µRn

) ∗ (µ̃Rn
)
}
. By using (3) on the two

subsequences which give γ1 and γ2, we get

γ1(f ∗ g) = φ(f ∗ g) = γ2(f ∗ g) ,
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for all f, g ∈ D . As the set {f ∗ g : f, g ∈ D} is dense in Cc(Rd), this shows that

γ1 = γ2. Thus there exists a measure γ ∈ M∞(Rd) such that

γ = lim
n

1
vol(BRn

)
(µRn

) ∗ (µ̃Rn
) ,

in the vague topology of measures. Using again (3), we get for all f, g ∈ D that

φ(f ∗ g) = γ(f ∗ g) .

As γ is also a tempered distribution, and {f ∗ g : f, g ∈ D} is dense in S , we see

that γ = φ as tempered distributions. This completes the proof. �

4. Positive definite tempered distributions

In this section we prove some basic results about positive definite tempered distri-

butions. As any autocorrelation of a tempered distribution is positive definite by

construction, the results of this section are important to the study of diffraction of

tempered distributions. We begin with a pretty standard result (see, for example,

[16, Theorem 7.19]).

Lemma 4.1. Let ψ ∈ S ′ and f ∈ S . Then the function ψ ∗ f has (at most)

polynomial growth, that is, ψ ∗ f ∈ S ′, and ψ̂ ∗ f = ψ̂f̂ .

Proposition 4.1. Let ψ ∈ S ′ such that ψ̂ is a measure and let f ∈ S . Then ψ ∗ f

is bounded and uniformly continuous.

Proof. As f̂ ∈ S and ψ̂ is a tempered measure, ψ̂f̂ is also a tempered measure. But
∣∣∣ψ̂f̂(Rd)

∣∣∣ =
∣∣∣∣
∫

Rd

f̂(x) dψ̂(x)

∣∣∣∣ =
∣∣∣ψ̂(f̂)

∣∣∣ ,

which is finite, so ψ̂f̂ is a finite measure and thus, as the Fourier transform of a finite

measure, ψ ∗ f is uniformly continuous and bounded. In particular, for all x ∈ Rd,

|ψ ∗ f(x)| =
∣∣∣(ψ̂ · f̂)∨(x)

∣∣∣

=

∣∣∣∣
∫

̂Rd

χ(x)f̂(χ) dψ̂(χ)

∣∣∣∣

≤

∫

̂Rd

∣∣∣f̂(χ)
∣∣∣ d|ψ̂|(χ) ,

so that

‖ψ ∗ f‖∞ ≤

∫

̂Rd

∣∣∣f̂(χ)
∣∣∣ d|ψ̂|(χ) = |ψ̂|(|f̂ |) .

�
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Corollary 4.1. Let ψ ∈ S ′ such that ψ̂ is a measure. Then ψ is translation bounded

on S .

Another way to state this is that the Fourier transform of any tempered measure is

a tempered distribution that’s translation bounded on S . This is another fruitful

source of examples of translation bounded tempered distributions. The following

example first appeared in [18].

Example 4.1. Let

ω := δ2Z +
∑

n≥1

δ2.4nZ ∗ (δ4n−1 + δ1−4n) .

One may easily verify that ω is a translation bounded measure, and thus tempered.

The Fourier transform of ω has formal expression

ω̂ = 1
2
δZ

2

+
∑

n≥1

cos(2π(4n − 1)(·))

4n
δ Z

2.4n
,

and is a non-measure tempered distribution. By Corollary 4.1, it is translation

bounded.

Example 4.2. The tempered distribution ψ = −DδZ of Example 2.1 has Fourier

transform

−̂DδZ = 2πi id δZ ,

where id is the identity function on R, id(x) = x. That is, ψ is the Fourier transform

of a tempered (not translation bounded) measure.

Recall that, from the Bochner Schwartz theorem, the Fourier transform of a pos-

itive definite tempered distribution is a tempered measure. Then the following is

immediate from Corollary 4.1.

Corollary 4.2. Let ψ ∈ S ′ be positive definite. Then ψ is translation bounded on

S .

To conclude this section, we further examine the connection between positive definite

tempered distributions and those whose Fourier transform is a measure.

Proposition 4.2. Let ψ ∈ S
′.

i) If ψ is a linear combination of 4 positive definite tempered distributions, then

ψ̂ is a tempered measure.
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ii) If ψ̂ is a translation bounded measure, then ψ is a linear combination of 4

positive definite tempered distributions.

Proof. (i) is clear.

(ii) Let f ∈ S . As ψ̂ is a translation bounded measure, we can take its canonical

decomposition

ψ̂ =
(
ψ̂
)
+
−
(
ψ̂
)
−
+ i
(
ψ̂
)
i+

− i
(
ψ̂
)
i−
.

Then each of the four measures is a positive translation bounded measure, hence a

positive tempered measure. Taking the inverse Fourier transform of both sides, we

have the result. �

Remark 4.1. In [9, Prop. 7.1], the authors introduce a tempered measure µ such

that the measure |µ| is not tempered.

Note that in this case, if we take ψ = µ̌, the distribution ψ is tempered and has

measure Fourier transform, but it cannot be a linear combination of finitely many

positive definite tempered distributions.

Indeed if we would have

ψ =

N∑

i=1

ciψi ,

with ψi positive definite, then

µ = ψ̂ =

N∑

i=1

ciψ̂i ,

where each ψ̂i is a positive tempered measure. Then

|µ| ≤
N∑

i=1

|ci|ψ̂i

and as the RHS is tempered so must be the LHS too.

In summary, we have

{ψ ∈ S
′ : ψ̂ is a translation bounded measure}

( span{ψ ∈ S
′ : ψ is positive definite}

( {ψ ∈ S
′ : ψ̂ is a tempered measure} .
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5. Almost periodic Distributions

It is well known [5] that the Fourier transform of a finite measure µ is a weakly

almost periodic function f and that, under the Fourier transform, the Lebesgue

decomposition of µ into its pure point and continuous parts corresponds to the

Eberlein decomposition of the weakly almost periodic function f [6].

