
©
 2

02
0

E
Q

U
IN

O
X

 P
U

B
LI

S
H

IN
G

 L
TD

Journal of Contemporary Archaeology� 6.2 (2019) 183–205
ISSN (print) 2051-3429 (online) 2051-3437� https://doi.org/10.1558/jca.36745

183Inspecting the Foundation of Mystery House

RESEARCH ARTICLE

Inspecting the Foundation
of Mystery House

n		 John Aycock
University of Calgary, Canada
aycock@ucalgary.ca

n		 Katie Biittner
MacEwan University, Canada
biittnerk@macewan.ca

Abstract

Computer games are recent artifacts that have had, and continue to have, enormous
cultural impact. In this interdisciplinary collaboration between computer science and
archaeology, we closely examine one such artifact: the 1980 Apple II game Mystery
House, the first graphical adventure. We focus on implementation rather than game-
play, treating the game as a digital artifact. What can we learn about the game and its
development process through reverse engineering and analysis of the code, data, and
game image? Our exploration includes a technical critique of the code, examining the
heretofore uncritical legacy of Ken Williams as a programmer. As game development is
a human activity, we place it in a theoretical framework from archaeology, to show how
a field used to analyze physical artifacts might adapt to shed new light on digital games.

Introduction

In 1980, Roberta Williams and her husband Ken Williams created and released the
adventure game Mystery House for the Apple II, a successful early personal computer.
It was the first product of their new company, On-Line Systems – later to become Sierra
On-Line – and reportedly sold 3000 copies in six months (International Directory of Com-
pany Histories 2001), and over 10,000 copies in total (Sierra Help Pages n.d.). Roberta
was the game designer and illustrator, and Ken the programmer who implemented it. It

Keywords:	 archaeogaming; binary reverse engineering; chaîne opératoire; computer
game; Ken Williams; Mystery House; On-Line Systems; Sierra On-Line

Attribution—Non Commercial—NoDerivs / CC BY-NC-ND

mailto:aycock@ucalgary.ca
mailto:biittnerk@macewan.ca

©
 2

02
0

E
Q

U
IN

O
X

 P
U

B
LI

S
H

IN
G

 L
TD

Journal of Contemporary Archaeology� 6.2 (2019) 183–205
ISSN (print) 2051-3429 (online) 2051-3437� https://doi.org/10.1558/jca.36745

184 Research Article

was at a time of transition away from games in arcades to computer games as products
for homes and for mass consumption (Newman 2017).

What of the game? Montfort (2003, 169) described Mystery House as “a minimal,
bizarre treasure hunt with a two-word parser so primitive it made Adventure seem as
intelligent as HAL from 2001”. Loguidice and Barton (2009, 144) are equally as flatter-
ing, referring to the game’s “crudely drawn monochrome graphics, poorly edited script,
and one of the worst text parsers in the business” but conceding that for the time it was
“tremendously progressive”.

Mystery House was an entry in the text adventure canon, a type of game also referred
to as interactive fiction. In text adventures, the player is given a textual description of
their environment and events occurring within the game, and they issue commands by
typing simple sentences in English.1 Part of the experience of playing a text adventure,
for better or worse, is guessing the vocabulary of words the game knows and express-
ing commands such that the game’s parser understands them. One reason Mystery
House is singled out as noteworthy is that the game was the first text adventure2 to
augment its prose with images, rough line graphics whose inclusion arguably makes
it the first graphical adventure game. Figure 1 shows the start of the game; note the
color aberrations are an artifact of Apple II graphics (Sather 1983) and aren’t unique to
Mystery House.

There is a mythos surrounding Mystery House and its development. Besides being the
first graphical adventure, it was the first entry in Roberta Williams’s oeuvre, the humble

1.	 Or some other human language.
2.	 At least the first one known as of this writing.

Figure 1: Mystery House’s opening screen.

©
 2

02
0

E
Q

U
IN

O
X

 P
U

B
LI

S
H

IN
G

 L
TD

Journal of Contemporary Archaeology� 6.2 (2019) 183–205
ISSN (print) 2051-3429 (online) 2051-3437� https://doi.org/10.1558/jca.36745

185Inspecting the Foundation of Mystery House

beginnings of someone who would become a renowned game designer. As the debut
product of On-Line Systems, Mystery House is the start of a story that embodies the
romanticized entrepreneurial dream: starting a home-based company on a shoestring,
growing into an industry powerhouse, and retiring early.

As a foundational game in the computer game industry, Mystery House has more
to offer as a case study besides its gameplay and aesthetics. The contributions of this
paper, an interdisciplinary collaboration between a computer scientist and an archae-
ologist, are fourfold:

1.	 We provide an informed technical critique of game code as opposed to consider-
ing gameplay. As gameplay is determined by the game code, either directly or
indirectly (i.e., via emergent behavior), code is clearly an important aspect of a
game to study.

2.	 Our work acts as an example of what can be learned from a digital artifact, taking
an archaeological point of view. Oral histories have limitations: there are already
game developers whom we can no longer interview, and in any case memory
of technical details is imprecise after so many years have elapsed. We need to
develop methodology in preparation for the inevitable future where digital artifacts
are all that remain of some human activity.

3.	 We place the process of game development in a theoretical framework used in
archaeology, seeing how it must be adapted to handle the digital instead of the
physical. This is a first step to drawing on archaeology as a way to understand
the human activity of game development.

4.	 Through Mystery House, we critically examine the legacy of Ken Williams as a
programmer. Characterizations of his skill over the last 30+ years have been largely
praising and uncritical; we look at whether or not this view is warranted based on
how the digital artifact represents his technological choices.

From an archaeological point of view, both the study of a video game and the collabo-
rative approach we are undertaking here fall within the subdiscipline of archaeogaming.
Archaeogaming is a portmanteau of archaeology and gaming, representing the intersec-
tion of gaming with archaeology (Reinhard 2013, 2015a). Dennis (2016) more specifically
defines archaeogaming as “the utilization and treatment of immaterial space to study
created culture, specifically through videogames [and requiring] treating a game world [as]
bounded and defined by the limitations of its hardware, software and coding choices.”
As such, archaeogaming includes the real-world archaeology of video game hardware
and software (Perry and Morgan 2015; Reinhard 2015c), analyses of videogame or virtual
worlds as archaeological sites (Reinhard 2016b), the archaeology of particular game
titles (e.g., K. M. 2018), the examination of the material culture associated with gaming,
including both real-world and virtual artifacts, cosplay, and museums themselves (Rein-
hard 2016a), the ethnography of virtual worlds (Boellstorff et al. 2012), the participation
of archaeologists in game design and implementation and the creation of games by
archaeologists (Copplestone 2017), and the use of games in science communication,
outreach, museums, education, and public archaeology programs (González-Tennant
2016; Watrall 2002).

©
 2

02
0

E
Q

U
IN

O
X

 P
U

B
LI

S
H

IN
G

 L
TD

Journal of Contemporary Archaeology� 6.2 (2019) 183–205
ISSN (print) 2051-3429 (online) 2051-3437� https://doi.org/10.1558/jca.36745

186 Research Article

Accumulating methodologies from both within (e.g., lithic analysis) and without archae-
ology (e.g., software version analysis), archaeogaming is a reasonable expansion of
the discipline of archaeology when one considers what archaeology can be in practice
and in application – our contemporary technologies challenge what it is archaeologists
can and should study. While archaeogaming is currently a niche subdiscipline within
archaeology, largely motivated by archaeologists who game (Mol et al. 2016), it has
broader applications and should be considered distinct from media archaeology (see
Huhtamo and Parikka 2011); this is because archaeogaming explicitly incorporates
and challenges archaeological methods and theories (Reinhard 2015b). The particular
approach to archaeogaming that is applied in the current analysis of Mystery House as
an artifact is that of a preliminary chaîne opératoire analysis.

We begin with background on our computer science- and archaeology-based
approach. We then take a look at some features of Mystery House’s implementation,
and then critique the game’s implementation, asking what a realistic assessment of
the code is while contextualizing this work from an archaeological perspective. This is
followed by a summary conclusion.

Background

This interdisciplinary research has related work in multiple areas: computer science,
archaeogaming, and archaeology generally through the chaîne opératoire.

Computer Science: Games as Code

Mystery House routinely receives mention in computer game histories (e.g., Loguidice
and Barton 2009; Donovan 2010) by virtue of its status as a “first”. Only a few dig deeper:
Kirschenbaum (2008), for instance, examines the contents of the Mystery House disk
image. Technically, this is mostly a walkthrough of the filesystem structures described in
Beneath Apple DOS (Worth and Lechner 1981); the only look at the internals of Mystery
House is a cursory view of the MESSAGES file.

There is also a tradition of game postmortems in the game industry – the GDC Game
Developers Conference, for instance, recently featured one on the classic game Oregon
Trail (Rawitsch 2017). While useful and fascinating, they exist for only a handful of games,
and are not unbiased sources. Similar presentations occur in the (very) occasional His-
tory of Programming Languages conferences (ACM Digital Library n.d.), although in
general “the technical history of computer science is greatly understudied” (Haigh 2015,
43) – an observation that applies equally to the technical history of computer games.

