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Continuous Process Improvement Implementation Framework Using Multi-

Objective Genetic Algorithms and Discrete Event Simulation 

Abstract 

Purpose – Continuous process improvement is a hard problem, especially in high 

variety/low volume environments due to the complex interrelationships between 

processes. This paper addresses the process improvement issues by investigating 

the job sequencing and buffer size optimization problems simultaneously. 

Design/methodology/approach – This paper proposes a continuous process 

improvement implementation framework using a modified genetic algorithm and 

discrete event simulation to achieve multi-objective optimization. The proposed 

combinatorial optimization module combines the problem of job sequencing and 

buffer size optimization under a generic process improvement framework, where 

lead time and total inventory holding cost are used as two combinatorial 

optimization objectives. The proposed approach uses the discrete event simulation 

to mimic the manufacturing environment, the constraints imposed by the real 

environment and the different levels of variability associated with the resources. 

Findings – Compared to existing evolutionary algorithm based methods, 

proposed framework considers the inter-relationship between succeeding and 

preceding processes and the variability induced by both job sequence and buffer 

size problems on each other. A computational analysis shows significant 

improvement by applying proposed framework.  

Originality/Value – Significant body of work exists in the area of continuous 

process improvement, discrete event simulation and genetic algorithms, a little 

work has been found where genetic algorithms and discrete event simulation are 

used together to implement continuous process improvement as an iterative 

approach. Also, a modified genetic algorithm addresses the job sequencing and 

buffer size optimization problems simultaneously by considering the inter-

relationships and the effect of variability due to both on each other. 
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1. Introduction 

Operational problems have been augmented due to increased global competition, 

scarcity of resources, higher customer expectations (in terms of higher quality, low cost, 

reduced lead times) and pressure from the government or other regulatory bodies to 

reduce carbon emissions and to be more efficient in the energy usage. This has kept 

manufacturing organizations in the quest for continuous process improvement to reduce 

the waste by optimizing processes at different levels. This becomes even more 

important in the current high variety/low volume (HV/LV) manufacturing landscape, 

where customer demands are extremely volatile both in terms of quantity and variety. 

There are numerous examples of process improvement approaches those have been 

applied to various manufacturing/service processes and product types, ranging from 

small parts/components (engines, tires, fabricated components, etc.) to the whole 

product (aircraft, coach/bus, automotive sector, service processes – hospitals, banking, 

educational sector and so on). (Alrashed and Kang 2017; Bastian et al. 2016; HM 

Government 2013; Lage and Godinho Filho, 2016; Yu and Lee, 2018). According to 

Kang et al. (2013), providing a high variety and customer focused products/services 

may allow organizations to stay ahead of their competitors. Traditional manufacturing 

approaches emphasize high production of a single commodity, which is no longer 

applicable since without having the sufficient variation it does not attract enough 

customers to increase profitability. On the other hand, HV/LV products escalate 

manufacturing problems at a higher rate and often problems are more complex in terms 

of number of variables involved and their interdependencies. Because of this, 

manufacturing organizations in a wide range of industries face the challenge of 

providing a high product variety at a very low cost. In fact, a multitude of customizable 

product options force the manufacturers of these products to deal with a (theoretical) 

product variety which exceeds several billions of models. For instance, a base model of 

a car can be modified according to customer requirements such as the addition of a 

manual or electric sunroof, air conditioning, power windows etc. (Nazarian et al. 2010). 

Therefore, existing methods and tools are becoming obsolete due to the increased 

complexity of modern manufacturing systems, where most of the existing tools are not 

powerful enough to solve modern manufacturing problems effectively and efficiently 

especially in HV/LV environments. This has amplified the need for new, efficient and 

effective tools and techniques to cope with these problems. Researchers have used 
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heuristic based methods combined with simulation-based approaches to solve both 

simple and complex operations problems as one solution won’t fit for all. Solutions 

need to be customized due to varying nature of production systems. For example, use of 

heuristic algorithms and simulation modelling to solve hybrid flow shop scheduling 

problem with mixed batch sizes (Yao et al., 2012). Li et al. (2015) develop a heuristic 

search genetic algorithm (HSGA) for job sequencing aiming at minimizing the 

makespan and total weighted tardiness. Costa el al. (2013 and 2014) proposed a mixed 

integer linear programming model combined with dual encoding and smart-decoding 

based genetic algorithms framework to address the makespan minimization problem for 

a hybrid flow shop with a parallel batching system. Aboutaleb et al. (2017) used 

simulation modeling and data mining approach to develop the standalone closed-loop 

formula for a throughput rate of normally distributed asynchronous human-dependent 

serial flow lines. Pfeiffer et al. (2016) used a combination of simulation-based approach 

and statistical learning methods to improve the to develop a multimodel prediction of 

manufacturing lead times. Despite using various optimization and simulation 

approaches, there is one commonality that simulation modelling is adopted to 

understand/visualize the system behavior and optimization method is customized based 

on the problem complexity. Kang et al (2015) compared the production scheduling 

problem results for a multi-machine scenario using standard scheduling methods 

(Forward by Due Date, Forward by Priority, Backward by Due Date, Backward by 

Priority, APS forward, APS Minimize WIP forward and APS Parallel Loading) with a 

integrated approach using modified genetic algorithms and simulation. Preactor 

APS400 (scheduling tool from Preactor International – A Siemens Company) 

scheduling package was used to model the multi-machine scenario for a wire and cable 

manufacturing process. Results demonstrate the inability of standard tools to capture the 

production environment variability and interrelationships between various attributes. In 

case of multi-objective optimization modified GA outperforms the standard scheduling 

approached part of APS400 scheduling package.  

This paper represents the process improvement issue in a HV/LV manufacturing 

environment by addressing the job sequencing and buffer size optimization problem 

simultaneously. The main aim is to develop a continuous improvement implementation 

framework by considering the effect of the job sequence and buffer size on each other. 

The proposed framework uses modified genetic algorithms (GAs) for the multi-

objective optimization module and discrete event simulation tool (Simul8) to evaluate 
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the performance of solutions and to mimic the manufacturing environment respectively. 

The objective function is derived from two key organizational objectives; lead time 

(LT) and total inventory holding cost (TIHC). The concept of Pareto optimality is then 

used to generate a final set of solutions based on the two objectives. This paper is 

organized as follows. Firstly, it highlights the process improvement issues, where job 

sequencing and buffer size optimization problems are exemplified and GA based multi-

objective optimization is introduced. Secondly, problem formulation is performed, 

which includes the simulation model representation, job sequencing and buffer size 

chromosome representation, system constraints and the proposed approach. Finally, the 

results discussion illustrates the effectiveness of the proposed approach.  