Based on the above results, Argabright and deLamadrid extended the notion of

almost periodicity from functions to measures via convolution, and showed that the

correspondence of the respective decompositions under the Fourier transform can

be extended to translation bounded Fourier transformable measures [9].

We shall show that the same approach also works for tempered distributions. In

this section we define the Eberlein decomposition for tempered distributions and in

the next section, we prove the equivalence of the decompositions under the Fourier

transform. As usual, we denote the spaces of weakly almost periodic, strongly

almost periodic and null weakly almost periodic functions by WAP (Rd), SAP (Rd)

and WAP0(Rd) respectively. For the definitions of these spaces and a review of the

existing theory in the setting of measures, we refer the reader to [15].

Definition 5.1. A tempered distribution ψ is called respectively weakly, strongly

or null weakly almost periodic if and only if for all f ∈ S (Rd) the function ψ ∗ f is

respectively weakly, strongly or null weakly almost periodic. We shall denote the cor-

responding spaces of tempered distributions by WAP(Rd), SAP(Rd) and WAP0(Rd)

respectively.

Remark 5.1. As almost periodic functions must be uniformly continuous and

bounded, it is implicitly assumed in the definition that ψ ∗ f ∈ Cu(Rd) for all

f ∈ S (Rd). Therefore WAP(Rd), SAP(Rd) and WAP0(Rd) are subspaces of S ′
∞(Rd).

Remark 5.2. In [8], Lagarias introduced a notion of uniformly almost periodic

distributions which is similar to our definition, but uses D as the space of test

functions instead of S . All of the results we prove about translation boundedness

and Eberlein convolution can be shown with either D or S as test functions. We

will show next in Lemma 5.2 that for translation bounded tempered distributions

the two definitions are equivalent.

Let us recall that if f, g ∈ S then f ∗ g ∈ S . This allows us look at convolutions

of the form

ψ ∗ (f ∗ g) ; ψ ∈ S
′, f, g ∈ S .
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Recall from the previous section that for ψ ∈ S ′, f ∈ S , we have ψ ∗ f ∈ S ′.

Further, we have the following (see for example [16, Theorem 7.19]).

Lemma 5.1. Let ψ ∈ S ′ and f, g ∈ S . Then (ψ ∗ f) ∗ g and ψ ∗ (f ∗ g) are well

defined and

(ψ ∗ f) ∗ g = ψ ∗ (f ∗ g) .

Lemma 5.2. Let ψ ∈ S
′. Then

i) ψ ∈ WAP(Rd) if and only if ψ ∈ S ′
∞(Rd) and for all f ∈ D we have

ψ ∗ f ∈ WAP (Rd).

ii) ψ ∈ SAP if and only if ψ ∈ S ′
∞(Rd) and for all f ∈ D we have ψ ∗ f ∈

SAP (Rd).

iii) ψ ∈ WAP0 if and only if ψ ∈ S
′
∞(Rd) and for all f ∈ D we have ψ ∗ f ∈

WAP0(Rd).

Proof. We prove (i), the other two are identical.

The forward implication is obvious as WAP ⊂ S ′
∞(Rd) and D ⊂ S .

For the reverse implication, let f ∈ S . By translation boundedness we know that

ψ ∗ f ∈ Cu(Rd). Now, let gα ∈ D be an approximate identity for (Cu(Rd), ∗).

Then we have ψ ∗ gα ∈ WAP (Rd) and hence, as f ∈ L1(Rd) we also have [9]

(ψ ∗ gα) ∗ f ∈ WAP (Rd). By Lemma 5.1 we thus have

(ψ ∗ f) ∗ gα = (ψ ∗ gα) ∗ f ∈ WAP (Rd) .

As (ψ ∗ f) ∗ gα converges uniformly to ψ ∗ f and WAP (Rd) is closed in Cu(Rd), we

get ψ ∗ f ∈ WAP (Rd) �

We now show that every tempered distribution with measure Fourier transform is

weakly almost periodic. This class will thus always contain the subclass of positive

definite tempered distributions, and hence all of our autocorrelations.

Theorem 5.1. Let ψ ∈ S ′. If ψ̂ is a measure, then ψ ∈ WAP(Rd).

Proof. Let f ∈ S . Then, by Proposition 4.1, the function ψ ∗ f is the inverse

Fourier transform of the finite measure f̂ ψ̂. The claim now follows from the fact

that the Fourier transform of a finite measure is a weakly almost periodic function

(see [6]). �

Corollary 5.1. Let ψ ∈ S
′(Rd) be positive definite. Then ψ ∈ WAP(Rd).



26 NICOLAE STRUNGARU AND VENTA TERAUDS

We are now ready to construct the Eberlein decomposition for the space of weakly

almost periodic distributions.

Theorem 5.2.

WAP(Rd) = SAP(Rd)
⊕

WAP0(Rd) .

For ψ ∈ WAP(Rd), we will denote this decomposition by

ψ = ψs + ψ0 .

Moreover, for all f ∈ S we have

(ψ ∗ f)
s
= ψs ∗ f ; (ψ ∗ f)0 = ψ0 ∗ f .

Proof. For ψ ∈ WAP(Rd) and f ∈ S , the function ψ ∗ (f-) ∈ WAP (Rd) and we

may decompose ψ ∗ (f-) into the functions (ψ ∗ (f-))s ∈ SAP (Rd) and (ψ ∗ (f-))0 ∈

WAP0(Rd).

Therefore, for fixed ψ ∈ WAP(Rd), the following functions are continuous:

S (Rd) →WAP (Rd) → SAP (Rd) → C

f 7→ ψ ∗ (f-) 7→ (ψ ∗ (f-))s 7→ (ψ ∗ (f-))s (0)

and

S (Rd) →WAP (Rd) → WAP0(Rd) → C

f 7→ ψ ∗ (f-) 7→ (ψ ∗ (f-))0 7→ (ψ ∗ (f-))0 (0) .