Analysis and critique of code, in the form of peer code reviews, is commonplace to
try and improve code quality (Wiegers 2002). There is also a tradition of code critique
in computer security, specifically directed towards malicious software; Spafford’s (1989)
analysis of the Internet Worm is a notable early example. There, as in our examination
of historical code, the code author is not a party to the analysis.

Casting the net more widely, publications within the area of platform studies can
incorporate technical material (e.g., Altice 2015). Areas like software studies (Fuller 2008)
and critical code studies (Marino 2006) engage code to varying degrees, although they
side much more on the humanities.

©
 2

02
0

E
Q

U
IN

O
X

 P
U

B
LI

S
H

IN
G

 L
TD

Journal of Contemporary Archaeology� 6.2 (2019) 183–205
ISSN (print) 2051-3429 (online) 2051-3437� https://doi.org/10.1558/jca.36745

187Inspecting the Foundation of Mystery House

Archaeogaming: Games as Digital Artifacts

Archaeology, through archaeogaming, has examined the technical aspects of computer
games (Aycock 2016) as well as the methodology for undertaking such work (Aycock
and Reinhard 2017). As an example of this, Aycock (2016) previously examined Mystery
House’s graphics format, which was situated in terms of other graphics encodings. In
contrast, the current study, by examining the game as a digital artifact, makes it possible
to examine the format in the context of Mystery House itself and the game’s development.

One of the challenges of archaeogaming is reconsidering and redefining commonly
used and understood terminology. As such, some effort must be made to provide explicit
descriptions and definitions for the terms we are adopting for use in our study of the
game, our digital artifact. The most inclusive definition of an artifact from an archaeologi-
cal perspective is any object that is made, used, or modified by humans. Following this
definition, video games are artifacts and can thus be approached as material artifacts,
as software or digital artifacts, and/or as cultural artifacts (Sotamaa 2014). This treat-
ment of video games as artifacts is not new to those in the digital humanities or game
studies. Greenfield (1994, 4) identifies video games as cultural artifacts – specifically,
cognitive artifacts in which symbolic systems are encoded and in which players are
socialized and trained to interact with technology. Styhre et al. (2018) acknowledge that
this position of labeling video games as cultural artifacts is part of a process of legitimiza-
tion, situating video games as more than entertainment and as digital objects with wide
significance. While this appropriation of the term “artifact” from archaeology by those in
the digital humanities or in game studies is not incorrect, it does result in games being
analyzed without consideration of the broader methodological and theoretical practices
of archaeology, such as considering how archaeologists analyze and interpret artifacts.

All archaeological analyses and interpretations of artifacts hinge on context. Following
a classic textbook definition such as that of Renfrew and Bahn (2015), this means the
matrix (the material surrounding the object), its provenience (its horizontal and vertical
position within the matrix), and its association (occurrence with other archaeological
remains). As archaeologists engage with artifacts once they’ve left their context of use
and entered the archaeological context/record, discard studies have been incorporated
into some of the work coming out of digital humanities. For example, Bailey (2015,
48–49), in studying various media objects such TVs and VHS recorders, argues that it
is the context of “rejection and abandonment” that reveals the “changing relationships
of people to media”. However, these kinds of definitions for and application of context
become challenging when considering digital artifacts from an archaeogaming perspec-
tive. Where are games located? When is the “when” of the game? When did it leave its
context of use (if at all) and enter the archaeological record? How is a game “rejected
and abandoned”?

There are several ways one can reimagine context for digital artifacts. First, one can
treat the game not as an artifact but as an archaeological site. Reinhard (2017) uses this
along with the concept of the Harris Matrix to visualize software versions, periodization,
and phasing. This approach structures the code as artifact within a game; the game-as-
site then serves as the context and is subject to changes and modifications much like

©
 2

02
0

E
Q

U
IN

O
X

 P
U

B
LI

S
H

IN
G

 L
TD

Journal of Contemporary Archaeology� 6.2 (2019) 183–205
ISSN (print) 2051-3429 (online) 2051-3437� https://doi.org/10.1558/jca.36745

188 Research Article

the archaeological record proper. Second, we could reconsider what is meant by “the
matrix” of the artifact. For “dirt” archaeologists, the recorded field notes, photographs,
maps, bags, tags, and labels about and resulting from an excavation all become part
of the archaeological record, along with the artifacts recovered (Wexler et al. 2015). If
we were to use this approach for digital artifacts, we could consider all the surrounding
materials about the game created by its designers, reviewers, publishers, and players,
including walkthroughs, print ads, posters, letters to the editors, etc. as the matrix. Or,
and finally, one can situate the game within a narrative of implementation, examining
the artifact using technological organization as its context – the approach taken here.

Digital Artifacts and the Chaîne Opératoire

In this paper, technological organization is addressed via chaîne opératoire. This “tech-
nological approach […] seeks to reconstruct the organization of a technological system
at a given archaeological site” (Sellet 1993, 106). Used for the study of lithic artifacts
(e.g. Bar-Yosef and Van Peer 2009) and ceramic manufacture and production (e.g. Roux
2016), the chaîne opératoire successfully addresses two fundamental kinds of research
questions: first, those which identify the sequential technical operations by which natural
resources were transformed into culturally meaningful and functional objects (i.e., lithic
raw material into tools); and second, once these sequences are identified, those which
infer something of abstract cognitive processes and underlying normative logic systems
structuring those acts (i.e., the technological choices made by the person selecting the
raw material, and shaping, using, and discarding it) (Dobres 2000).

As a conceptual model, the chaîne opératoire is a dynamic act of material and social
transformation (Dobres 2000); it deals explicitly with people who were engaged in a
decision-making process. Building on the theoretical foundations established by Lemon-
nier (1992), Sillar and Tite (2000, 2) frame these decisions as “technological choices”,
and they define five areas of analysis within a technology where choices exist (Sillar and
Tite 2000, 4): (1) raw materials; (2) tools used to shape the raw materials; (3) energy
sources used to transform the raw materials and power the tools; (4) techniques used to
orchestrate the raw materials, tools, and energy to achieve a particular goal; and (5) the
sequence, or chaîne opératoire, in which these acts are united to transform raw materials
into consumable products. The choices that are made are influenced by properties and
by performance characteristics (Sillar and Tite 2000, 4). Both aspects can be readily
identified or inferred by archaeologists for artifacts from a real-world archaeological
site, and they expand greatly upon a use-lives, life-cycles, and life-history approach to
artifact analysis (see Tringham and Ashley 2015 as an example of a use-life approach in
media archaeology), as well as upon a history of technology approach, tracking change
and transformation of and in media technologies. This then is technological analysis
involving three levels: the object itself, the series of technological sequences that led
to the production of the object, and the specific technical knowledge that is shared by
all involved in its production and use (Sellet 1993). Note that this application of chaîne
opératoire adapts Sotamaa’s (2014, 8) argument that the explicit use of artifact as a term
for video games “helps us to conceive of the forms of technological agency invested in
video games and their material manifestations” (emphasis added).

©
 2

02
0

E
Q

U
IN

O
X

 P
U

B
LI

S
H

IN
G

 L
TD

Journal of Contemporary Archaeology� 6.2 (2019) 183–205
ISSN (print) 2051-3429 (online) 2051-3437� https://doi.org/10.1558/jca.36745

189Inspecting the Foundation of Mystery House

For the purposes of video games specifically, the value of an operational chain model
lies in its being able to define the technological tradition of a video game in relation to
raw material procurement while also providing a method for examining the context for
the development of the game and the decisions, technological choices, constraints, and
influences of its designers. As for technological choices, we are defining the raw material
as the computer with the programming to do anything through use of code.3 As will be
subsequently presented, the properties and performance characteristics of the Apple II
and its core programming shaped the choices made by Ken regarding Mystery House
implementation. The assembler (LISA, discussed below) and the language (possibly
domain-specific) are the tools that were used to shape the raw material, while the pro-
gramming used to create the game (including BASIC) are the techniques that were used
to orchestrate the raw material. The energy sources that were used are the intellectual
energy, the time, and the effort of the Williamses. This sequence, wherein each technologi-
cal choice is co-dependent on the other technological choices, is the chaîne opératoire of
Mystery House – i.e., a particular game, our digital artifact, is the end product of the use
of a computer, code, intellectual power, and programming tools and techniques.

Mystery House Implementation

A Mystery House disk image contains a number of files that are used by the game. The
uses of some are immediately apparent: the MESSAGES file, for instance, contains lines
of text representing (most of) the text messages the game displays. Understanding the
contents of other files requires more effort. We reverse engineered4 the binary code and
data in Mystery House’s files to understand its implementation, and as a case study to
see what a digital artifact can tell us.

Graphics

The graphics images are encoded and stored in files BLOCK1 through BLOCK19; each
file contains several images.5 Image data consist of a sequence of byte pairs represent-
ing absolute (x, y) coordinates, terminated by the value (255, 255). As a side effect of
this design, images’ coordinates could not specify the full 280-pixel width of the Apple’s
high-resolution screen, but could use the entire 160-pixel height. Each coordinate pair
gave the endpoint of a line; the line’s starting point was the last endpoint drawn, thus
optimizing for the case of continuous line drawing. The coordinates (0,0) temporarily
“lifted the pen” to permit motion without drawing a line. Figure 2 illustrates the image
format by showing the incremental drawing of a window image from data in BLOCK15.