2. Continuous Process Improvement (CPI) Issues  

CPI is one of the absolute requirements for organizations to survive in modern 

competitive and fast-paced business environments. These conditions require tools and 

techniques that can provide proactive solutions quickly in highly complex and variable 

environments (Taha et al. 2011; Tasan et al. 2007; Varela et al. 2003; Velumani and 

Tang 2017). CPI problems are a well-known subclass of combinatorial optimization 

problems that exist in all areas, such as in the manufacturing, management and service 

industries. Researchers have addressed process improvement issues by focusing on the 

different attributes at the operational level, such as scheduling, sequencing, machine 

layout, grouping, batch size and buffer size (Kaylani and Atieh 2015; Li et al. 2016). 

Most of the associated problems are NP-hard and are combinatorial in nature, where 

more than one organizational objective is associated. The only practical approaches are 

heuristic strategies some of the most commonly used approaches are; State Space 

Search, Branch and Bound, Tabu Search, Simulated Annealing and GA. There are 

numerous entities involved in the manufacturing environment and most of these exhibits 

dynamic, unpredictable and complicated relationships among them. This makes the CPI 

process more vulnerable to failures as the effect of improving one performance measure 

(PM) needs to be considered on other PMs before deciding over the solution. 

In fact, high levels of variability and the interrelationship between process entities 

increases complexity, which makes it almost impossible to solve these problems using 

the traditional tools and techniques. The job sequencing problem and buffer size 

optimization problems are regarded as NP-Complete i.e. there are no polynomial time 
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algorithms, which can possibly solve these to the best solution. Also, there can be more 

than one optimal solution, which satisfies the organizational objectives/constraints 

based on the interdependency between both problems. 

2.1. Job Sequencing 

Job sequencing determines the sequence in which jobs need to be processed, where a 

sequence can be defined on the basis of offset priorities and constraints. These priorities 

and constraints define the order in which jobs are processed either due to limited 

resources, organizational/operational constraints and objectives. Job sequencing could 

play a vital role in reducing manufacturing LT and TIHC by reducing the number of 

changeovers due to product mix. The product mix is one of the main causes of 

variability due to variable processing time, setup time, quantity and the routings 

associated with the different products. For instance, according to El-Bouri et al. (2006), 

the sequence in which jobs have been processed determines the performance of 

organizations as one sequence may increase manufacturing lead time over another due 

to variable cycle and setup time associated with different part types. In fact, the job 

sequence optimization problem is the ordering of different parts on a machine/s, such 

that the optimal sequence can be obtained for some measure of effectiveness according 

to selected PMs, where jobs are subjected to constraints imposed on different product 

types (Xia et al. 2005). Bertrand and Sridharan (2001) and Burdett and Kozan (2000) 

regard job sequencing as one of the most difficult combinatorial optimization problems 

since many sequences may exist in a vast search space where objective values may exist 

near to each other. In addition, an optimal sequence may not provide noticeable 

improvements because of organizational constraints. However, the optimal job sequence 

may help decision-makers to determine the due date assignments more accurately by 

obtaining the optimal lead time, which defines the total manufacturing LT to complete a 

customer order. According to Veral (2001), one of the main advantages of having an 

optimal sequence is that knowing manufacturing LT, due dates can be set internally by 

scheduling software. Internally set due date reflect the constraints imposed due to the 

variable setup times and processing times, product mix, routings and machine failures. 

From the current research perspective, the focus of job sequencing remains to decrease 

the effect of variability due to the variable setup time induced by the product mix, which 

can further assist in due date assignment and scheduling. 
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2.2. Buffer Size Optimization  

The buffer size optimization problem is addressed here to determine the optimal buffer 

locations and required buffer size to deal with high levels of variability, also known as 

buffer management. For instance, the buffer management mechanism was originally 

used in the Drum-Buffer-Rope (DBR) to improve material flow by reducing the effect 

of variability. In fact, the primary concern remains to guard the system against expected 

disruptions (i.e. Variability induced due to customer demand, product mix, processing 

times, setup times etc.) or/and unexpected (i.e. machine failure) disruptions (Umble and 

Umble 2006). According to (Umble and Umble 2006; Riezebos et al. 2003), buffer size 

optimization may assist organizations as: 

(1) Decreased material flow complexity by providing the optimal buffer size at 

optimal locations in order to reduce the effect of variability. 

(2) Provides control over LT by maintaining the appropriate buffer sizes in front of 

the constrained resources. This may assist in achieving maximum utilization of 

the constrained resource in a highly variable manufacturing environment.  

(3) Improved mechanism over the Kanban system as a fixed level of inventory is 

maintained throughout the system, and the material is pulled by processes as 

required.  

In HV/LV manufacturing environments buffer sizes may be used as one of the solutions 

to protect constrained resources against variability due to machine failure, setup, 

customer demand and product routing, which forms one of the objectives of the 

proposed approach. Also, this can be seen as a part of the process improvement 

methodology, as it guards the system against potential disruption by providing 

synchronous flow, which may have a direct impact on the manufacturing LT and TIHC. 

Optimal buffer sizes need to be determined in order to control the inventory holding 

cost, as inventory holding cost is derived from the buffer size. 

3. Problem Description 

One of the main aspects of this paper is to highlight the use of combinatorial 

optimization and simulation modeling as a tool for process improvement. This may help 

organizations to reduce/manage the effect of variability, as the proposed approach takes 
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advantage of simulation modeling in order to respond to rapid changes in levels of 

variability. This section illustrates the problem from both simulation modeling and 

optimization perspectives. 

3.1. Problem Representation Using Simulation Modeling 

The method developed within this research has used Discrete Event Simulation (DES), 

Simul8, as a tool to represent the investigated working areas. Simul8 acts as an iterative 

tool with the combinatorial optimization module to find the optimum job sequence and 

buffer sizes by maintaining the given system constraints based on organizational 

objectives. Simulation modeling also enables the optimization module to quantify and 

validate the job sequence and buffer size population during the evolution process. There 

are numerous examples of DES being used to analyze and solve real-world problems. 

The advantages of using simulation modeling in the process of problem-solving being 

exemplified in the literature and illustrating DES advantages are beyond the scope of 

this paper. Readers can refer to (Banks et al. 1996; Banks 1999; Kang et al. 2013; 

Sandanayake et al. 2008; Taha et al. 2011; Velumani and Tang 2017) for detailed 

information. 