Therefore, we can define continuous mappings S, T : S (Rd) → C via

T (f) = (ψ ∗ (f-))s (0)

and

S(f) = (ψ ∗ (f-))0 (0) .

These mappings define two tempered distributions ψs and ψ0. It follows immediately

from the construction that

ψ = ψs + ψ0

and that for all f ∈ S ,

(ψ ∗ f)
s
= (ψ)

s
∗ f ; (ψ ∗ f)0 = (ψ)0 ∗ f .

To complete the proof, we need to show the uniqueness of the decomposition. For

this it suffices to prove that

SAP(Rd) ∩WAP0(Rd) = {0} .

This follows immediately from the fact that SAP (Rd)∩WAP0(Rd) = {0} (see [7]).
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If ψ ∈ SAP(Rd) ∩ WAP0(Rd), then for all f ∈ S we have ψ ∗ f ∈ SAP (Rd) ∩

WAP0(Rd) and therefore ψ ∗ f = 0. In particular ψ(f-) = 0 for all f ∈ S . �

Proposition 5.1. Let ψ, ϕ ∈ S ′ be such that ϕ has compact support.

(i) If ψ ∈ WAP(Rd) then ψ ∗ ϕ ∈ WAP(Rd).

(ii) If ψ ∈ SAP(Rd) then ψ ∗ ϕ ∈ SAP(Rd).

(iii) If ψ ∈ WAP0(Rd) then ψ ∗ ϕ ∈ WAP0(Rd).

Proof. The claim follows immediately from the observation that for f ∈ S , ϕ ∈ S ′

with compact support, we have by Lemma 2.2 that ϕ ∗ f ∈ S and

(ψ ∗ ϕ) ∗ f = ψ ∗ (ϕ ∗ f) .

�

Example 5.1. Let α be a multi-index on Rd and consider the tempered distribution

ψ :=
∑

x∈Zd

Dαδz = DαδZd = Dαδ0 ∗ δZd .

As Dαδ0 has compact support and δZd ∈ SAP(Rd), we see that ψ ∈ SAP(Rd).

Corollary 5.2. Let α be a multi-index on Rd.

(i) If ψ ∈ WAP(Rd) then Dαψ ∈ WAP(Rd).

(ii) If ψ ∈ SAP(Rd) then Dαψ ∈ SAP(Rd).

(iii) If ψ ∈ WAP0(Rd) then Dαψ ∈ WAP0(Rd).

We complete the section by proving that for translation bounded measures the

notions of almost periodicity as measures and tempered distributions coincide.

Theorem 5.3. Let µ ∈ M(Rd). Then

(i) µ ∈ WAP(Rd) ⇔ µ ∈ WAP(Rd).

(ii) µ ∈ SAP(Rd) ⇔ µ ∈ SAP(Rd).

(iii) µ ∈ WAP0(Rd) ⇔ µ ∈ WAP0(Rd).

Proof. The proof follows immediately from the density of D in both Cc(Rd) and

S . Since the measure µ is translation bounded, it is also translation bounded as a

tempered distribution and we have

µ ∗ f ∈ Cu(Rd) for all f ∈ Cc(Rd) ∪ S .
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We now prove (i). The other two results can be shown identically. We start by

picking some {gα} ⊆ D which is an approximate identity for (Cu(Rd), ∗).

(⇒) Let f ∈ S . As f ∈ L1(Rd) we have µ ∗ f ∈ WAP(Rd) [9, Cor. 5.1]. Moreover,

as µ ∗ f ∈ Cu(Rd) we get µ ∗ f ∈ WAP(Rd) ∩ Cu(Rd) = WAP (Rd) [9, Cor. 5.2].

This proves the claim.

(⇐) Let f ∈ Cc(Rd). As gα ∗ µ ∈ WAP (R) and f ∈ Cc(Rd) we have, for all α, that

(gα ∗ µ) ∗ f ∈ WAP (Rd)

Therefore gα ∗ (µ ∗ f) ∈ WAP (Rd). We know that µ ∗ f ∈ Cu(Rd). Therefore

{gα ∗ (µ ∗ f)} converges uniformly to µ ∗ f . As gα ∗ (µ ∗ f) ∈ WAP (Rd), and

WAP (Rd) is closed in Cu(Rd), it follows that µ ∗ f ∈ WAP (Rd). �

6. Tempered distributions with measure Fourier transform

To consider the diffraction of a tempered distribution, we take, as usual, the Fourier

transform of the autocorrelation. As we have stated, if the autocorrelation exists,

it is a positive definite tempered distribution, and thus its Fourier transform is a

positive measure (the diffraction measure).

Our primary goal is to relate the Lebesgue decomposition of the diffraction measure

to the Eberlein decomposition of the autocorrelation, and we do this in this section.

In fact, the positivity of the diffraction measure plays no role in our proofs. Thus

we here consider the larger class of tempered distributions whose Fourier transform

is a measure.

Definition 6.1. We define SM̂ to be the space of tempered distributions whose

Fourier Transform is a measure, that is:

SM̂ := {ψ ∈ S
′ : ψ̂ is a measure } .

Remark 6.1. (i) Any positive definite tempered distribution is in SM̂. The

connection between positive definiteness and the space SM̂ is explained by

Proposition 4.2 or by the Bochner Schwartz theorem.

(ii) By Theorem 5.1 we have

SM̂ ⊆ WAP(Rd) .

As is the case for measures, the discrete and continuous parts of the Fourier trans-

form of a positive definite distribution are exactly the Fourier transforms of the

strongly and null weakly almost periodic parts of the distribution respectively.
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Theorem 6.1. Let ψ ∈ SM̂. Then
(
ψ̂
)
pp

= ψ̂s and
(
ψ̂
)
c
= ψ̂0 .

Proof. Let f ∈ S . Then, by Proposition 4.1, ψ̂f̂ is a finite measure whose inverse

Fourier transform is f ∗ψ. Accordingly, the pure point and continuous parts of ψ̂f̂ ,(
f̂ ψ̂
)
pp

and
(
f̂ ψ̂
)
c
, are finite measures. Then by [6], the inverse Fourier transforms

of
(
f̂ ψ̂
)
pp

and
(
f̂ ψ̂
)
c
are respectively strongly and null weakly almost periodic

functions.