3.	 While for this article we have focused on the implementation, it is possible to perform this kind of
application of the chaîne opératoire wherein the computer is defined not as raw material but itself
containing raw materials. The consideration of computer as a tangible artifact has been undertaken
in media archaeologies (see articles in Journal of Contemporary Archaeology 2 [1]) but is out of the
scope of this paper.

4.	 Although it is beyond the scope of this paper, Moshenska (2016) explores the relationship between
reverse engineering and archaeology in depth.

5.	 The image format was reverse engineered directly from the BLOCK files and validated using a
Python script we wrote to reconstruct the images from the file data. For reproduction and enhance-
ment of this work, our scripts are available at https://github.com/aycock/mh.

©
 2

02
0

E
Q

U
IN

O
X

 P
U

B
LI

S
H

IN
G

 L
TD

Journal of Contemporary Archaeology� 6.2 (2019) 183–205
ISSN (print) 2051-3429 (online) 2051-3437� https://doi.org/10.1558/jca.36745

190 Research Article

Interpreter

Mystery House required a variety of information to implement the game.6 For instance,
there was a list of verbs, and a list of nouns, each of which could have zero or more
synonyms. The most interesting part, however, is the game logic. There were two sets
of logic rules in the game, both of which were used for each player input: the first ruleset
stopped being processed after a successful rule match, and all but one room-specific rule
was here; the second ruleset was always processed completely. A rule was effectively
a conditional statement; if the conditional test was true, then any instructions associ-
ated with the rule would be executed by the interpreter. The interpreter supported 27
different types of instruction.

Figure 3 contains an excerpt of the game logic used early in the game: room #2 is the
porch. It is important to note that this form is how our script prints it. The actual repre-
sentation of the code in the game is encoded as unreadable bytes. Below we discuss
what the developer view might have been.

The design of the interpreted code’s encoding reveals the importance placed on par-
ticular elements. One design would have made the encoding of the conditionals in rules
consistent regardless of the type of conditional test specified, but that is not what we
see in Mystery House. Instead, the room, verb, and noun are first-class entities, always
represented in every encoded rule whether needed or not – a default value of 254 in
the encoding acts as a wildcard value. Any of the additional five types of conditionals

6.	 Information in this section was obtained by reverse engineering the binary code. We validated our
analysis in part by comparing afterwards with the ScummVM source code that emulates Mystery
House, and wrote a Python script that dumps the game data: nouns, verbs, messages, objects,
rooms, and the interpreted game logic code.

Figure 2: Graphics drawing from compressed image data format (origin at top left).

©
 2

02
0

E
Q

U
IN

O
X

 P
U

B
LI

S
H

IN
G

 L
TD

Journal of Contemporary Archaeology� 6.2 (2019) 183–205
ISSN (print) 2051-3429 (online) 2051-3437� https://doi.org/10.1558/jca.36745

191Inspecting the Foundation of Mystery House

are encoded differently, and in a consistent and extensible manner: indeed, it would
not have been a problem at all to encode room, noun, and verb tests the same way.

The conditional tests are shown explicitly ANDed together in Figure 3 for readability,
but in fact that was implicit in the game’s rule interpretation; the only way to express a
logical OR was by adding a separate rule. While variables were used to store state, as
shown in the excerpt, the current picture number could be and was also used for that
purpose, suggesting that whoever wrote the logic rules was thinking of the game visually.

Source Code

Documentary evidence tells us that Mystery House was written in assembly language
(Levy 1984), but in fact the game image itself tells us that and much more about the
development process.

It was not uncommon for shipped games at that time to accidentally capture some
non-game memory contents in the game image. Here, we discovered partial fragments
of assembly language source code for Mystery House embedded, hence confirmation
that assembly was used – what was visible was sufficient to start matching with pieces
of the disassembled binary code. However, the fragments were not fully readable as
assembly; we realized that they were in an encoded (tokenized) form, and we were
able to reverse engineer the format, creating a Python script to find and fully decode
all the embedded assembly code fragments. Furthermore, due to the unique signature
the encoded fragments provided, we could identify the tool being used, meaning the
assembler applied to translate the assembly source code into binary code: LISA.7

7.	 This assembler should not be confused with the later Apple Lisa computer. We verified our analysis
by comparing with an independently created LISA file decoder as well as in-emulator experiments
with LISA.

Figure 3: Excerpt from interpreted game logic.

©
 2

02
0

E
Q

U
IN

O
X

 P
U

B
LI

S
H

IN
G

 L
TD

Journal of Contemporary Archaeology� 6.2 (2019) 183–205
ISSN (print) 2051-3429 (online) 2051-3437� https://doi.org/10.1558/jca.36745

192 Research Article

Given that LISA was later published by On-Line Systems (Hyde 1981), the use of LISA
is consistent with the historical record, but we cannot know if LISA was originally used
or whether the code was switched to LISA early on.

Although we look at this in much more detail in a subsequent section, it is worth
observing that the assembly code expresses information that would otherwise be
unknown from the binary image alone. Human-readable comments, for example, are
lost during the assembly process, as are the names of variables. The latter can reveal
how the programmer conceived of data in the game. As an example, the interpreter
has instructions to add and subtract constant numeric values to/from a variable, and
yet the recovered source code refers to a variable as a “SWITCH”, implying that they
were originally conceived only as Boolean flags.

Even before discovering the assembly code fragments, we saw indications of how the
code was structured just from the binary code analysis. Specifically, there is evidence
suggesting that the game code was spread over more than one file.

A set of nine routines exist in the Mystery House code that are very generic: copy-
ing bytes, comparing bytes, 16-bit arithmetic, and so on. What is notable is that these
routines are accessed via a jump table, each entry of which is simply an instruction
that jumps immediately to the corresponding routine. If that was in the same assembly
code file as the rest of the game, there would be no need for this table; the assembler
could figure out the start locations of the routines. Instead what this tells us is that that
code was in a separate assembly file, and the jump table (which resided at a known
memory location) was used to call the routines in a robust way. It also tells us more
about the development tools – a linker would have been able to connect addresses in
two separately assembled files without needing a jump table, thus we can conclude
that a linker was not used.

Given that programmers are wont to reuse their code, it is definitely possible that this
generic “utility” code might have been written prior to Mystery House and used by Ken
to save development time. As if to underscore this point about code reuse, we found
the nearly identical code in Wizard and the Princess, the follow-on to Mystery House.

Other Versions

While most of our work used the version of Mystery House that was released into the
public domain in 1987, we were later able to locate additional versions that provide new
information to our analysis.

The Original
Original copies of Mystery House are both rare and expensive, and it was sheer luck
that an original disk image became available. Primarily the original allows us to confirm
what was or was not present on the disk prior to the public domain release. It would
otherwise be impossible to discern what had been added at some later date.

In particular, we were interested in PIC SIZES. This is a separate BASIC program
present on the public domain disk and, we discovered, also on the original disk. This
is not part of the game: it is a small program that loads each BLOCK file containing in-
game pictures one at a time, printing the size of the file. It is a program that would be

©
 2

02
0

E
Q

U
IN

O
X

 P
U

B
LI

S
H

IN
G

 L
TD

Journal of Contemporary Archaeology� 6.2 (2019) 183–205
ISSN (print) 2051-3429 (online) 2051-3437� https://doi.org/10.1558/jca.36745

193Inspecting the Foundation of Mystery House

used during development, likely to verify that picture sizes would not occupy too much
memory space. Seemingly quickly written, it deliberately terminates via an error. This
captures part of the game development process as well as confirms that BASIC “helper”
programs would be used during development of a game written in assembly code.

The French Connection
A French version of Mystery House was mentioned in one of its earliest advertisements
(On-Line Systems 1980a). We acquired a disk image of it, whose splash screen credits
translation to Tom Nalevanko of Malibu Microcomputing.

The text in the MESSAGES file was translated into French, a fairly easy task. None
of the graphics were translated: where the graphics conveyed important textual infor-
mation, this was given to the player in plain text – this led to strange juxtapositions of
French and English onscreen, as shown in Figure 4. This screenshot also reveals that
the French version understood some English commands. Running our Python script
that dumps the game information, we see that for both nouns and verbs, the primary
form in English was retained, but French synonyms were supplied. The English NOTE
is still recognized, for example, but LETTRE or PAPIER would also work. Interestingly,
the complete original English verb table is still present in its entirety, albeit unused in
the French version.

Different assembly source code fragments were captured on this disk image. Our
script reconstructed fragments such as shown in Figure 5. This means that the translator
was not working from the binary alone; Nalevanko must have had access to Mystery
House’s source code to do his work.

Figure 4: Mystery House in French, sort of.