In this research, the simulation model represents a flow line, which consists of “Five 

WorkCentre”. The working area has different system constraints, such as routing, 

processing time, setup time, machine failure, buffer quantities and inventory holding 

cost associated with each buffer. Triangular distribution is used to represent different 

levels of variability in the simulation model. Triangular distribution allows simulation 

models to be represented close to the real manufacturing environment (Khalil et al. 

2008). It is important to note that some of the variables are subjected to change as the 

population evolves, such as buffer quantities and job sequences, due to the fact that both 

buffer size and job sequence form the chromosome and will evolve as the GA 

progresses through the different generations. On the other hand, processing time, setup 

time and machine failures are, according to the limits, defined by the triangular 

distribution within the simulation model, while inventory holding cost remains the same 

with respect to each buffer location throughout the evolution process. Associated 

simulation and modeling element attribute can be given as in Table I and variability 

within the simulation model are represented based on the triangular distribution. 
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Note: “M” represents the WorkCentre and associated number gives the location of that 

WorkCentre in the simulation model. For instance, M1 represents WorkCentre1. Simul8 

represents an area from engine manufacturing line for one of the collaborators and 

generic names are used to maintain information confidentiality. 

Table I. Simulation Modeling Elements Attributes 

3.1.1 Work Type and Associated Quantities 

Since job sequence is one of the problems addressed in this research paper, the 

simulation model includes 10 different work types having different quantities to be 

produced for each work type. This data will be used to represent the chromosome for 

the job sequencing. Table II illustrates the work types and their associated quantities 

with respect to (w.r.t.) the different set of experiments. 

Table II. Work Type and Associated Quantities 

3.1.2 Routings 

Each work type in the simulation model follows specific routes. A route defines the 

machines to be visited in the given order. Along with this, the simulation model 

maintains the data for the cycle time and setup time for each work type on a given 

machine. Table III illustrates the associated routings, cycle time and setup time w.r.t. 

each work type. 

Table III (Routings and Associated Attributes) 

It is important to note the working of Simul8 and how to model the environment using 

the simulation tool is out of the scope of this paper.  

3.2. Variable Definition            

The notations used to describe the problem are; 

N The total number of generations; 

G The total number of Chromosomes in a generation; 

M The total number of WorkCentre. All jobs might not go on all machines. 

There are five machines used to represent the selected working area; 
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w� The i

th
 Work Type in a given chromosome.  

q� The quantity of i
th 
part needs to be produced. It is important to note that  

q�is related to the w� and it must hold this relation while different 

chromosomes are created; 

��,�	 The k
th 
sequence chromosome in l

th 
generation: ��,�		 ∈ 		�; 	� ≤ 
	���	� ≤

�; 
B�,�	 The k

th 
buffer chromosome for l

th
 generation; ∀	B�,�	 ∈ 	B; 	� ≤ 
	���	� ≤

�; 
b��� The upper limit for b�� ; 

����  Lead Time for i
th 
chromosome in j

th 
generation, where  ≤ 
	���	! ≤ �; 

�"#$�� Total inventory holding cost for i
th 
chromosome in j

th 
generation, where 

 ≤ 
	���	! ≤ �; 

3.3 Chromosome Representation 

A universal U represents the solution space for the current problem, which consists of 

all the set of chromosomes representing job sequences (S) and buffer sizes (B). There is 

no relation between both sets (S and B) in terms of the elements they contain. However, 

both sets exhibit an interrelationship between them based on variability induced by 

customer demand and product attributes.  

%S ∪ B( ⊆ U																																																																%1( 

Therefore, set of possible job sequences, S;  

S = 	 - S�,�

.,/

�,�01
	and	 S�,� = - w�q�

5

�01
																																				%2( 

Where, P represents the total number of work types involved. Each work type has 

associated quantity according to the experimental set (Table II). 

Each ��,�should satisfy the two constraints in order to qualify as a valid job sequence; 

Constraint 1: for every ��,�,	the sum of the quantities w.r.t. each part must be equal to 

the total number of parts to be produced (say Q) (Reference Table II), which can be 

given as, Equation 2.1; 
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	Q = 	8 q�
5

�01
		∀	S�,� ∈ S																																																			%2.1( 

Say S1,1 = {1:60, 2:50, 3:30, 4:40, 5:60, 6:50, 7:80, 8:50, 9:60, 10:20}; sum of all the 

quantities (q�(	should add to 500 (total quantify “Q”). Throughout the evolution 
process, the total number of units to be produced for the chosen scenario (Q) should 

remain same.  

   

Constraint 2: When a new S�,�is created, the quantity for each work type must be the 

same regardless of position in the chromosome (Reference Table II). Each work type 

has a one to one relation with the quantity needed. Work type and associated quantity 

relationship must be held in every valid chromosome regardless of their gene position 

within the chromosome. Some work types, however, may have the same quantity; 

∀	S�,� ∈ S ∶ 	 ;S�,�< = 	 ;S�=�,�=�<																																										%2.2( 

∀	��,� ∈ � ∶ 	 >��,�? ≠ >��=�,�=�?																																						%2.3( 

																																															where, S�,� = 	- w�q�

E

�01
 

Equations 2.2 and 2.3 must hold true in terms of the relation between work type and 

associated quantity and position of elements within the set of a job sequence 

respectively. Based on equations 2.1, 2.2 and 2.3 therefore, a valid chromosome must 

satisfy the following condition: 

S�,� ∈ S	iff8 q�
5

�01
= Q ∧ ;S�,�< = 	 ;S�=�,�=�< ∧ >S�,�? ≠ >S�=�,�=�?														%2.4( 

Where, Q represents the total number of parts to be produced. 

Consider two job sequence chromosomes S1 and S2 for a given generation based on 

Experiments Set 1 (Table II). Based on Table II, equation 2.2, 2.3 and 2.4 can be 

illustrated as; 
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S1: S�,� 		= J1: 60, 2: 50, 3: 30, 4: 40, 5: 60, 6: 50, 7: 80, 8: 50, 9: 60, 10: 20R 

S2: S�=�,�=� = J6: 50, 3: 30, 8: 50, 5: 60, 2: 50, 1: 60, 7: 80, 4: 40, 9: 60, 10: 20R 

 

(1) Equation 2.2; total number of genes in both chromosomes S1 and S2 are same 

i.e. 10 and work type and quantity relationship is maintained for each gene. For 

example, S1-Gene1 (1:60) is S2-Gene6 (1:60), etc. 