As

f ∗ ψ =

[(
f̂ ψ̂
)
pp

]∨
+
[(
f̂ ψ̂
)
c

]∨
,

by the uniqueness of the Eberlein decomposition and Theorem 5.2 we must have

(4)

[(
f̂ ψ̂
)
pp

]∨
= (f ∗ ψ)s = f ∗ (ψs) ;

[(
f̂ ψ̂
)
c

]∨
= (f ∗ ψ)0 = f ∗ (ψ0) .

Therefore, as
(
f̂ ψ̂
)
pp

= f̂
(
ψ̂pp

)
and

(
f̂ ψ̂
)
c
= f̂

(
ψ̂c

)
, by taking the Fourier trans-

forms we get

f̂
(
ψ̂pp

)
= ̂f ∗ (ψs) = f̂ ψ̂s ;

f̂
(
ψ̂c

)
= ̂f ∗ (ψ0) = f̂ ψ̂0 .

This proves the claim. �

Theorem 6.1 can be used to obtain a simple characterisation of tempered distribu-

tions with a pure point measure as a Fourier transform. While the characterisation

is via test functions in S , we can easily extend this to D and obtain a condition

which is easier to test.

Proposition 6.1. Let ψ ∈ SM̂. Then the following are equivalent:

(i) ψ̂ is a discrete measure.

(ii) ψ ∈ SAP(Rd).

(iii) ψ ∗ f ∈ SAP (Rd) for all f ∈ D.
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(iv) ψ ∗ f ∗ g ∈ SAP (Rd) for all f, g ∈ D.

(v) ψ ∗ f ∗ f̃ ∈ SAP (Rd) for all f ∈ D.

Proof. (i) ⇔ (ii) follows immediately from Theorem 6.1 and the uniqueness of the

Eberlein decomposition of Theorem 5.2.

(ii) ⇒ (iii) is obvious as D ⊆ S .

(iii) ⇒ (iv) ⇒ (v) are obvious.

(v) ⇒ (i) : Let f ∈ D . Since ψ̂ is a tempered measure, it follows that
∣∣∣f̂
∣∣∣
2

ψ̂ is a

finite measure. As the Fourier transform of this measure is (ψ ∗ f ∗ f̃)− ∈ SAP (Rd),

it follows [6] that
∣∣∣f̂
∣∣∣
2

ψ̂ is a pure point measure.

As for each R > 0 we can find some f ∈ D which is non-vanishing on BR(0), it

follows that the restriction of ψ̂ to BR(0) is pure point for each R > 0. This implies

that ψ̂ is pure point. �

Note that in the situation of Proposition 6.1, Theorem 7.2 will give us a way of

describing the pure point measure ψ̂.

In exactly the same way, we can prove the following.

Proposition 6.2. Let ψ ∈ SM̂. Then the following are equivalent:

(i) ψ̂ is a continuous measure.

(ii) ψ ∈ WAP0(Rd).

(iii) ψ ∗ f ∈ WAP0(Rd) for all f ∈ D.

(iv) ψ ∗ f ∗ g ∈ WAP0(Rd) for all f, g ∈ D.

(v) ψ ∗ f ∗ f̃ ∈ WAP0(Rd) for all f ∈ D.

As the proof is almost identical to the one of Proposition 6.1, we omit it.

7. The mean of a weakly almost periodic distribution

Fourier analysis is a very powerful tool in the study of L1 functions and finite mea-

sures. If we want to extend some of the ideas of this theory to bounded functions

and translation bounded measures, we cannot use integration anymore, as the in-

tegrals will be infinite. In any case, the translation boundedness of the measures,
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or boundedness of the functions, implies that we may still be able to integrate on

average, meaning dividing the integral over BR by the volume of BR and taking the

limit as R → ∞. We will refer to this limit, when it exists, as the mean of the

function.

As Eberlein showed [5], for weakly almost periodic functions the mean always exists

and is uniform in translates of the function. Moreover,

〈f, g〉 :=M(f ḡ)

defines a semi-inner product on the space of weakly almost periodic functions, which

becomes an inner product when we restrict to the class of strongly almost periodic

functions. The space (SAP (Rd), 〈·, ·〉) becomes a Hilbert space, and the set {χx(y) =

e2πix·y : x ∈ Rd} of characters on Rd is an orthogonal basis which is complete for

this inner product. For more details we refer the reader to [15].

Eberlein also showed that given a finite measure µ, the function f = µ̌ is weakly

almost periodic, and the (Fourier-Bohr) coefficients ax(f)M(χxf) of f with respect

to this complete orthogonal set are exactly the intensities of the atoms in the pure

point part (µ)pp of the measure µ.

The notion of the mean was extended to weakly almost periodic measures by Ar-

gabright and deLamadrid [9]. They further showed that for a Fourier transformable

measure, the Fourier Bohr coefficients of the measure give exactly the intensity of

the atoms in the pure point part of the measure’s Fourier transform.

In this section we use the ideas of [9] to extend the notion of mean to weakly

almost periodic distributions and prove that for distributions with measure Fourier

transform, the relation between the Fourier Bohr coefficients and the pure point

part of the Fourier transform still holds.

Theorem 7.1. Let ψ ∈ WAP(Rd). Then, there exists a constant M(ψ) such that

for all f ∈ D we have

M(ψ ∗ f) =M(ψ)

∫

Rd

f dλ .

Proof. Let f, g ∈ D . As ψ ∗ f ∈ WAP (Rd) it follows from [9] that

M((ψ ∗ f) ∗ g) =M(ψ ∗ f)

∫

Rd

g dλ
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and, similarly, that

M((ψ ∗ g) ∗ f) =M(ψ ∗ g)

∫

Rd

f dλ .