©
 2

02
0

E
Q

U
IN

O
X

 P
U

B
LI

S
H

IN
G

 L
TD

Journal of Contemporary Archaeology� 6.2 (2019) 183–205
ISSN (print) 2051-3429 (online) 2051-3437� https://doi.org/10.1558/jca.36745

194 Research Article

On Language

Nooney (2017, 85) reports on an interview with Ken Williams, where Ken describes a
paper-based process he devised for Roberta to create the game logic: “A column for
verbs, and a column for nouns, and then a column for what happens.” This means we
know both how the game logic was created, and from our work above, how it was
stored and interpreted. What we don’t know is what happened in between, and how
Roberta’s on-paper recording became the in-game encoded logic.

There are several possibilities. We have already seen how BASIC was used for a
development program for Mystery House, and it would have been relatively quick for
Ken to create a BASIC program that he could enter the game vocabulary and logic
into, and that would produce the necessary encoded version as output. We know that
Scott Adams took this approach for his text games, as well as what the menu-driven
program looked like (Aycock 2016). Another option would have been for Ken to encode
the data by hand in the assembly source code – theoretically possible but tedious and
error-prone; a contemporaneous example of this is seen in the assembly source code
for the 1981 Apple II text adventure Adventure in Time (Savetz 2016).

A third, intriguing possibility is that Ken created a domain-specific language (DSL) to
describe the game logic. Roberta’s hand-written “code” could then have been typed
into the computer in this DSL, and Ken would have needed to write a translator from
the DSL into the encoded logic. This is not far-fetched: Ken had the necessary skill set
to implement a DSL, something we will return to in our discussion. Roberta, for her part,
mentioned in an interview that “when Ken first sat down to write the code for Mystery
House, he wanted to write a special language that just did graphic adventure games”
(Byron 1990, 26).8 The question is really when, not if, this DSL was first created, and
whether it was early enough for use in Mystery House. Given the prevalence of BASIC
at the time, and Sierra’s later game language being BASIC-like (Trivette 1985), it is
reasonable to hypothesize that the DSL would have resembled BASIC if it did exist.9

Is there evidence to support any of these three possibilities? Yes. At the end of the
list of verbs and list of nouns in all the game images is the word DONE. The word is not

8.	 Levy (1984, 201) talks of an “Adventure Description Language” but says it was for the Williamses’
second game. Levy also incorrectly conflates language and interpreter, so it is unclear exactly what
he is referring to.

9.	 Or, taking Ken’s Fortran background into account, we could also argue that Fortran would have
been a language design influence.

Figure 5: Assembly code, en français.

©
 2

02
0

E
Q

U
IN

O
X

 P
U

B
LI

S
H

IN
G

 L
TD

Journal of Contemporary Archaeology� 6.2 (2019) 183–205
ISSN (print) 2051-3429 (online) 2051-3437� https://doi.org/10.1558/jca.36745

195Inspecting the Foundation of Mystery House

used in any of the game logic and, crucially, is not provided with French synonyms in the
French translation. Taken together with the meaning of the word “done”, this strongly
suggests that the word acted as a sentinel value indicating the end of the noun and verb
lists. A sentinel like this would not have been necessary if the logic had been hand-coded
in assembly, so we infer that there was processing of the nouns and verbs done by a
program of some kind. While the nature of the tool – DSL translator or simple BASIC
program – is unknown, we can see the marks made by the tool on this digital artifact.

Discussion

While Roberta Williams’s role in the creation of Mystery House and Sierra’s other games
has been explored (Byron 1990; Nooney 2013), Ken’s has seen much less close scrutiny.
One of the aspects of archaeogaming and the examination of digital artifacts is that we
can sometimes directly engage in discussion with the developer/coder/designer (a form
of ethnoarchaeogaming if you will) or we can access other sources of information that
talk about the individual(s) in question. As noted in the introduction, precise memories
of technical detail are unreliable after so many years; for this reason, and to develop
methodology going forward, we turn now to these “other sources of information”.

Ken Williams’s Technological Choices

Levy’s Hackers (1984, 13) lavishes Ken Williams with praise, calling him an “[a]rrogant
and brilliant young programmer”. Further, he described the encoding of the pictures in
Mystery House as “a dazzling program bum that characterized Ken’s facility for top-level
hacking” (Levy 1984, 298).10 Maher (2011b) continues this narrative when speaking
of Ken, saying that “[o]ther than Bill Gates, I don’t know of another figure in the early
PC world who combined such technical acumen with such an instinct for business.”
Nooney (2017, 86), who has extensively studied Sierra On-Line, recently called the
game “a nimble bit of programming ingenuity”. Tommervik led his 1981 profile of On-
Line Systems thus: “In the world of the programming cognoscenti, the name of Ken
Williams is much honored” (Tommervik 1981, 4); this profile elicited a letter in response:
“I’ve been exposed to Ken’s technical talents [...] and he unquestionably ranks with Bill
Budge, Bob Bishop, Nasir [Gebelli], and just a very few others as one of the software
greats” (Leff 1981, 8). Such gushing prose does not sound particularly objective, nor
does any of it apparently originate from the computer science perspective. Of course,
archaeologists too not only encounter but can produce glowing reviews of artifacts.
Instead of challenging subjective accounts of skill and expertise explicitly, we do think
it is necessary to critique them in light of what can be interpreted from an examination
of Ken’s technological choices at that point in time directly from the digital artifact he
had a hand in creating.

First, breathless mentions of Williams using assembly language (Tommervik 1981;
Levy 1984) celebrate something wholly uninteresting at the time; many programmers
of that era used assembly, often for speed or space reasons.

10.	 Levy uses “bum” to describe a code optimization. This term has been unused for decades and was
described in 2002 as “thoroughly obsolete” (Jargon File n.d.).

©
 2

02
0

E
Q

U
IN

O
X

 P
U

B
LI

S
H

IN
G

 L
TD

Journal of Contemporary Archaeology� 6.2 (2019) 183–205
ISSN (print) 2051-3429 (online) 2051-3437� https://doi.org/10.1558/jca.36745

196 Research Article

Second, we can take “speed” to mean the speed of code development, which vari-
ous sources claim was around a month (Levy 1984; International Directory of Company
Histories 2001). To be fair, Mystery House was a side project, something that had to
compete for time with Ken’s other jobs (Levy 1984; Ramsay 2012), but for comparison, let
us consider an extreme case of development time spent on a game for a contemporary
platform that was much more challenging to program, the Atari 2600. The Atari 2600
had real-time programming requirements and only a fraction of the Apple II’s space,
yet there are instances of Atari 2600 games like Chase the Chuck Wagon (1983) being
developed in three days (Schwartz, email communication to author, 21 January, 2014).
There is a clear difference between three days and thirty. It seems fair to say that Williams
was not a superprogrammer (Jargon File 2003) exhibiting unnatural levels of program-
ming productivity. Also, Williams’s Apple II, besides having substantially more memory
than an Atari 2600, had the BASIC language built-in along with a machine-language
monitor for debugging (Espinosa 1979). That, plus a floppy disk drive and DOS, would
have made Williams’s development relatively painless for the time.

Third, now taking “speed” to mean the speed of Mystery House’s execution, it was
not an arcade-style game needing high performance and correspondingly skilled coding.
Instead, the relaxed time constraints are nicely summarized in an internal development
document from Infocom, another producer of text adventure games back then: “The
design goal also requires no more than a few seconds response time for a typical move”
(Berez et al. 1989, 5).

Judging Ken’s code quality is not as clear-cut a task. An initial assessment would start
at the disassembled code, and there we find several instances of “brk” instructions used
that would halt Mystery House and leave a bewildered player dumped out of the game
and staring at the machine-language monitor prompt – if those instructions were ever
executed. Why would instructions be left in the code that shouldn’t be executed? In
modern programming parlance, the brk instructions act as assertions, where the intent
is to have the program fail (during development) if some condition is not met. Here, the
brk instructions would be triggered only if an object being searched for wasn’t found,
likely indicating a bug in the interpreted program logic. These instructions suggest good
programming practice, and were used very deliberately by Williams. By chance, the
assembly code fragments happen to capture two brk instructions and the comments
beside them: “BAD OBJECT” and “UH-OH, KABOOM!”

More generally, the fact that Williams bothered to comment his code at all indicates a
certain level of discipline and training, again especially considering that Mystery House
was a side project for him. However, surviving label names in the assembly code indicate
some clear areas for improvement. Many label names in the main part of the code use a
BASIC-esque numbering scheme as opposed to using names that convey information:
AC3200, AC3300, AC3400, and so on. This allowed him to use the numbers in between
for labels internal to a specific routine as would be the case in BASIC, admittedly, but
this same concern is addressed in more readable ways by experienced assembly pro-
grammers (e.g., Apple Computer, Inc. 1978b; Budge n.d.).