(2) Equation 2.3; S1 and S2 differ based on the gene positioning within the 

chromosome. For instance, S1-Gene1 (1:60) and S2-Gene1 (6:50). 

(3) Equation 2.4 is only true when both 2.2 and 2.3 are true.  

Job sequence chromosome uses a real number representation in order to maintain the 

relationship between the job type and the associated quantity of parts to be produced. 

Further, in chromosome representation, B signifies the set of possible buffer sizes (b�(.  

B	 = 	 - B�,�

.,/

�,�01
	and			∀	B�,�	 ∈ 	B ∶ 	B�,�	 = Jb1, 	bS, … , bUVR, Where	0 < b� ≤ b���								%3( 

�Y represents total number of buffers in the simulation model (problem) 

It is important to note that buffer size for each buffer in a given chromosome for the 

current generation should be greater than zero and less than or equal to the	
b���. Equation 3 can be exemplified based on Table I; there are five buffers in the 

system (Table I). Consider that chromosome B1, BS, … . . , BZ represents the buffer sizes 

for a given generation. B1 can be given as, where TB = 5 and G = 20.  

B = JB1 = 	 J2, 3, 5, 5, 8R, …., BS[ = 	 J1, 3, 2, 5,5R	R   

These buffer sizes are represented as a binary format in the optimization module.  

B1 =	 J00010, 00011, 00101, 00101,01000R – Binary representation  

These buffer sizes are decoded back to real numbers while the evaluation process is 

carried out in the simulation tool, as the simulation tool can only deal with real numbers 

for batch sizes instead of binary representation. 
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There are other constraints needed to be obeyed for a proposed approach to work in an 

effective manner, which are validated through the simulation model. For instance; 

(1) Only one job can be processed at a time on one machine. For the next job to be 

processed on the same machine, it needs to wait for the current operation to be 

finished. For instance, for the (i+1)
th
 gene in the k

th
 chromosome in l

th
 

generation to be processed at the m
th
 machine, the process start time should be 

greater than the process finish time for the i
th 
gene for the any chromosome in 

the l
th
 generation. 

(2) Operation sequence needs to be followed according to the defined sequence. In 

the proposed approach, operation sequence is validated through the simulation 

entity called jobs matrix (Reference Table III).  

(3) Routing constraints should be followed i.e. some jobs can be processed on 

alternative machines, while the other needs to be processed on a specific 

machine. Each job should follow a specific route (Reference Table III). 

3.4. Combinatorial Optimization Objectives and Fitness Function 

In the current research two objectives are considered i.e. LT and TIHC. From Table I, 

cost is calculated based on the associated holding costs with respect to each buffer. 

Therefore, LT and TIHC w.r.t. each generation can be represented as follows; 

���� represents the lead time, which is equal to the simulation run time and also defines 

the criteria to terminate each simulation run. 

�"#$�� represents the sum of all the costs associated with the queues over the period.  

If the cost associated with a queue per minute is, say, \�and there are ]�	parts in the 

queue at given instance, therefore, for M buffers [one buffer space per work center i.e. 

M WorkCentre implies that there are M buffers]; the inventory holding cost at a given 

instance (CPMa( for all the buffers can be given as;  

CPMa = 	8%c�( ∗ %p�(
e

�01
																																																															%4( 

It is important to track the per unit inventory holding for each buffer w.r.t. time due to 

fact that inventory will vary for each chromosome due to different job sequence 
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followed. CPMa is directly obtained from the discrete event simulation model based on 

per unit per minute holding cost provided in Table I.  

To calculate the total inventory holding cost for simulation run, inventory holding cost 

per instance must be added. This is achieved by adding for all instances throughout the 

simulation period.  

Using Equation 4, TIHC�� is calculated as; 

TIHC�� =	8 CPMa

iUjk

a0[
	 , where	0	 ≤ i ≤ N	and	0	 ≤ j ≤ G															%4.1( 

From equation 4.1, an increase in p�	and	LT�� may lead to an increased TIHC��even if c� 

is kept constant throughout the optimization process. 

The fitness function is derived from the weighted fitness of two objectives. Random 

weights are generated for each chromosome. Generated weight values varies between 

0.1 – 0.9.  Fitness for the i
th 
chromosome in j

th 
generation is calculated as given in 

equation 5; 

F�� =	w�� ∗ LT�� +	%1 − w��( ∗ TIHC��																																				%5( 

4. Proposed Approach 

The application of GAs to real-world problems has interested many researchers (Costa 

et al. 2013 and 2014; Dorndorf and Pesch 1995; Guo et al. 2009; Kang et al. 2015; 

Khouja et al. 1998; Li et al. 2015; Niu et al. 2008; Rossi and Dinni 2007; Varela et al. 

2003; Yao et al., 2012) since they seem to offer the ability to cope with the huge search 

spaces involved in combinatorial optimization problems. The proposed CPI approach 

combines the GA based combinatorial optimization and simulation modeling by 

addressing the job sequence and the buffer size optimization problem. As discussed 

earlier, the given problem is NP-complete i.e. There is no algorithm that can possibly 

solve the problem completely in polynomial time. There are other evolutionary 

approaches being used by researchers such as the ant colony optimization method 

(Rossi and Dinni 2007), particle swarm optimization (Niu et al. 2008), mathematical 

modeling combined with genetic optimization (Guo et al. 2009), Lagrangian relaxation 
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based GA (Varela et al.2003) etc. There are numerous other modified/combined EA and 

AI-based approach being used, however, comparison of the proposed approach with the 

other evolutionary algorithms is beyond the scope of this paper. 

The optimization module for proposed approach is based on modified GA, which 

combines the buffer size optimization problem and job sequencing while organizational 

objectives remain the same for both problems. For instance, according to Chen (2006), 

Hou and Hu (2011), Li and Wang (2007), Wang et al. (2007) and Jozefowska and 

Zimniak (2008) complex modified GAs are more successful and competent than the 

simple GAs, as modified GAs are more flexible in problem representation, genetic 

operators and evolution process.  

4.1 GA Functionality  

The optimization module utilizes crossover, mutation and inversion operators in the 

evolution process. The selection probability of each operator is as described in Table V. 

GA functionality can be summarized as; 

(1) Chromosome; The GA optimization process starts with an initial population of 

solutions. Chromosome representation is one of the vital steps in the GA as it 

encodes the problem, which can influence the solution quality (Song and 

Hughes 1999). Each individual in the population represents a solution to the 

problem, called “Chromosome”. The real number and binary representation are 

utilized to represent the job sequence and buffer size chromosome respectively 

(Section 3.1). 