This implies that

M(ψ ∗ f)

∫

Rd

g dλ =M(ψ ∗ g)

∫

Rd

f dλ ,

and we see that the ratio
M(ψ ∗ f)∫

Rd f dλ
is constant over all f ∈ D with non-zero integral.

This allows us to define the number

M(ψ) :=
M(ψ ∗ f0)∫

Rd f0 dλ
,

where f0 ∈ D is an arbitrary function with
∫
Rd f0 dλ 6= 0.

Finally, if g ∈ D is any function, we get

M(ψ ∗ g)

∫

Rd

f0 dλ =M(ψ ∗ f0)

∫

Rd

g dλ =M(ψ)

∫

Rd

f0 dλ

∫

Rd

g dλ .

Dividing both sides by
∫
Rd f0 dλ 6= 0 we obtain the required identity. �

The constant found in the above theorem is called the mean of ψ.

Definition 7.1. Let ψ ∈ WAP(Rd). The mean of ψ is the number M(ψ), defined

by

M(ψ ∗ f) =M(ψ)

∫

Rd

f(t)dλ(t) for all f ∈ D .

We next show that Theorem 7.1 can be extended to test functions f ∈ S .

Proposition 7.1. Let ψ ∈ WAP(Rd). Then for all f ∈ S we have

M(ψ ∗ f) =M(ψ)

∫

Rd

f dλ .

Proof. Let g ∈ D with
∫
Rd g dλ 6= 0 and let f ∈ S . Then f ∗ g ∈ S and, as

ψ ∈ WAP(Rd), we have

ψ ∗ f ∈ WAP (Rd) ; ψ ∗ g ∈ WAP (Rd) and ψ ∗ (f ∗ g) ∈ WAP (Rd) .

Then by [9],

M((ψ ∗ f) ∗ g) =M(ψ ∗ f)

∫

Rd

gdλ ,
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and thus, by Lemma 5.1,

M(ψ∗f)

∫

Rd

gdλ =M((ψ∗f)∗g) =M(ψ∗(f ∗g)) =M(ψ∗(g∗f)) =M((ψ∗g)∗f) .

Now, ψ ∗ g ∈ WAP (Rd) and the convolution (ψ ∗ g) ∗ f of functions can be inter-

preted as the convolution between the measure (ψ ∗ g)λ and the finite measure fλ.

Therefore, by [9, Prop. 4.3] we have

M((ψ ∗ g) ∗ f) =M(ψ ∗ g)

∫

Rd

fdλ .

The claim follows now from Theorem 7.1. �

Corollary 7.1. Let ψ ∈ WAP(Rd) and f ∈ S . Then

M(ψ)

∫

Rd

fdλ = lim
n

1

(2n)d

∫

[−n,n]d
ψ(Ttf−)dt .

As for functions and measures, the mean is linear and is compatible with the oper-

atons of reflection and conjugation.

Proposition 7.2. The mean M : WAP(Rd) → C has the following properties:

(i) For all ψ, φ ∈ WAP(Rd) and a, b ∈ C, M(aψ + bφ) = aM(ψ) + bM(φ).

(ii) M(λRd) = 1.

(iii) If f ∈ WAP (Rd) ∩ S then the means of f as function and distribution are

equal.

(iv) If µ ∈ WAP (Rd) ∩ S ′ then the means of µ as measure and distribution are

equal.

(v) For ψ ∈ WAP(Rd), M(ψ) =M(ψ̃) =M(ψ) and M(ψ
-
) =M(ψ).

(vi) For ψ ∈ WAP(Rd), x ∈ Rd, M(Txψ) =M(ψ).

Proof. (i) and (ii) follow from [5, Theorem 14.1] and Theorem 7.1.

(iii): If f ∈ WAP (Rd) ∩ S and g ∈ D then as functions we have [9]

M(f ∗ g) =M(f)

∫

Rd

gdλ .

The claim follows now from Theorem 7.1.

(iv): If µ ∈ WAP (Rd) ∩S ′ and g ∈ D then the convolution µ ∗ g of the measure µ

and the compactly supported continuous function g satisfies [9]

M(µ ∗ g) =M(µ)

∫

Rd

gdλ .
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As µ ∗ g is the same if we consider it as the convolution of a tempered distribution

and a Schwartz function, the claim follows again from Theorem 7.1.

(v) and (vi) follow from [5, Theorem 14.1] and Theorem 7.1. �

Recall that for each x ∈ Rd and ψ ∈ S we have

T̂xψ = χ−xψ̂ and χ̂xψ = Txψ̂

where for x, y ∈ Rd,

χx(y) = e2πix·y .

The importance of the mean for diffraction theory is given by the following type of

results, see also [6, 9, 15, 10].

Theorem 7.2. Let ψ ∈ SM̂. Then, for all x ∈ Rd we have

ψ̂({x}) =M(χxψ) .

Proof. Let f ∈ D . Then, f̂ ψ̂ is a finite measure, and hence, by [6] we have

(
f̂ ψ̂
)
({0}) =M(ψ ∗ f) =M(ψ)

∫

Rd

f dλ .

As

f̂(0) =

∫

Rd

f dλ ,

it follows that ψ̂({0}) =M(ψ); that is, our claim is true for χ = 0.

For general x ∈ Rd, we then have

ψ̂({x}) = T−χx
ψ̂({0}) = (̂χxψ)({0}) =M(χxψ) .

�

Exactly as in the case of functions and measures, we can characterize the null weakly

almost periodic tempered distributions in terms of means under character multipli-

cation.

Proposition 7.3. Let ψ ∈ WAP(Rd). Then ψ ∈ WAP0(Rd) if and only if for all

x ∈ Rd we have

M(χxψ) = 0 .
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Proof. Note that for f ∈ S , x ∈ Rd, we have

((χxψ) ∗ f)̂ =
(
Txψ̂

)
f̂ = Tx

(
ψ̂T−xf̂

)
,

and thus

(5) (χxψ) ∗ f = χx (ψ ∗ (χ−xf)) .