©
 2

02
0

E
Q

U
IN

O
X

 P
U

B
LI

S
H

IN
G

 L
TD

Journal of Contemporary Archaeology� 6.2 (2019) 183–205
ISSN (print) 2051-3429 (online) 2051-3437� https://doi.org/10.1558/jca.36745

197Inspecting the Foundation of Mystery House

At the same time, inline comments in the code fragments seem somewhat too
prevalent, and in some cases give little additional information than an experienced
programmer would be able to discern with a glance at the code. For instance, in the
reconstructed code fragment

;
; ISSUE MESSAGE X
;

ldy #X;GET X
lda (ZWORK),Y
tax
jsr MESSLSTR;ISSUE MESSAGE
ldx #$1
jmp AC9000

the inline comment “ISSUE MESSAGE” is completely redundant, as it is literally the only
place in those six lines of code where the message could be issued, and furthermore,
the name of the routine being called there (MESSLSTR) already has mnemonic value. If
we compare Williams’s assembly code to that of Bill Budge, allegedly one of Williams’s
technical peers (Leff 1981, 8), we see that Budge’s comments are much more spartan
(Budge n.d.).

Lack of code optimizations, paradoxically, could indicate either a neophyte or a trained
programmer in some cases. Studying the disassembled code reveals a number of inef-
ficient code sequences, like the following four-instruction routine:

ldy #$00 — sty $089d — ldx #$00 — jmp $69ba

At first glance, it is puzzling why Williams would not prefer the shorter and more efficient
three-instruction sequence

ldx #$00 — stx $089d — jmp $69ba

which additionally uses one fewer register. But this is not sloppy programming, as it
happens. This corresponds to one of the recovered code fragments:

;
; TURN LIGHT ON
;

ldy #ON
sty LAMPSTAT
ldx #ZERO
jmp AC9000

We can now see that, even though ON and ZERO turned out to have the same value
(0), they were representing different things semantically in the code; Williams was thus
making his code more readable – if less efficient – by using the symbolic names. Unfor-
tunately, only small portions of the assembly code are preserved, so we are forced to
extrapolate this to other inefficient code in the disassembly. For example, in Williams’s
code to render images are several variants of

©
 2

02
0

E
Q

U
IN

O
X

 P
U

B
LI

S
H

IN
G

 L
TD

Journal of Contemporary Archaeology� 6.2 (2019) 183–205
ISSN (print) 2051-3429 (online) 2051-3437� https://doi.org/10.1558/jca.36745

198 Research Article

lda	 memory-location
cmp	 #$00
branch if (not) equal to 0

The comparison (cmp) in the middle is totally unnecessary, as the first instruction will
set the processor status properly for the branch. We are forced to conservatively infer
that the comparison must have involved a symbolic constant in the source code, at
the cost of some inefficiencies in the implementation. Overall, our initial interpretation
of the evidence is that Williams was well trained in general at this time, but perhaps not
masterful at 6502 assembly programming.

Finally, we should look at the progression of technical ideas in Mystery House and
some likely influences. One source of influences is Ken’s own background, of course. It
is well documented that he was originally intending to develop a Fortran compiler for the
Apple II and had the commensurate skill set for doing so (Tommervik 1981; Levy 1984;
Jong 2006). The other source of influences we draw upon are computer magazines.
Levy characterizes Ken Williams as someone who would read to come up to speed
on a subject (Levy 1984). Between that, the Williamses’ physical location in Southern
California, and the first advertisement for Mystery House being placed in a computer
magazine (On-Line Systems 1980b), it seems reasonable to assume that they had
access to a broad selection of computer magazines.

One key idea in Mystery House’s implementation is the use of an interpreter. An
examination of compiler books from the 1970s shows that interpreters were mentioned
there (e.g. Gries 1971; Aho and Ullman 1977; Calingaert 1979). Whether Williams read
these books is immaterial; the point is that it definitively establishes that interpreters
were part of the body of knowledge for compiler developers. The BASIC on the Apple
II was interpreted too, and it is trivial to find references to interpreters in the computer
magazines of that time.

One might argue that there is creativity required to transition from the idea of interpreters
used for programming languages to interpreters used for games. There is an important
precedent here, however. In mid-1979, Scott Adams (1979) published an article in Crea-
tive Computing magazine talking about his use of an “adventure interpreter” with a fairly
detailed description of the “adventure data base” (i.e., the language being interpreted).
This would have predated work on Mystery House. Further, the Williamses were familiar
with, and had played, Adams’s text adventure games (Byron 1990; Tommervik 1981;
Williams n.d.) before they created their own.

If the interpreter idea was not novel, perhaps we could find something interesting in
the implementation instead. One piece of code whose idea stood out as particularly
clever in our reverse engineering was a multiplication routine; it is likely that this routine
is what is referred to as MULTIPLY in one of the embedded assembly code fragments.

It may surprise people used to modern computers that CPUs in old microcomputers
did not commonly have a multiply instruction, meaning that any multiplication had to be
implemented in software. The multiplication technique used by this particular routine in
Mystery House used what is called “Russian peasant multiplication”, a technique that
only requires the ability to double and halve numbers, something easy to accomplish with

©
 2

02
0

E
Q

U
IN

O
X

 P
U

B
LI

S
H

IN
G

 L
TD

Journal of Contemporary Archaeology� 6.2 (2019) 183–205
ISSN (print) 2051-3429 (online) 2051-3437� https://doi.org/10.1558/jca.36745

199Inspecting the Foundation of Mystery House

shift operators that even old CPUs supported. As with most of the other ideas in Mystery
House’s implementation, this was not new; an implementation of the technique can be
found published in a 1977 Byte magazine, albeit for a different CPU (Glaeser 1977).

If the idea stood out for being clever, the implementation of the multiplication stands
out for being very naive assembly code. For example, an in-memory counter is decre-
mented using the three-instruction code sequence

ldy $087d — dey — sty $087d

This loads the counter value in the CPU’s “Y” register, decrements the register value, and
stores it back to memory. This sequence takes 10 machine cycles and occupies seven
bytes, and the register’s value is never re-used. It would be clearly better to select the
single instruction dec $087d, which takes fewer cycles (i.e., is faster to execute), less
than half the number of bytes, and doesn’t require one of the precious 6502 registers.
This is very much a rookie error for a 6502 assembly programmer.

However, let us say for the sake of argument that Williams somehow overlooked this
6502 instruction. What is more telling is the structure of the loop containing the coun-
ter decrement. The loop is written as a straightforward translation of a while loop into
assembly: there is a conditional test at the top of the loop, and an unconditional branch
at the bottom. Because the loop must always be executed at least once, experienced
assembly programmers would code it as a repeat loop. This would move the conditional
test to the bottom of the loop, which uses fewer instructions and takes advantage of the
fall-through when the loop completes. This casts doubt on an interpretation of Williams
as a skilled assembly programmer. One possibility is that this multiplication routine was
not written by Ken, but that itself would challenge the traditional Ken-as-programmer
narrative in a different way.

Perhaps the most visible idea in Mystery House is the graphics. The idea to include
them was apparently Roberta’s (Levy 1984), which would align with what is known about
her game design process (Nooney 2017). What Ken would have been responsible for is
the how: how could a large number of pictures be fit onto a low-capacity floppy disk?

The fact that “hires” pictures on the Apple II could be stored in a reduced amount of
space was no secret. In fact, a 1979 issue of MICRO magazine contained an article
entitled “Apple II Hires Picture Compression” (Bishop 1979). This is the same magazine
that Mystery House would be advertised in a few months later (On-Line Systems 1980b),
and the article was penned by none other than Bob Bishop, one of the programming
luminaries that Ken Williams was compared with (Leff 1981, 8). While Bishop’s focus
was on digitized images rather than line drawings, he prophetically wrote that “it is clearly
possible to store an 8-K HIRES picture in considerably less than 8-K bytes, if you are
willing to accept a little loss in the image quality” (Bishop 1979, 18).

Maher (2011a) attributes the internal representation of Mystery House’s lines to an
idea Ken got from the Williamses’ use of a VersaWriter for digitizing Roberta’s images.
However, we think the full story of the lines is more complex. Arcade games using line-
based vector graphics were in production in the late 1970s, including both Asteroids
and Lunar Lander in 1979. These games admittedly used a different display technology
than the raster graphics of the Apple II, but even on that machine there were line-oriented

©
 2

02
0

E
Q

U
IN

O
X

 P
U

B
LI

S
H

IN
G

 L
TD

Journal of Contemporary Archaeology� 6.2 (2019) 183–205
ISSN (print) 2051-3429 (online) 2051-3437� https://doi.org/10.1558/jca.36745

200 Research Article

graphics. Applesoft BASIC supported “shape tables”, line-based programmer-defined
shapes that could be drawn in the same high-resolution graphics mode that Mystery
House used (Apple Computer, Inc. 1978a).

We can prove that Williams was aware of shape tables, as it happens, because they
are used to draw some small elements of Mystery House’s pictures. Figure 6 shows
one of the shapes we reconstructed from Mystery House’s data. These were used for
images requiring small, precise text that the VersaWriter was probably not well suited
for: “WELCOME” on the doormat, the “DOORWAY” label, a note in the room, and
the matchbook. The shape representation was not compact enough to use for all the
pictures, however.11

Williams was not rendering these shapes using the shape table code in Applesoft
BASIC, though. We discovered that the shape table shapes – indeed, all the line graph-
ics – are drawn using code from a library supplied by Apple. In other words, Ken did
not write that part of the code; Apple co-founder Steve Wozniak did it in 1977. That
graphics code in Mystery House is in fact (barring address relocation and two very
minor patches) identical to the code contained in Apple’s Programmer’s Aid #1 ROM,12
whose manual even included the assembly source code (Apple Computer, Inc. 1978b).