(2) Initialization; population in GA terminology represents the collection of 

chromosomes and set of solutions. Before starting with the optimization process 

a set of initial population is needed. Generating this initial set is known as the 

initialization process, which is created randomly in most cases (Konak et al. 

2006). Therefore, a random population set (job sequence and buffer size) is 

created (i.e. G = 20).  

(3) Parent Selection; selection process defines how to choose the individuals in a 

population to create offspring for the next generation. The selection process can 

affect the evolution process because (Song and Hughes 1999); 

a. Selection of stronger individuals reduces the diversity, which can halt the 

evolution process. 
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b. Whereas, selection of weak individuals will lead towards slow evolution. 

In order to overcome these issues, current research has adopted for fitness-

proportionate selection scheme by using the concept of roulette wheel. 

(4) Crossovers; after selection process parents are paired for mating. This mating 

process is known as crossover (Konak et al. 2006). In this research, uniform 

crossover is used, where multiple crossover points are defined based on a 

random variable “r” for each individual pair. The main reason to adopt random 

uniform crossover is to increase the efficiency and solution effectiveness. At the 

start crossover probability is used as 70%. During the evolution process, 

crossover probability is obtained dynamically in the following manner; 

a. If population is stagnant for 3 consecutive generations, then decrease the 

crossover probability (by 5%) until solution quality is either improved or 

reduced.  

b. Once diversity is again introduced (solution quality changed) then use 

the crossover probability as 70%. 

(5) Mutation; mutation is an effective and powerful process that entails random 

alternation of gene/genes in  selected chromosomes, typically with very low 

probability. The main motive behind mutation is to maintain the diversity within 

the population for the prevention of premature convergence of an algorithm to 

false peak and stagnation of evolution process (Hu and Paolo 2007; Kang et al. 

2015). 

(6) Inversion; a simple inversion method is used (only one chromosome from the 

population), where the whole chromosome is inverted. For example, gene “n” 

becomes gene “1”, gene “n-1” becomes gene “2”, etc. The main idea behind 

using inversion operation is to maintain the population diversity. 

(7) Replacement Strategy; once the new population has generated, old population 

needs to be replaced by new generations. Current research has adopted 

generational replacement with elite strategy. Elitism forces GA to retain some 

number of individuals, which are copied as such to the next generation without 

any changes (Tang et al. 2002).  

(8) Evaluation; once the population has been copied to the new generation, it needs 

to be evaluated again to check the fitness of new solutions, i.e. calculate the 
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fitness of each chromosome in terms of given objective function, as defined in 

Equation 5. 

4.2 Pareto Optimality  

The proposed approach used the concept of Pareto optimality to generate the final set of 

solutions based on two objectives, which are same as the organizational performance 

measures i.e. LT and TIHC. In fact, the main aim was to find all the possible trade-off 

among given objectives, represented by the Pareto optimal set. Researchers have 

defined that the Pareto optimal solution is generated on the basis of domination rule and 

Pareto optimality, which can be described as (Jozefowska and Zimniak 2008; 

Sevausand Dauzere-Peres 2003); 

A solution S1 is said to dominate the solution S2 if and only if; 

(1) The solution S1 is no worse than S2 in all objectives and, 

(2) The solution S1 is strictly better than the solution S2 in at least one of the 

objectives. 

The main motive behind saving optimal solutions from each generation is to provide 

better decision making. The output of the simulation model and optimization module 

generates the Pareto front, which consists of a set of optimal job sequences and buffer 

sizes based on the LT and TIHC (Equation 5). 

4.3 GA Implementation 

The proposed combinatorial optimization approach used a GA to develop the 

optimization engine, which is developed in C++ and is integrated with Simul8 (Figure 

1). The simulation tool here represents the manufacturing environment and the different 

levels of variability, such as routing, setup time, product mix, processing time and 

machine failures. Table IV illustrates the steps undertaken while implementing the 

proposed process improvement framework. 

Figure 1. Proposed Approach – Logical View 
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Table IV. Combinatorial Optimization Approach 

One of the main advantages of the proposed approach is its applicability to the different 

manufacturing and service environments. The simulation module provides an 

opportunity to manipulate parameters or change the simulation model in order to 

accommodate any alterations in the current problem without changing the optimization 

module and vice versa. For example, either simulation parameters can be changed, such 

as processing times, setup time, machine failure, repair time, customer demand, and 

type of variability etc. or the entire simulation model representing a different scenario. 

Similarly, the optimization module allows the user to control the optimal parameters, 

such as population size, number of generations, genetic operator control parameters and 

selection of optimization objectives.  

5. Results and Discussion 

5.1 Optimization Module Parameters  

Table V, illustrates the parameters used to set the limit for the combinatorial 

optimization algorithm, which includes the GA and Simulation Model limits.  

Table V. GA and Simulation Result Collection Variable Limits 

Dynamic crossover and mutation rate are adapted to make sure that the population is not 

stagnant. This is very important as crossover allows more controlled and justified (best 

fit) evolution of population from a given point in the solution space. In this research, the 

mutation rate is dynamically increased once the population becomes stagnant to explore 
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new solutions in the search space in the quest for a better optimal point. To avoid the 

random walk best solution from each generation is saved and crossover rate is increased 

again back to 70% once the population is diverse again. This allows each convergence 

to start with the best solution i.e. peak at a given point in the search space. Job sequence 

and buffer size population diversity are monitored based on the change in the objective 

function i.e. either a better or worst solution is found. Based on the explanation 

provided in Section 4.1 consider the two scenarios; 

(1) Scenario 1; start of the optimization process, this means  

No. of Elites = 2 and No Inverted = 1 

Crossover Rate = 70% (No Crossover = 14) 

Mutation = (number of solutions) – (No. Elite + No Crossover + No Inverted) 

i.e. 3 

(2) Scenario 2; at a given instance of time, says the population was stagnant for 3 

consecutive generations, therefore;  

No. of Elites = 2 and No Inverted = 1 

Crossover Rate = 65% (No Crossover = 13) 

Mutation = (number of solutions) – (No. Elite + No Crossover + No Inverted) 

i.e. 4 

5.2 Experimental Results 

Table VI exemplifies the results collected based on the different set of experiments. 