Let ψ ∈ WAP0(Rd). For all f ∈ D and x ∈ Rd, we have (ψ ∗ (χ−xf)) ∈ WAP0(Rd),

and hence by [7],

M (χx(ψ ∗ (χ−xf))) = 0 .

Then from (5), for all f ∈ D we have

M((χxψ) ∗ f) = 0 ,

so by the definition of the mean, we have the forward implication.

Conversely, suppose that M(χxψ) = 0 for all x ∈ Rd. Let f ∈ S . Then

M ((χxψ) ∗ (χxf)) =M(χxψ)

∫

Rd

χxfdλ = 0

for all x ∈ Rd. Applying (5), this yields that

0 =M (χx(ψ ∗ (χ−xχxf))) =M(χx(ψ ∗ f))

for all x ∈ Rd and hence [7] we have that ψ ∗ f ∈ WAP0(Rd). As f ∈ S was

arbitrary, we obtain the result. �

Note that in case ψ ∈ SM̂, the above result is an immediate corollary of Theorem

7.2.

Combining the results of this section with Proposition 6.2, we obtain the following.

Proposition 7.4. Let ψ ∈ SM̂. Then the following are equivalent:

(i) ψ̂ is a continuous measure.

(ii) ψ ∈ WAP0(Rd).

(iii) ψ ∗ f ∈ WAP0(Rd) for all f ∈ D.

(iv) ψ ∗ f ∗ g ∈ WAP0(Rd) for all f, g ∈ D.

(v) ψ ∗ f ∗ f̃ ∈ WAP0(Rd) for all f ∈ D.

(vi) M(χxψ) = 0 for all x ∈ Rd.
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8. Diffraction of a Weakly Almost Periodic Distribution

In this section we study the diffraction of a weakly almost periodic distribution. We

shall see that as long as such a distribution admits an autocorrelation, the diffraction

is unique, pure point diffractive and can be expressed in terms of the Fourier-Bohr

coefficients of the original distribution.

Theorem 8.1. Let ψ ∈ WAP which has an autocorrelation φ. Then the following

hold.

(i) For all f ∈ D we have

φ ∗ f ∗ f̃ = (ψ ∗ f)⊛ ψ̃ ∗ f

where the RHS denotes the Eberlein convolution of weakly almost periodic

functions 1.

(ii) φ is the only autocorrelation of ψ.

(iii) If {hR} is any strong smooth approximate van Hove family for ψ then

φ = lim
R

1

vol(BR)
ψR ∗ ψ̃R

(iv) φ ∈ SAP(Rd).

(v) ψ has pure point diffraction given by

φ̂ =
∑

x∈Rd

|M(χxψ)|
2 δx .

Proof. In this proof we follow closely the proofs of [14].

(i): Let Rn → ∞ be such that

φ = lim
n

1

vol(BRn
)
ψRn

∗ ψ̃Rn
.

Let f ∈ D and let R > 0 be such that sup(f) ⊆ BR(0). Let N be such that for all

n > N we have Rn > R.

For any n > N , we note that

(ψRn
∗ f)(t)− hRn

(t)(ψ ∗ f)(t) = ψ(hRn
Ttf−)− hRn

(t)ψ(Ttf−) .

If t /∈ BRn+1+R(0) then hRn
Ttf− ≡ 0 and hence

ψ(hRn
Ttf−) = 0 .

1See [5, Def. 15.1] for the definition of Eberlein convolution of weakly almost periodic functions.
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In this case we also have hRn
(t) = 0. This shows that

(ψRn
∗ f)(t) = hRn

(t)(ψ ∗ f)(t) for t /∈ BRn+1+R(0) .

Now, taking n > N , if t ∈ BRn−R(0) we have

hRn
Ttf− = Ttf− ,

and hence

(ψRn
∗ f)(t) = ψ(hRn

Ttf−) = ψ(Ttf−) = hRn
(t)ψ(Ttf−) = hRn

(t)(ψ ∗ f)(t) .

This shows that

(ψRn
∗ f)(t) = hRn

(t)(ψ ∗ f)(t) for all t /∈ BRn+1+R(0)\BRn−R(0) .

Moreover, on the compact set BRn+1+R(0)\BRn−R(0), the function ψRn
∗f = hRn

(ψ∗

f) is bounded as ‖ψ ∗ f‖∞ < ∞ by translation boundedness of ψ. Therefore, by a

standard van Hove computation, we have

lim
n

1

vol(BRn
)
(ψRn

∗ f) ∗ (ψ̃Rn
∗ f̃)(t)

− lim
Rn

1

vol(BRn
)
(hRn

(ψ ∗ f)) ∗ (hRn
(ψ ∗ f))˜(t) = 0 ,

for all t ∈ Rd. Moreover, by the properties of hRn
and the van Hove property of

BRn
, we have

lim
n→∞

1

vol(BRn
)
(hRn

(ψ ∗ f)) ∗ (hRn
(ψ ∗ f))˜(t)

−
1

vol(BRn
)
(1BRn

(ψ ∗ f)) ∗ (1BRn
(ψ ∗ f))˜(t) = 0 ,

for all t ∈ Rd. Therefore,

(6)

lim
n→∞

1

vol(BRn
)
(ψRn

∗ f) ∗ ψ̃Rn
∗ f̃(t)

−
1

vol(BRn
)
(1BRn

(ψ ∗ f)) ∗ (1BRn
(ψ ∗ f))˜(t) = 0 ,

for all t ∈ Rd. Now, since ψ ∈ WAP(Rd) we have ψ ∗ f ∈ WAP (Rd). Therefore, the

Eberlein convolution (ψ ∗ f)⊛ (̃ψ ∗ f) is well defined and by [5],

(ψ ∗ f)⊛ (̃ψ ∗ f)(t) = lim
n

1

vol(BRn
)
(1BRn

(ψ ∗ f)) ∗ (1BRn
(ψ ∗ f))˜(t)

uniformly in t. Therefore, by (6), for all t ∈ Rd the limit

lim
n→∞

1

vol(BRn
)
(ψRn

∗ f) ∗ (ψ̃Rn
∗ f̃)(t)
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exists and is equal to (ψ ∗ f)⊛ (̃ψ ∗ f)(t).