Beyond shape tables, there are many references in computer magazines to plotting
data and, of course, hardware plotters (a type of printer) also existed at that time. One
article on plotting states that “basic plotting software” includes “the capability of chain
plotting. That is, plotting a vector from the ending point of the last vector move to the
new position on the plotting field without explicitly defining the beginning point every
time” (Lerseth 1977, 300). As described above, this is exactly what Mystery House’s
picture representation was doing.

Clearly, a number of influences existed that could have contributed to the design
choices for Mystery House’s graphics. Taking context into account, they seem less
than novel. The real graphics insight Williams had was simply forgoing some horizontal
screen real estate, and representing x coordinates using a single byte in the representa-
tion – this was really the key to their compactness.

11.	 This reconstruction was done using a Python script we wrote. We performed a full game walk-
through, monitoring shape table usage, but did not detect any used beyond the ones we describe
here. We did find another set of shapes elsewhere in the game’s memory, reconstruction of which
yields random-looking doodles. It is possible that this accidentally captured the results of an early
experiment using the VersaWriter to create shape tables, but this is highly speculative.

12.	 Verified using a Python script we wrote to compare the two.

Figure 6: Reconstructed image from shape table.

©
 2

02
0

E
Q

U
IN

O
X

 P
U

B
LI

S
H

IN
G

 L
TD

Journal of Contemporary Archaeology� 6.2 (2019) 183–205
ISSN (print) 2051-3429 (online) 2051-3437� https://doi.org/10.1558/jca.36745

201Inspecting the Foundation of Mystery House

Technological Choices and Chaîne Opératoire

For video games, there are technological, player, and developer constraints that frame
the technological choices made (Aycock 2016). The technological constraints are those
of the CPU itself including the machine, I/O, storage, memory, instruction set, and cost.
The CPU is also a player constraint – access to an appropriate system to run the game
could be limited in terms of expense but also time and user thresholds. Finally, while
developers faced a large assortment of platforms to choose from, few were mutually
compatible, and the number of programming tools was limited.

An important consideration of video games as artifacts is that the individual(s) responsi-
ble for creating them can be known by name. In a chaîne opératoire, humans are active,
knowledgeable agents; the Williamses are centered throughout this paper as agents, who
made the technological choices and performed the technical acts to produce Mystery
House. Mystery House represents the Williamses’ “constellations of knowledge” – the
materials used, the techniques employed, and the desired end-point of use and manu-
facture “depend upon the knowledge that an individual has acquired of them” (Sinclair
2000, 200). Ken Williams did have a certain level of discipline, training, and creativity; and
as demonstrated, there are clear examples of not just the choices Ken made through
the implementation of Mystery House but also some that reflect choices he did not
make. We can identify the latter because of our knowledge that there was more than
one way for Ken to create the same product. We have framed Ken consistently as an
agent in considering his motivations and the broader cultural arena of programming at
the time of Mystery House’s implementation; as such we can argue that the culture of
programming during the 1970s is also reflected in the technological choices that were
made by the Williamses throughout the operational sequence.

Space precludes us doing a full chaîne opératoire analysis, but it is in fact more impor-
tant for the development of archaeogaming methodology to illustrate the challenges.
Foremost is the abstraction required. We’ve discussed how terms such as “context”
must be redefined, and that we must reframe the areas of analysis and components of
technique of the chaîne opératoire; we must also challenge the archaeological under-
standing of what an attribute is. The attributes one would normally use in the analysis
of a digital artifact “tool” are beneath the surface in the code and data, and what is
measurable and observable to the analyst is in fact only a side effect of the digital arti-
fact running on the computer. In this paper we argue the computer is the raw material
and the game is the product made from that raw material. But what is “the computer”
exactly? It has hardware attributes but also software attributes. The computer’s hard-
ware components (e.g., monitor, keyboard, chips, boards, cords) allow the user to
utilize the computer, but only because the ROM on the motherboard contains software.
Software, including BASIC and LISA, serves as tools that run on the computer-as-tool;
this means the computer is both raw material and tool. The game on the disk image is
what is directly created using the computer-as-tool to transform the computer-as-raw
material. Further, this product, “the game”, itself can only be used using the computer-
as-tool. Finally, we must consider that what the people experience as “the game”: its
attributes, including size, colors, shapes, images, commands, and game messages,

©
 2

02
0

E
Q

U
IN

O
X

 P
U

B
LI

S
H

IN
G

 L
TD

Journal of Contemporary Archaeology� 6.2 (2019) 183–205
ISSN (print) 2051-3429 (online) 2051-3437� https://doi.org/10.1558/jca.36745

202 Research Article

only occur through running the contents of the disk image. This player experience is one
step away, in a sense, from what was actually created. Computers clearly introduce a
level of abstraction that challenges the approaches of traditional fields like archaeology,
and the rise of archaeogaming as a subdiscipline reflects the need to address these
provocations to method and theory.

Conclusion

A chaîne opératoire approach considers Mystery House as not just a digital artifact but
one that can be analyzed using the principles and terminology derived from an archaeo-
logical understanding of artifact analysis and an anthropological perspective on the
organization of technology (see Ingold 1997). This results in an explicitly anthropological
incarnation of archaeogaming, and, in terms of how we approached our digital artifact,
an inspection of the foundations of our digital artifact beyond a technical description.
Additionally, this means that the reverse engineering of Mystery House serves not to
produce a compendium highlighting Ken Williams’s procedural correctness or faults,
but as a means to say something more broadly about the culture of game design, and
of the human process of creating games.

Acknowledgments

This work is supported in part by the Natural Sciences and Engineering Council of
Canada, grant RGPIN-2015-06359. Thanks to D. Finnigan, K. Sherlock, and A. Vignau
for helping identify LISA as the assembler used; P. Hagstrom and 4am for help getting
the French version into a runnable and analyzable format; and Brieal M.-T. for contribu-
tions to #anth498 archaeogaming.

References

ACM Digital Library. n.d. “HOPL: History of Program-
ming Languages”. Online: https://dl.acm.org/
event.cfm?id=RE352

Adams, S. 1979. “An Adventure in Small Computer
Game Simulation.” Creative Computing 5 (8):
90–97.

Aho, A. V. and J. D. Ullman. 1977. Principles of
Compiler Design. Boston: Addison-Wesley.

Altice, N. 2015. I AM ERROR: The Nintendo Family
Computer / Entertainment System Platform. Cam-
bridge, MA: MIT Press.

Apple Computer, Inc. 1978a. Applesoft II BASIC
Programming Reference Manual. Cupertino: CA:
Apple Computer, Inc.

____. 1978b. Programmer’s Aid #1: Installation and
Operating Manual (Apple utility programs). Cuper-
tino, CA: Apple Computer, Inc.

Aycock, J. 2016. Retrogame Archeology: Explor-
ing Old Computer Games. New York: Springer.
https://doi.org/10.1007/978-3-319-30004-7

____. and A. Reinhard. 2017. “Copy Protection in Jet
Set Willy: Developing Methodology for Retrogame

Archaeology.” Internet Archaeology 45. https://doi.
org/10.11141/ia.45.2

Bailey, G. 2015. “Symmetrical Media Archaeology:
Boundary and Context.” Journal of Contem-
porary Archaeology 2 (1): 41–52. https://doi.
org/10.1558/jca.v2i1.27114

Bar-Yosef, O. and P. Van Peer. 2009. “The Chaîne
Opératoire Approach in Middle Paleolithic Archae-
ology.” Current Anthropology 50 (1): 103–131.
https://doi.org/10.1086/592234

Berez, J. M., M. S. Blank and P. D. Lebling. 1989.
ZIP: Z-Language Interpreter Program. Internal
document.

Bishop, B. 1979. “APPLE II Hires Picture Compres-
sion.” MICRO – The 6502 Journal 18: 17–24.

Boellstorff, T., B. Nardi, C. Pearce and T. Taylor.
2012. Ethnography and Virtual Worlds: A Hand-
book of Method. Princeton, NJ: Princeton Univer-
sity Press. https://doi.org/10.2307/j.cttq9s20

Budge, B. n.d. Pinball Construction Set Source Code
for Apple II. GitHub. Online: https://github.com/
billbudge/PCS_AppleII

https://dl.acm.org/event.cfm?id=RE352
https://dl.acm.org/event.cfm?id=RE352
https://doi.org/10.1007/978-3-319-30004-7
https://doi.org/10.11141/ia.45.2
https://doi.org/10.11141/ia.45.2
https://doi.org/10.1558/jca.v2i1.27114
https://doi.org/10.1558/jca.v2i1.27114
https://doi.org/10.1086/592234
https://doi.org/10.2307/j.cttq9s20
https://github.com/billbudge/PCS_AppleII
https://github.com/billbudge/PCS_AppleII

©
 2

02
0

E
Q

U
IN

O
X

 P
U

B
LI

S
H

IN
G

 L
TD

Journal of Contemporary Archaeology� 6.2 (2019) 183–205
ISSN (print) 2051-3429 (online) 2051-3437� https://doi.org/10.1558/jca.36745

203Inspecting the Foundation of Mystery House

Byron, T. 1990. “Roberta’s Bequest.” STart: The ST
Monthly 4 (8): 22–26.