This includes the experimental results before optimization, using OptQuest and after 

combinatorial optimization (proposed approach). Along with this, the full factorial 

approach is used to compare the results of experiment 1.1, 1.2, 1.3 and 1.4.  

Alongside the process variability presented in the simulation model the following 

parameters are used to create a different set of experiments; 

(1) Total Quantity; three quantities are considered 500, 1000 and 2000 parts in total 

(Table II), this will allow the effect of variability on a system to be observed 

based on quantity with respect to the number of part types. 

(2) Batch size; three process batch sizes are used with respect to each quantity. 

(3) Machine Failure; alongside quantity and batch size experiments are inherited 

further based on the machine failure present or not.  
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Based on the given variability (as described above) 36 sets of experiments are generated 

by combining the total quantity, batch size and machine failure. This allowed testing the 

GA performance with respect to different levels of variability. Table VI illustrates the 

set of experiments and shows a significant improvement for both LT and TIHC for all 

the experiments against the existing system and OptQuest. OptQuest (off-the-shelf tool) 

provides advanced analysis capabilities by allowing simulation user to search for 

optimal solutions within your system. OptQuest version 7.0 was used. It doesn’t support 

multi-objective optimization capabilities and combining two problems together. 

However, it has provided a means to compare the performance of the proposed 

approach against one of the existing tools. 

5.3 Discussion 

Using the Table VI, results can be illustrated as; 

(1) Experiments with machine failure have a higher impact on TIHC than LT 

compared with experiments without machine failure, which highlights the need 

for considering machine failure as one of the constraints within the proposed 

optimization module. As in current experiments, machine failure is used as one 

of the variables to generate a different set of experiments. 

(2) As product quantity increases the effect of variability decreases on the LT as the 

proportion between the number of work types and associated quantity decreases, 

which can be observed by comparing LT values before and after optimization 

with respect to different total quantities. However, this still signifies the 

opportunity for process improvement as there is a noticeable difference in total 

product quantity of 2000 parts. 

Table VI. Combinatorial Optimization Results 

*Table VI only includes the best solution w.r.t. each PM from the PO set. 

(3) On the other hand, TIHC has been reduced drastically throughout all the 

experiments. Before optimization, job sequence and inadequate buffer size and 

locations allow excessive inventory to accumulate throughout the flow line, 

which contributes towards higher TIHC cost. By applying job sequence and 

buffer size optimization, the optimal sequence can be identified in order to 
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minimize the variability induced due to setups and processing times, as well as 

optimal buffer sizes, allowing fewer inventories to accumulate respectively. 

(4) Experiments were further extended to compare the results with the existing tools 

(i.e. OptQuest – off-the-shelf optimization tool for Simul8) and full factorial 

approach. One of the key limitations of OptQuest is the inability to provide the 

multi-objective optimization. This can be addressed by translating the multiple 

objectives to one. However, the solution might be biased towards one objective, 

if fixed weights are used. From Table VI, GA results are closer to OptQuest in 

most of the cases and in some cases, it has performed better than the OptQuest.  

(5) Along with this, the full factorial approach is used to test the GA solution 

quality. Due to the higher number of experiments full factorial approach was 

only used to validate the results for batch size 1 with machine failure (i.e. 

experiments 1.1 and 1.2) and without machine failure (i.e. experiments 1.3 and 

1.4). Full factorial needed Simul8 to be linked with Excel Sheet in order to 

conduct all the experiments. For instance, in this study total number of solutions 

for batch size 1 with machine failure is 435,456,000 (all possible combinations 

(10!)*(5!)) for both job sequence (10!) and buffer size (by maintaining the upper 

limit for buffer size as 5 i.e. 5!)). Similarly, the total number of solutions for 

batch size 1 without machine failure is 435,456,000. The data collection process 

took more approximately 32 days (results collection time converted to 24X5, 

based on the timestamps). The brute-force method is used to get the list of full 

factorial experiments as it was impossible to generate all the combinations 

manually.  Also, to speed up the experimentation process DES model is 

executed under four different threads of controls. As expected full factorial 

performed better than GA. However, GA performance is close to the full 

factorial in terms of finding an optimal solution.  LT and TIHC for full factorial 

experiments are; 

a. Experiment 1.1; LT = 7578 and TIHC =  52,171 

b. Experiment 1.2; LT = 7952 and TIHC = 4,887 

c. Experiment 1.3; LT = 6400 and TIHC = 22,000 

d. Experiment 1.4; LT = 6552 and TIHC = 3,752 

Figure 2. Pareto Front – Experiment 1.1 and 1.2 
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(6) The time taken by the full factorial is significantly higher than the GA (80 – 92 

minutes per experiment), which won’t be acceptable in real life scenario. On the 

other hand, OptQuest is much quicker than GA solution (17 – 43 minutes per 

experiment). This is due to the close integration between the OptQuest and 

Simul8 as OptQuest. 

(7) Figure 2, exemplifies the Pareto front for the Experiment 1.1 and 1.2. It is clear 

the GA managed to search through most of the search space. As solution 

evolves, population tends to go towards the given objective functions. One of 

these solutions can be chosen by the decision maker based on the organizational 

priorities. 

6. Discussion and Conclusion 

Current research is based on the Lean philosophy derived from the Toyota production 

system, which defines the scope of this paper by taking forward the concept of CPI. The 

GA based integrated approach exemplified in this paper is a part of the Lean problem-

solving tool developed during the project. One of the aims of the Lean philosophy 

remains in targeting manufacturing system problems to reduce waste throughout the 

system. Therefore, the proposed approach combines the job sequence and buffer size 

problem in order to cope with high levels of internal and external environmental 

variability as a part of continuous process improvement. In fact, the process 

improvement can also be related to the improved decision-making process by finding 
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the optimal job sequences and buffer sizes having the minimal LT and TIHC according 

to the given levels of variability. It becomes even more important when some of the 

problem variables are not deterministic, which is the best representation of a real-world 

problem. For instance, machine failure, processing time and set up time are not always 

constant. These are subject to change according to the conditions and the variability 

associated with jobs. Results obtained from the proposed approach have shown 

noticeable improvement based on the selected PMs and based on different sets of 

experiments. Having used job sequencing and buffer size together as a part of the 

combinatorial optimization module allows the system to behave as follows; 

(1) System acts as a pull system since a job is only released into the system based 

on the available capacity. This allows taking control over the variable inter-

arrival times. 