This proves (i).

(ii): Let ϕ be any other autocorrelation of ψ. Then, as (i) holds for any autocorre-

lation, we get that for all f ∈ D we have

φ ∗ f ∗ f̃ = (ψ ∗ f)⊛ ψ̃ ∗ f = ϕ ∗ f ∗ f̃

Evaluating at t = 0 we get that φ = ϕ on a dense subset of S , and hence φ = ϕ.

(iii): This follows immediately from the compactness of { 1
vol(BR)

ψR ∗ ψ̃R|R > 1} and

from the fact that as R → ∞ this set has a unique cluster point.

(iv): Since (ψ ∗ f) ⊛ (̃ψ ∗ f) ∈ SAP (Rd) [5, Theorem 15.1], we have from (i) that

φ ∗ f ∗ f̃ ∈ SAP (Rd). The claim now follows from Proposition 6.1.

(v): From (i), for each f ∈ D we have

φ ∗ f ∗ f̃ = (ψ ∗ f)⊛ ψ̃ ∗ f .

As φ ∈ SAP(Rd) is positive definite, φ̂ is a pure point measure by Proposition 6.1.

To prove (iv) we need to show that φ̂({x}) = |M(χxψ)|
2 for all x ∈ Rd.

Fix x ∈ Rd and take f ∈ D such that f̂(x) 6= 0. We have
∣∣∣f̂(x)

∣∣∣
2

φ̂({x}) = (φ ∗ f ∗ f̃)̂(x) =M(χx(φ ∗ f ∗ f̃)) =M(χx((ψ ∗ f)⊛ (̃ψ ∗ f))) ,

where we have applied Theorem 7.2 and (i). By [5, Lemma 15.2] we know that the

Fourier Stiltje coefficient M(χx((ψ ∗ f) ⊛ (̃ψ ∗ f))) of the Eberlein convolution is

given by

M(χx(ψ ∗ f)⊛ (̃ψ ∗ f)) = |M(χx(ψ ∗ f))|2 = |M(χxψ)|
2
∣∣∣f̂(x)

∣∣∣
2

.

This shows that ∣∣∣f̂(x)
∣∣∣
2

φ̂({x}) = |M(χxψ)|
2
∣∣∣f̂(x)

∣∣∣
2

,

which completes the proof. �

9. Tempered distributions with an autocorrelation

Our primary goal for this section is to introduce few examples of tempered distri-

butions for which the diffraction can be calculated explicitly.
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Example 9.1. Returning again to the tempered distribution of Example 2.1, let

ψ = −DδZ on R. Writing

ψ = −Dδ0 ∗ δZ

and observing that Dδ0 ∗Dδ0 = D2δ0, a simple calculation gives that ψ has auto-

correlation

φ = D2δZ =
∑

n∈Z

D2δn

and diffraction

φ̂ = 4π2
∑

n∈Z

n2δn .

This can be easily generalised from the Dirac measure of Z to that of a lattice

Λ ∈ Rn. For a multi-index α, let

ψ := DαδΛ .

Then ψ has autocorrelation given by

φ := dens(Λ)D2αδΛ ,

and hence diffraction

φ̂ = (4π2)|α| dens(Λ)2
∑

x∈Λ∗

x2αδx .

We will see later in this section that the results of this paper will yield a simpler

derivation of these autocorrelation and diffraction measures.

Next, we change a standard probabilistic model to give a new interesting example:

Example 9.2. Construct a distribution ψ the following way: for each integer n ∈ Z
select at random δn or δ′n with respective probabilities p and 1−p. This distribution

can be written as

ψ =
∑

n∈Z

anδn + bnδ
′
n

where an, bn ∈ {0, 1} and an + bn = 1. An easy computation shows that the auto-

correlation φ of ψ has the form

φ =
∑

n∈Z

cnδn + dnδ
′
n + enδ

′′
n

where

cn = lim
m

1

2m

m∑

k=−m

akan+k ,
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dn = 2 lim
m

1

2m

m∑

k=−m

akbn+k ,

en = lim
m

1

2m

m∑

k=−m

bkbn+k .

Now, if n 6= 0 we have, by the independence of the random variables, that ak and

an+k are both 1 with probability p2, otherwise their product is zero. Therefore, we

get cn = p2. In the same way, dn = 2p(−1p) and en = (1− p)2.

If n = 0, we have ak = an+k, bk = nn+k, and akbk = 0. Therefore we get cn = p, dn =

0, and en = 1− p. This gives

φ = p2δZ + 2p(1− p)DδZ + (1− p)2D2δZ + (p− p2)δ0 + (1− p− (1− p)2)D2δ0 .

The diffraction of ψ is hence

φ̂ =
(∑

n∈Z

(p2 + 2np(1− p) + n2(1− p)2)δn
)
+
(
(p− p2) + (1− p− (1− p)2)x2

)
λ .

The next result will give us many examples of distributions with pure point diffrac-

tion.

Lemma 9.1. Let µ ∈ M∞(Rd) and let ψ = µ̌ ∈ S ′(Rd). If ψ has an autocorrelation

φ, then φ is the unique autocorrelation of ψ, φ ∈ SAP(Rd) and the diffraction of ψ

is

φ̂ =
∑

x∈Rd

∣∣µ({x})
∣∣2δx .

Proof. As ψ ∈ SM̂ we have ψ ∈ WAP(Rd). Therefore by Proposition 8.1, φ is the

unique autocorrelation of ψ, φ ∈ SAP(Rd) and the diffraction of ψ is

φ̂ =
∑

x∈Rd

∣∣M(χ̄xψ)
∣∣2δx .

Moreover, as ψ ∈ SM̂ by Theorem 7.2 we have

M(χ̄xψ) = ψ̂({x}) = µ({x}) .

This completes the proof. �
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Corollary 9.1. Let ψ ∈ SM̂ be a tempered distribution with autocorrelation φ. Then

the diffraction of ψ has the form

φ̂ =
∑

x∈Rd

∣∣∣ψ̂({x})
∣∣∣
2

δx .