Calingaert, P. 1979. Assemblers, Compilers, and
Program Translation. Rockville, MD: Computer
Science Press.

Copplestone, T. 2017. “Adventures in Archaeological
Game Creation.” SAA Archaeological Record 17
(2): 33–39.

Dennis, M. 2016. “Archaeogaming?”. Online: http://
gingerygamer.com/index.php/archaeogaming

Dobres, M.-A. 2000. Technology and Social Agency:
Outlining a Practice Framework for Archaeology.
Malden, MA: Blackwell.

Donovan, T. 2010. Replay: The History of Video
Games. Hove, UK: Yellow Ant.

Espinosa, C. 1979. Apple II Reference Manual.
Cupertino, CA: Apple Computer, Inc.

Fuller, M., ed. 2008. Software Studies: A Lexi-
con. Cambridge, MA: MIT Press. https://doi.
org/10.7551/mitpress/9780262062749.001.0001

Glaeser, C. D. 1977. “Novel 8 Bit Multiplication.” Byte
2 (7): 142.

González-Tennant, E. 2016. “Archaeological Walking
Simulators.” SAA Archaeological Record 16 (5):
23–28.

Greenfield, P. 1994. “Video Games as Cultural Arti-
facts.” Journal of Applied Developmental Psychol-
ogy 15 (1): 3–12. https://doi.org/10.1016/0193-
3973(94)90003-5

Gries, D. 1971. Compiler Construction for Digital
Computers. New York: Wiley.

Haigh, T. 2015. “The Tears of Donald Knuth.” Com-
munications of the ACM 58 (1): 40–44. https://doi.
org/10.1145/2688497

Huhtamo, E. and J. Parikka. 2011. “Introduction.”
In Media Archaeology: Approaches, Applications,
and Implications, 1–15. Berkeley, CA: University of
California Press.

Hyde, R. 1981. LISA: A Professional Assembly Lan-
guage Development System for Apple Computers
(Version 2.5). [Oakhurst, CA]: On-Line Systems.

Ingold, T. 1997. “Eight Themes in the Anthropology
of Technology.” Social Analysis 41 (1): 106–138.

International Directory of Company Histories, 2001.
“Sierra On-Line, Inc.” In International Directory
of Company Histories (41st edition), edited by T.
Grant, 361–364. Detroit, MI: St. James Press.

Jargon File. 2003. “Superprogrammer.” In The Jar-
gon File, edited by E. S. Raymond, version 4.4.7.
Online: http://www.catb.org/jargon/html/S/super-
programmer.html

____. n.d. “Jargon Chaff File.” In The Jargon File,
edited by E. S. Raymond, version 4.4.7. Online:
http://www.catb.org/jargon/chaff.html#bum

Jong, P. 2006. “Ken Williams.” [Interview] Adventure
Classic Gaming. Online: http://www.adventure-
classicgaming.com/index.php/site/interviews/197/

K. M. 2018. The Archaeology of Tomb Raider.
Online: https://tombraiderarchaeology.com/

Kirschenbaum, M. G. 2008. Mechanisms: New
Media and the Forensic Imagination. Cambridge,
MA: MIT Press.

Leff, B. 1981. “Distribution Does Not a Publisher
Make.” [Letter to the editor] Softalk 1 (8): 8.

Lemonnier, P. 1992. Elements for an Anthropology
of Technology. Anthropological Papers, Museum
of Anthropology, University of Michigan 88. Ann
Arbor, MI: Museum of Anthropology, University of
Michigan.

Lerseth, R. J. 1977. “A Plot is Incomplete Without
Characters.” In The Best of Byte, Volume 1, edited
by D. H. Ahl and C. T. Helmers Jr, 300–308. Mor-
ristown, NJ: Creative Computing Press.

Levy, S. 1984. Hackers: Heroes of the Computer
Revolution. New York: Dell.

Loguidice, B. and M. Barton. 2009. Vintage Games:
An Insider Look at the History of Grand Theft Auto,
Super Mario, and the Most Influential Games of All
Time. Amsterdam: Focal Press.

Maher, J. 2011a. “Mystery House, Part 1.” The Digi-
tal Antiquarian, 8 October. Online: https://www.
filfre.net/2011/10/mystery-house-part-1/

____. 2011b. “On-Line Systems is Born.” The Digital
Antiquarian, 17 October. Online: https://www.filfre.
net/2011/10/on-line-systems-is-born/

Marino, M. C. 2006. “Critical Code Studies.” Elec-
tronic Book Review, 4 December. Online: http://
electronicbookreview.com/thread/electropoetics/
codology

Mol, A., C. Ariese-Vandemeulebroucke, K. Boom, A.
Politopoulos and V. Vandemeulebroucke. 2016.
“Video Games in Archaeology: Enjoyable but Triv-
ial?” SAA Archaeological Record 16 (5): 11–15.

Montfort, N. 2003. Twisty Little Passages: An
Approach to Interactive Fiction. Cambridge,
MA: MIT Press. https://doi.org/10.7551/mit-
press/6936.001.0001

Moshenska, G. 2016. “Reverse Engineering and
the Archaeology of the Modern World.” Forum
Kritische Archäologie 5: 16–28.

Newman, M. Z. 2017. Atari Age: The Emergence
of Video Games in America. Cambridge,
MA: MIT Press. https://doi.org/10.7551/mit-
press/10021.001.0001

Nooney, L. 2013. “A Pedestal, a Table, a Love Letter:
Archaeologies of Gender in Videogame History.”
Game Studies 13 (2). Online: http://gamestudies.
org/ 1302/articles/nooney

____. 2017. “Let’s Begin Again: Sierra On-Line and
the Origins of the Graphical Adventure Game.”
American Journal of Play 10 (1): 71–98.Online:
http://www.journalofplay.org/sites/www.journalof-
play.org/files/pdfarticles/10-1-Article-3-Lets-
begin-again.pdf

http://gingerygamer.com/index.php/archaeogaming
http://gingerygamer.com/index.php/archaeogaming
https://doi.org/10.7551/mitpress/9780262062749.001.0001
https://doi.org/10.7551/mitpress/9780262062749.001.0001
https://doi.org/10.1016/0193-3973(94)90003-5
https://doi.org/10.1016/0193-3973(94)90003-5
https://doi.org/10.1145/2688497
https://doi.org/10.1145/2688497
http://www.catb.org/jargon/html/S/superprogrammer.html
http://www.catb.org/jargon/html/S/superprogrammer.html
http://www.catb.org/jargon/chaff.html%23bum
http://www.adventureclassicgaming.com/index.php/site/interviews/197/
http://www.adventureclassicgaming.com/index.php/site/interviews/197/
https://www.filfre.net/2011/10/mystery-house-part-1/
https://www.filfre.net/2011/10/mystery-house-part-1/
https://www.filfre.net/2011/10/on-line-systems-is-born/
https://www.filfre.net/2011/10/on-line-systems-is-born/
http://electronicbookreview.com/thread/electropoetics/codology
http://electronicbookreview.com/thread/electropoetics/codology
http://electronicbookreview.com/thread/electropoetics/codology
https://doi.org/10.7551/mitpress/6936.001.0001
https://doi.org/10.7551/mitpress/6936.001.0001
https://doi.org/10.7551/mitpress/10021.001.0001
https://doi.org/10.7551/mitpress/10021.001.0001
http://gamestudies.org/%201302/articles/nooney
http://gamestudies.org/%201302/articles/nooney
http://www.journalofplay.org/sites/www.journalofplay.org/files/pdfarticles/10-1-Article-3-Lets-begin-again.pdf
http://www.journalofplay.org/sites/www.journalofplay.org/files/pdfarticles/10-1-Article-3-Lets-begin-again.pdf
http://www.journalofplay.org/sites/www.journalofplay.org/files/pdfarticles/10-1-Article-3-Lets-begin-again.pdf

©
 2

02
0

E
Q

U
IN

O
X

 P
U

B
LI

S
H

IN
G

 L
TD

Journal of Contemporary Archaeology� 6.2 (2019) 183–205
ISSN (print) 2051-3429 (online) 2051-3437� https://doi.org/10.1558/jca.36745

204 Research Article

On-Line Systems. 1980a. “Apple II Software from
On-Line Systems. Advertisement.” MICRO – The
6502 Journal 26: 1.

____. 1980b. “New Apple II / Apple II Plus Software
from On-Line Systems. Advertisement.” MICRO –
The 6502 Journal 24: 80.

Perry, S. and C. Morgan. 2015. “Materializing Media
Archaeologies: The MAD-P Hard Drive Excava-
tion.” Journal of Contemporary Archaeology 2 (1):
94–104. https://doi.org/10.1558/jca.v2i1.27083

Ramsay, M. 2012. Gamers at Work: Stories Behind
the Games People Play. New York: Apress.
https://doi.org/10.1007/978-1-4302-3352-7

Rawitsch, D. 2017. “Classic Game Postmortem:
‘Oregon Trail’.” Paper presented at the Game
Developer’s Conference, San Francisco, CA, 27
February to 3 March.