(2) Optimal buffer sizes limit the number of jobs available any time in the system at 

any instance of time, as a higher number of jobs can lead towards a higher 

inventory holding cost and a lower number can leave the system without any job 

for a given instance i.e. Increased lead times. This becomes even more important 

having a constrained resource in the system, since having an inadequate number 

of jobs can lead to wasting the capacity at the constrained resource. 

(3) On the other hand, constraints associated with different jobs based on the 

processing time, setup time and quantity affect the lead time and holding cost 

based on the given job sequence and buffer capacities. It is important to note that 

the proposed approach considers the effect of change of job sequence and buffer 

size on each other.  

(4) Most importantly, the continuous process improvement process is implemented 

as an iterative process i.e. changes in the system state can easily be manipulated 

since the optimization module is integrated with the simulation model. 

(5) In terms of comparison, the GA optimization results are closer to the OptQuest 

and full factorial approach. However, GA optimization provides the advantages 

over both. For instance, OptQuest (V7.0) doesn’t support the combinatorial 

optimization and both problems cannot be solved simultaneously and time 

required for full factorial is not acceptable for the real-world problems.  

(6) From Industry 4.0 aspect, simulation represents the digital factory. Simulation 

module provides an opportunity to visualize the system components and allows 
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analysis without making expensive changes to the real-world. Combining 

simulation module with optimization component presents the opportunity to 

conduct what-if analysis before agreeing to a final solution. This means a better 

control of operations based on the reviewed and optimal scenario based on 

chosen KPIs.  This resembles with the PDCA (Plan-Do-Check-Act), Lean 

problem-solving methodology. However, it is very important to model real-

world accurately by capturing the system components and constraints. 

Otherwise, the solution developed using above approach may not be valid in 

real-world.  

(7) Comparison of results between modified GA and OptQuest demonstrates that 

results obtained from the OptQuest and modified GA are very close (Figure 3), 

however for most of the instances OptQuest outperforms genetic algorithms, this 

is due to the fact the OptQuest focuses on one objective at a time while genetic 

algorithms trying to solve the buffer size and job sequencing problem 

simultaneously. From Lean management and system’s thinking perspective 

modified GA solution is better as it considers the interrelationship between job 

sequencing and buffer-size problem.   

Figure 3. OptQuest Vs. Genetic Algorithms Results Comparison  

 

Current experiments validate the proposed approach based on the different levels of 

variability stated in section 3. Results from Table VI demonstrate the ability of the 

proposed approach to deal with different levels of variability. It is important to note that 

results from the proposed approach are not compared against other AI or mathematical 

modeling methods because the main focus of this research paper is to demonstrate the 

capability of the proposed methodology in the context of CPI. The current 
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implementation exemplifies the applicability of the proposed methodology directly for 

both manufacturing and service industry subjected to the constraints identified in 

section 3.1. The main applications of the proposed approach are; LT and TIHC cost 

reduction in highly variable environments (Section 3), internal due date assignment 

based on optimal LT, improved material flow based on optimal buffer size, reaction to a 

shifting bottleneck due to changes in process parameters and synchronous flow based 

on reducing changeovers and optimal buffer sizes, for both the manufacturing and 

service industries. To take steps forward, the proposed approach will be extended to 

take into consideration other objectives as required according to organizational 

requirements and validate it with larger systems as current experiments are based on the 

five workstations and ten different products. Along with this, further enhancements 

need to be made by comparing the computational time with other meta-heuristic 

methods to improve the performance of the algorithm. Most significantly, it is important 

to note that current optimal values are subject to change, as the level of variability 

changes, which takes this research further by bringing in the aspect of autonomous 

decision making along with the optimization process to allow the system to adjust 

according to changes.  
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List of Tables 

Table I. Simulation Modeling Elements Attributes 

Modeling 

Elements 

Type Attribute Value 

Queue for M1 

Queue for M2 

Queue for M3 

Queue for M4 

Queue for M5 
Queue 

Capacity 

(Number) 

Infinite; before optimization no 

restriction has been imposed on 

queue sizes. However, queue 

sizes are derived during the 

optimization process by 

considering the system 

constraints such as batch size. 

However, users can have initial 

queue capacities if required 

because of the model change. 

M1 

M2 

M3 

M4 

M5 

WorkCentre 

Cycle Time 

(Min) 

Depends on the Product Type 

(Table III) 

Setup Time 

(Min) 

Depends on the Product Type 

(Table III) 

Batch Sizes 1, 5, 10 

Queue for M1 

Queue 

 

Holding Cost 

Inventory 

£ 0.2 per unit per minute 

Queue for M2 £ 0.5 per unit per minute 

Queue for M3 £ 0.5 per unit per minute 

Queue for M4 £ 0.2 per unit per minute 

Queue for M5 £ 0.2 per unit per minute 

M1 

WorkCentre 
Machine 

Failure 

MTTF (min) = 75,85,95  

MTTR (min) =  5,15,25 

M2 MTTF (min) = 80,85,90 

MTTR (min) =  10,15,20 

M3 MTTF (min) = 70,80,90 

MTTR (min) =  10,20,30 

M4 MTTF (min) = 80,90,100 

MTTR (min) =  0,10,20 

M5 MTTF (min) = 80,85,90 

MTTR (min) =  10,15,20 
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Table II. Work Type and Associated Quantities 

Experim

ental Set 

Work Type: Associated Quantity Total 

Quantity 

1 1:60, 2:50, 3:30, 4:40, 5:60, 6:50, 7:80, 8:50, 9:60, 10:20 500 

2 1:100, 2:200, 3:150, 4:100, 5:100, 6:60, 7:100, 8:40, 9:100, 

10:50 

1000 

3 1:100, 2:250, 3:50, 4:200, 5:100, 6:350, 7:300, 8:250, 9:300, 

10:100 

2000 

 

Table III (Routings and Associated Attributes) 

Work 

Type 

Routing Attributes  (ME = Cycle Time: Setup Time) 