Corollary 9.2. Let Λ ⊆ R̂d be a Delone set and let ψ = δ̌Λ. If ψ admits an

autocorrelation φ then φ is the only autocorrelation of ψ, the diffraction of ψ is δΛ
and ψ = φ.

Proof. The first part follows from Lemma 9.1. The last claim follows from the fact

that ψ̂ − φ = δΛ − δΛ = 0.

�

Remark 9.1. If Λ is repetitive, has FLC and is not fully periodic, we have δΛ /∈

WAP(Rd) [14]. As the Fourier Transform of any translation bounded measure is a

weakly almost periodic measure [9, 15], it follows that δΛ cannot in this case be the

diffraction measure of any translation bounded measure.

Example 9.3. Let Λ be the Fibonacci point set, and ψ = δ̌Λ. If ψ has an autocor-

relation, then the only diffraction of ψ is δΛ.

For the next example the existence of the autocorrelation was established in [17].

Example 9.4. Recall from Example 4.1 the tempered distribution

ω̂ = 1
2
δZ

2

+
∑

n≥1

cos(2π(4n − 1)(·))

4n
δ Z

2.4n
,

whose Fourier transform is the measure

ω := δ2Z +
∑

n≥1

δ2.4nZ ∗ (δ4n−1 + δ1−4n) .

By Corollary 9.1, the diffraction of ω̂ is exactly ω (and hence its autocorrelation is

ω̂).

We next look at how convolution with a compactly supported distribution affects

the diffraction.

Proposition 9.1. Let ψ ∈ S ′ be translation bounded and ϕ be a tempered distribu-

tion with compact support. If φ is an autocorrelation of ψ calculated with respect to
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hRn
and if {

1

vol(BRn
)
(hRn

ψ ∗ ϑ) ∗ ˜hRn
ψ ∗ ϑ : n ∈ N

}

is weak-* precompact, then then φ ∗ ϑ ∗ ϑ̃ is the autocorrelation of ψ ∗ ϑ calculated

with respect to hRn
.

Proof. It is easy to see that convolution with a fixed compactly supported distribu-

tion is weak-* continuous. Therefore

φ ∗ ϑ ∗ ϑ̃ = lim
n→∞

1

vol(BRn
)

(
(hRn

φ) ∗ (̃hRn
φ)
)
∗ ∗ϑ ∗ ϑ̃

By a similar computation to Lemma 3.3 we get

lim
n→∞

1

vol(BRn
)

[(
(hRn

φ) ∗ (̃hRn
φ)
)
∗ ϑ ∗ ϑ̃−

(
(hRn

φ ∗ ϑ) ∗ ˜(hRn
φ ∗ ϑ)

)]
(f ∗ g) = 0

for all f, g ∈ D . Now by our convolution assumption we get by Lemma 3.2 that

φ ∗ ϑ ∗ ϑ̃ = lim
n→∞

1

vol(BRn
)

(
(hRn

φ ∗ ϑ) ∗ ˜(hRn
φ ∗ ϑ)

)

in the weak-* topology of S ′, which proves our claim. �

An immediate consequence of this is the following.

Corollary 9.3. Let µ ∈ M be a translation bounded measure and let hR be a smooth

approximate van Hove sequence as in Proposition 3.3. Let hRn
be a sequence with

respect to which Dαµ has an autocorrelation φ and µ has autocorrelation γ. Then

φ = D2αγ

and the diffraction of ψ is thus

φ̂ = (2π)2|α|x2αγ̂ .

Let us note that in Corollary 9.3, the existence of a sequence hRn
is guaranteed by

Proposition 3.2 and Proposition 3.3.

Example 9.5. Let Λ be any Delone set. If ψ and γ are autocorrelations of DδΛ
and δΛ calculated with respect to the same choice of the smooth van Hove sequence,

respectively the corresponding van Hove sequence, then

ψ̂ = x2γ̂ .
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We complete the paper by introducing a non translation bounded tempered distri-

bution which has an autocorrelation. Our example is a measure, and has also the

same autocorrelation as measure.

Example 9.6. Let

µ := δZ +
∑

n∈N

nδ2n .

As µ has logarithmic growth, it is a tempered distribution. Also, µ is positive and

not translation bounded as a measure, hence not translation bounded as a tempered

distribution.

Now, if we pick any smooth approximate van Hove sequence hR, we have for all

m ∈ N
hmµ = δZ∩[−m,m] +

∑

n∈N;2n≤m

nδ2n .

Therefore

1

2m

(
(hmµ) ∗ h̃mµ− δZ∩[−m,m] ∗ ˜δZ∩[−m,m]

)
=

1

2m

( m∑

k=−m

∑

n∈N;2n≤m

nδk−2n + nδ2n−k

)

+
1

2m

∑

n,k∈N;2n≤m;2k≤m

nkδ2n−2k .

Now, for each l ∈ Z there are at most 2 log2(m) pairs −k ≤ k ≤ m and n ∈ N
with 2n < m such that k − 2n = l or 2n − k = l. For each such pair, we also have

n ≤ log2(m).

Moreover, using the binary representation of a number, it is easy to see that every

integer l can be written in at most one way as the difference l = 2k − 2n of two

powers of two. We also have nk < (log2(m))2. Therefore we get

0 ≤
1

2m

(
(hmµ) ∗ h̃mµ− δZ∩[−m,m] ∗ ˜δZ∩[−m,m]

)
≤

1

2m

( 2m∑

l=−2m

3(log2(m))2δl
)
.

It is easy to see that both as measures and tempered distributions we have

lim
m

1

2m

(
δZ∩[−m,m] ∗ ˜δZ∩[−m,m]

)
= δZ ,

and

lim
m

1

2m

( 2m∑

l=−2m

3(log2(m))2δl
)
= 0 .
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Therefore

lim
m

1

2m

(
(hmµ) ∗ h̃mµ

)
= δZ .
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