Renfrew, C. and P. Bahn (2015). Archaeology Essen-
tials (3rd edition). London: Thames and Hudson.

Reinhard, A. 2013. “What is Archaeogaming?”
Archaeogaming, 9 June. Online: https://archae-
ogaming.com/2013/06/09/what-is-archaeogam-
ing/

____. 2015a. “Archaeogaming Map (Revised).”
Archaeogaming, 18 December. Online: https://
archaeogaming.com/2015/12/18/archaeogaming-
map-revised/

____. 2015b. “Archaeogaming: Tools and Methods.”
Archaeogaming, 18 September. Online: https://
archaeogaming.com/2015/09/18/archaeogaming-
tools-and-methods/

____. 2015c. “Excavating Atari: Where the Media
was the Archaeology.” Journal of Contem-
porary Archaeology 2 (1): 86–93. https://doi.
org/10.1558/jca.v2i1.27108

____. 2016a. “Materialization of the Immaterial.”
Archaeogaming, 9 March. Online: https://archae-
ogaming.com/2016/03/09/materialization-of-the
immaterial/

____. 2016b. “Towards Archaeological Tools and
Methods for Excavating Virtual Spaces.” SAA
Archaeological Record 16 (5): 19–22.

____. 2017. “The (Harris) Matrix, Part 1: Visualizing
Software Stratigraphy.” Archaeogaming, 2 April.
Online: https://archaeogaming.com/2017/04/02/
the-harris-matrix-parti-visualizing-software-
stratigraphy/

Roux, V. 2016. “Ceramic Manufacture: The chaîne
opératoire Approach.” In The Oxford Handbook
of Archaeological Ceramic Analysis, edited by A.
Hunt, 1–17. Oxford: Oxford University Press.

Sather, J. 1983. Understanding the Apple II. Chats-
worth, CA: Quality Software.

Savetz, K. 2016. “Phoenix Software Source Code.”
AtariAge, 6 November. Online: http://atariage.
com/forums/topic/258786-phoenix-software-
sourcecode/

Sellet, F. 1993. “Chaîne opératoire; The Concept
and its Applications.” Lithic Technology 18 (1–2):
106–112. https://doi.org/10.1080/01977261.199
3.11720900

Sierra Help Pages. n.d. “Mystery House Help.”
Online: http://www.sierrahelp.com/Games/Mys-
teryHouseHelp.html

Sillar, B. and M. Tite. 2000. “The Challenge of
‘Technological Choices’ for Material Science
Approaches in Archaeology.” Archaeometry 42 (1):
2–20. https://doi.org/10.1111/j.1475-4754.2000.
tb00863.x

Sinclair, A. 2000. “Constellations of Knowledge:
Human Agency and Material Affordance in Lithic
Technology.” In Agency in Archaeology, edited by
M.-A. Dobres and J. E. Robb, 196–212. London:
Routledge.

Sotamaa, O. 2014. “Artifact.” In The Routledge Com-
panion to Video Game Studies, edited by M. J. P.
Wolf and B. Perrone, 3–9. New York: Routledge.

Spafford, E. H. 1989. “The Internet Worm Program:
An Analysis.” ACM SIGCOMM Computer Com-
munications Review 19 (1): 17–57. https://doi.
org/10.1145/66093.66095

Styhre, A., A. M. Sazczepanska, and B. Remneland-
Wihkamn. 2018. “Consecrating Video Games
as Cultural Artifacts: Intellectual Legitimization
as a Source of Industry Renewal.” Scandinavian
Journal of Management 34 (1): 22–28. https://doi.
org/10.1016/j.scaman.2017.11.003

Tommervik, A. 1981. “Exec On-Line Systems:
Adventures in Programming.” Softalk 1 (6): 4–6.

Tringham, R. and M. Ashley. 2015. “Becoming
Archaeological.” Journal of Contemporary Archae-
ology 2 (1): 29–41. https://doi.org/10.1558/jca.
v2i1.27089

Trivette, D. B. 1985. “Inside King’s Quest.” Compute!
7 (2): 136–138.

Watrall, E. 2002. “Interactive Entertainment as Public
Archaeology.” SAA Archaeological Record 2 (2):
37–39.

Wexler, J., A. Bevan, C. Bonacchi, A. Keinan-
Schoonbaert, D. Pett and N. Wilkin. 2015. “Col-
lective Re-Excavation and Lost Media from the
Last Century of British Prehistoric Studies.” Jour-
nal of Contemporary Archaeology 2 (1): 126–142.
https://doi.org/10.1558/jca.v2i1.27124

Wiegers, K. E. 2002. Peer Reviews in Software: A
Practical Guide. Boston: Addison-Wesley.

Williams, K. n.d. “Introduction to the Roberta Wil-
liams Anthology.” Sierra Help Pages. Online:
http://www.sierrahelp.com/Misc/IntroductionToR-
WAnth.html

Worth, D. and P. Lechner. 1981. Beneath Apple
DOS. Chatsworth, CA: Quality Software.

https://doi.org/10.1558/jca.v2i1.27083
https://doi.org/10.1007/978-1-4302-3352-7
https://archaeogaming.com/2013/06/09/what-is-archaeogaming/
https://archaeogaming.com/2013/06/09/what-is-archaeogaming/
https://archaeogaming.com/2013/06/09/what-is-archaeogaming/
https://archaeogaming.com/2015/12/18/archaeogaming-map-revised/
https://archaeogaming.com/2015/12/18/archaeogaming-map-revised/
https://archaeogaming.com/2015/12/18/archaeogaming-map-revised/
https://archaeogaming.com/2015/09/18/archaeogaming-tools-and-methods/
https://archaeogaming.com/2015/09/18/archaeogaming-tools-and-methods/
https://archaeogaming.com/2015/09/18/archaeogaming-tools-and-methods/
https://doi.org/10.1558/jca.v2i1.27108
https://doi.org/10.1558/jca.v2i1.27108
https://archaeogaming.com/2016/03/09/materialization-of-the%20immaterial/
https://archaeogaming.com/2016/03/09/materialization-of-the%20immaterial/
https://archaeogaming.com/2016/03/09/materialization-of-the%20immaterial/
https://archaeogaming.com/2017/04/02/the-harris-matrix-parti-visualizing-software-stratigraphy/
https://archaeogaming.com/2017/04/02/the-harris-matrix-parti-visualizing-software-stratigraphy/
https://archaeogaming.com/2017/04/02/the-harris-matrix-parti-visualizing-software-stratigraphy/
http://atariage.com/forums/topic/258786-phoenix-software-sourcecode/
http://atariage.com/forums/topic/258786-phoenix-software-sourcecode/
http://atariage.com/forums/topic/258786-phoenix-software-sourcecode/
https://doi.org/10.1080/01977261.1993.11720900
https://doi.org/10.1080/01977261.1993.11720900
http://www.sierrahelp.com/Games/MysteryHouseHelp.html
http://www.sierrahelp.com/Games/MysteryHouseHelp.html
https://doi.org/10.1111/j.1475-4754.2000.tb00863.x
https://doi.org/10.1111/j.1475-4754.2000.tb00863.x
https://doi.org/10.1145/66093.66095
https://doi.org/10.1145/66093.66095
https://doi.org/10.1016/j.scaman.2017.11.003
https://doi.org/10.1016/j.scaman.2017.11.003
https://doi.org/10.1558/jca.v2i1.27089
https://doi.org/10.1558/jca.v2i1.27089
https://doi.org/10.1558/jca.v2i1.27124
http://www.sierrahelp.com/Misc/IntroductionToRWAnth.html
http://www.sierrahelp.com/Misc/IntroductionToRWAnth.html

©
 2

02
0

E
Q

U
IN

O
X

 P
U

B
LI

S
H

IN
G

 L
TD

Journal of Contemporary Archaeology� 6.2 (2019) 183–205
ISSN (print) 2051-3429 (online) 2051-3437� https://doi.org/10.1558/jca.36745

205Inspecting the Foundation of Mystery House

John Aycock is an Associate Professor in the Department of Computer Science at the University of
Calgary. His research interests include exploring the implementation of old computer games. Address
for correspondence: Department of Computer Science, University of Calgary, 2500 University Drive NW,
Calgary, Alberta, Canada T2N 1N4.

Katie Biittner is an Assistant Professor of Anthropology at MacEwan University. Dr. Biittner is an anthro-
pological archaeologist whose work in Iringa Region, Tanzania critically investigates the construction
of cultural heritage using contemporary and archaeological material culture. She has also conducted
archaeological field work in British Columbia, Alberta, Ontario, and Idaho. Her teaching and research
interests include lithic analysis, gender archaeology, anthropology of the body, and archaeogaming.
Address for correspondence: Department of Anthropology, MacEwan University, 10700 - 104 Avenue
NW, Edmonton, Alberta, Canada T5J 4S2.

	_Hlk2939534