1 M1 -> M2 -> M3 -> M4 -> 

M5 -> Exit 

M1 =  5:0, M2 = 8:30, M3 = 2:10, M4 = 3:0, 

M5 = 5:20, Exit = 0:0 

2 M2 -> M3 -> M4 -> Exit M2 = 10:70, M3 = 5:10, M4 = 5:0, Exit = 0:0 

3 M1 -> M2 -> M4 -> M5 -> 

Exit 

M1 = 7:0, M2 = 15:30, M4 = 3:15, M5 = 

3:15, Exit = 0:0 

4 M1 -> M2 -> M3 -> M4 -> 

M5 -> Exit 

M1 =  8:0, M2 = 30:30, M3 = 4:10, M4 = 

5:25, M5 = 3:20, Exit = 0:0 

5 M1 -> M2 -> M3 -> M5 -

>Exit 

M1 = 6:0, M2 = 10:45, M3 = 9:15, M5 = 

4:25, Exit = 0:0 

6 M1 -> M2 -> M4 -> M5 -> 

Exit 

M1 = 5:0, M2 = 15:45, M4 = 2:0, M5 = 3:20, 

Exit = 0:0 

7 M2 -> M3 -> M4 -> M5 -> 

Exit 

M2 = 15:55, M3 = 3:7, M4 = 2:0, M5 = 2:15, 

Exit = 0:0 

8 M2 -> M3 -> M4 -> M5 -> 

Exit 

M2 = 8:35, M3 = 3:7, M4 = 2:0, M5 = 2:20, 

Exit = 0:0 

9 M1 -> M2 -> M3 -> M4 -> 

M5 -> Exit 

M1 =  5:0, M2 = 12:50, M3 = 3:25 M4 = 4:0, 

M5 = 5:25, Exit = 0:0 

10 M2 -> M3 -> M5 -> Exit M2 = 2:95, M3 = 8:0, M4 = 2:20, Exit = 0:0 
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Table IV. Combinatorial Optimization Approach 

Start: 

1. Create an initial set of the population; i.e. ��,� and ��,��ℎ�	�, 0	 ≤ 
 < �. An initial 

population of job sequences ��,�and buffer sizes ��,�should obey the constraints 

identified in equation 2.2 and 2.3 and 3 respectively. 

2. Initiate the genetic parameters i.e. number of elite solutions, crossover rate, mutation 

rate and inversion rate as given in Table V. 

3. Initiate the Pareto Optimal set (say PO). 

4. Start the simulation model (Simulation model has the parameters as defined in the 

Table I, II and III) 

Loop 1: Go through the generations until current generation < N 

Loop 2: Go through the population until current chromosome < G 

1. Call Simulation Module and evaluate the job sequence and buffer size 

chromosomes from the current population. Use both of the chromosomes 

in parallel. 

2. Save the LT and TIHC for each chromosome. TIHC is calculated based 

on Equation 4.1. 

End Loop2: 

1. Generate a set of random weights W, in order to calculate the weighted 

fitness.  

2. Sort the current population, according to the weighted fitness. 

3. Update Pareto based on the LT and TIHC. 

If  (Not Last Generation) 

1. Apply genetic operators on current population, according to the 

set rate for genetic parameters 

2. Replace Current Generation with New Population 

 Else  

                        Terminate  

End Loop1: 

End: 
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Table V. GA and Simulation Result Collection Variable Limits 

Variables - Limits 

N - 100 

G - 20 

P - 10 

Q - 500, 1000 and 2000 

No of Elites - Fixed; 2 i.e. one solution per objective  

Crossover and 

Mutation Rate 

 

No of Inverted 

solutions 

- Calculated dynamically as solution emerges. The 

crossover rate however, is kept significantly higher than 

the mutation and inversion rate. 

- Fixed; 1 

Simulation Run Time - Derived by algorithm as it is kept equal to LT 

Warm up period - None 
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Table VI. Combinatorial Optimization Results 

 

 

E
x
p
erim

en
t N

o
. 

T
o
tal Q

u
an
tity

 

B
atch

 S
ize 

M
ach

in
e F

ailu
re  

O
p
tim

izatio
n
 

criteria 

Before optimization OptQuest Results 

Job Sequence and 

Buffer Size 

Optimization (Best 

Solution from  Pareto 

Front) 

LT TIHC LT TIHC LT TIHC 

1.1 

5
0
0
 

1 

Y
es
 LT 

20,489 2,032,863 8,001 5,052 
8,035 54,135 

1.2 TI HC 8,342 5,273 

2.1 

N
o
 LT 

16,749 1,562,810 6,841 3,781 
6,972 22,861 

2.2 TIHC 7,013 3,881 

3.1 

5 

Y
es
 

LT 
10,742 1,311,448 8,008 19,887 

8,018 22,004 

3.2 TIHC 8,357 20,800 

4.1 

N
o
 LT 

9,386 1,159,705 6,841 16,998 
6,842 43,007 

4.2 TIHC 7,029 17,082 

5.1 

10 

Y
es
 

LT 
9,287 1,084,242 8,008 39,522 

8,001 116,457 

5.2 TIHC 8,125 40,521 

6.1 

N
o
 LT 

7,966 925,438 6,834 33,723 
6,834 99,217 

6.2 TIHC 6,991 33,304 

7.1 

1
0
0
0
 

1 

Y
es
 

LT 
29,744 5,849,512 15,903 11,833 

16,115 46,474 

7.2 TI HC 16,751 10,873 

8.1 

N
o
 LT 

28,246 4,739,098 13,570 7,012 
13,761 35,328 

8.2 TIHC 14,173 7,887 

9.1 

5 

Y
es
 

LT 
20,912 4,530,910 15,903 43,462 

16,136 68,694 

9.2 TIHC 16,597 42,980 

10.1 

N
o
 LT 

18,756 4,100,013 13,540 34,022 
13,739 45,132 

10.2 TIHC 14,171 34,743 

11.1 

10 

Y
es
 

LT 
18,898 4,290,147 15,903 81,652 

16,006 196,339 

11.2 TIHC 16,576 84,922 

12.1 

N
o
 LT 

16,396 3,770,432 13,564 63,524 
13,639 207,377 

12.2 TIHC 14,141 68,227 

13.1 

2
0
0
0
 

1 

Y
es
 

LT 
85,304 33,980,772 31,832 20,511 

32,345 259,211 

13.2 TI HC 33,640 21,597 

14.1 

N
o
 LT 

66,167 25,839,806 27,094 16,152 
27,446 160,039 

14.2 TIHC 27,998 15,045 

15.1 

5 

Y
es
 

LT 
41,348 20,455,456 31,846 83,094 

32,484 131,383 

15.2 TIHC 33,090 84,049 

16.1 

N
o
 LT 

34,195 15,542,509 27,094 66,067 
27,577 123,432 

16.2 TIHC 27,885 67,161 

17.1 

10 

Y
es
 

LT 
37,446 17,800,888 31,838 15,287 

32,343 266,318 

17.2 TIHC 32,725 161,613 

18.1 

N
o
 LT 

32,491 15,542,509 27,101 66,087 
27,488 355,010 

18.2 TIHC 14,141 68,227 
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