

Ancient Hybridization Patterns Between Bighorn and Thinhorn Sheep

Sarah H. D. Santos, Rhiannon M. Peery, Joshua M. Miller, Anh Dao, Feng-Hua Lyu, Xin Li, Meng-Hua Li, David W. Coltman

NOTICE: This is the peer reviewed version of the following article: Santos, S. H. D., Peery, R. M., Miller, J. M., Dao, A., Lyu, F.-H., Li, X., Li, M.-H., & Coltman, D. W. (2021). Ancient hybridization patterns between bighorn and thinhorn sheep. *Molecular Ecology*, 30, 6273–6288, which has been published in final form at http://dx.doi.org/10.1111/mec.16136. This article may be used for non-commercial purposes in accordance With Wiley Terms and Conditions for self-archiving.

Permanent link to this version https://hdl.handle.net/20.500.14078/3014

License All Rights Reserved

This document has been made available through <u>RO@M (Research Online at Macewan</u>), a service of MacEwan University Library. Please contact <u>roam@macewan.ca</u> for additional information.

1	Ancient hybridization patterns between bighorn and thinhorn sheep
2	
3	Running title
4	Introgression among Pachyceriform genomes
5	
6	Sarah H. D. Santos ¹ , Rhiannon M. Peery ¹ , Joshua M. Miller ¹ , Anh Dao ¹ , Feng-Hua Lyu ² , Xin
7	Li ^{3,4} , Meng-Hua Li ³ , David W. Coltman ¹
8	
9	¹ Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
10	² College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
11	³ CAS Key Laboratory of Animal Ecology and Conservation Biology, Chinese Academy of Sciences (CAS),
12	Beijing 100101, China
13	⁴ University of Chinese Academy of Sciences (UCAS), Beijing, China
14	
15	Corresponding author: Sarah Santos (sarahhel@ualberta.ca)
16	
17	Abstract
18	Whole-genome sequencing has advanced the study of species evolution, including the detection
19	of genealogical discordant events such as ancient hybridization and incomplete lineage sorting
20	(ILS). The evolutionary history of bighorn (Ovis canadensis) and thinhorn (Ovis dalli) sheep
21	present an ideal system to investigate evolutionary discordance due to their recent and rapid
22	radiation and putative secondary contact between bighorn and thinhorn sheep subspecies,
23	specifically the dark pelage Stone sheep (O. dalli stonei) and predominately white Dall sheep (O.
24	dalli dalli), during the last ice age. Here we used multiple genomes of bighorn and thinhorn

25 sheep, together with snow (O. nivicola) and the domestic sheep (O. aries) as outgroups, to assess 26 their phylogenomic history, potential introgression patterns and their adaptive consequences. Among the Pachyceriforms (snow, bighorn and thinhorn sheep) a consistent monophyletic 27 species tree was retrieved; however, many genealogical discordance patterns were observed. 28 Alternative phylogenies frequently placed Stone and bighorn as sister clades. This relationship 29 occurred more often and was less divergent than that between Dall and bighorn. We also 30 observed many blocks containing introgression signal between Stone and bighorn genomes in 31 which coat color genes were frequently present. Introgression signals observed between Dall and 32 bighorn were more random and less frequent, and therefore probably due to ILS or intermediary 33 secondary contact. These results strongly suggest that Stone sheep originated from a complex 34 series of events, characterized by multiple, ancient periods of secondary contact with bighorn 35 sheep. 36 37 **Keywords** 38 Gene Flow; Natural Selection; Coat Color Genes; Melanogenesis; Adaptive Introgression; Ovis 39 40 spp. 41 Introduction 42 Vertical transmission of genomic information does not always offer a complete picture of 43 the evolutionary history of species. Gene trees are often discordant from species trees, and 44 mechanisms leading to discordance, such as hybridization and incomplete lineage sorting (ILS), 45 are missed due to a lack of comprehensive genomic sequences (Bravo et al., 2019; Payseur & 46

47 Rieseberg, 2016). The advancement of high-throughput whole-genome sequencing technologies

48	and computation efficiency has brought new opportunities for understanding how speciation has
49	happened throughout time (Bravo et al., 2019; Ekblom & Wolf, 2014; Kulski, 2016). The ever-
50	increasing amount of whole-genome data, specifically for non-model species, has revealed
51	remarkable patterns of gene flow blocks, evidence for introgression, in both extant and extinct
52	species (e.g., Barlow et al., 2018; Edelman et al., 2019; Fontaine et al. 2015; Kumar et al. 2017;
53	Li, Figueiro, Eizirik, & Murphy, 2019a; Palkopoulou et al., 2018; Vianna et al., 2020). Within
54	these lineages, numerous conflicting signals can be observed among genomic regions, including
55	historical encounters of distinct species and their posterior hybridization and genomic
56	incorporation (Degnan & Rosenberg, 2009; Payseur & Rieseberg, 2016; Shurtliff, 2013).
57	Gene flow blocks arising through introgression are more often detected in species with
58	recent and rapid radiations, in which insufficient time has passed to erase the introgression signal
59	(Degnan & Rosenberg, 2009; Payseur & Rieseberg, 2016). Ovis spp. present an opportunity to
60	explore a recent divergence of approximately 8.31 million years ago (Ma) (Lv et al., 2015), and
61	the effects of genomic introgression among these taxa. Their diversification has resulted in eight
62	species divided into two major clades, the Pachyceriforms and Argaliforms/Moufloniforms
63	(Bunch, Wu, Zhang, & Wang, 2006; Dotsev et al., 2019; Geist, 1971; Rezaei et al., 2010). Ovis
64	phylogenies have been extensively studied using a variety of molecular markers, in which some
65	remarkable genomic footprints left by admixture events were observed. However, the majority of
66	these studies have focused on understanding the origin of domesticated sheep breeds (O. aries;
67	Bunch et al., 2006; Hiendleder, Kaupe, Wassmuth, & Janke, 2002; Hu et al., 2018), and on
68	hybridization between wild and domesticated sheep species (Deng et al., 2020; Feulner et al.,
69	2013; Gratten et al., 2010; Lv et al., 2015; Rochus et al., 2018; Rochus, Westberg Sunesson,
70	Jonas, Mikko, & Johansson, 2019; Somenzi, Ajmone-Marsan, & Barbato, 2020). Such

⁷¹ hybridization events can be followed by an adaptive introgression process (Hedrick, 2013),

especially concerning coat color in sheep (Hu et al., 2018; Rochus et al., 2018, 2019).

Within the *Ovis* species complex, the Pachyceriforms compromise a monophyletic clade 73 74 of three species (Bunch et al., 2006; Rezaei et al., 2010): thinhorn sheep (O. dalli), with its two subspecies Dall (O. dalli dalli) and Stone (O. dalli stonei), form an inner clade with bighorn (O. 75 canadensis) followed by snow sheep (O. nivicola) as their sister-group (Bunch et al., 2006; Geist, 76 1971; Rezaei et al., 2010) (Figure 1). Though this species-level topology is generally agreed 77 upon, the relationship between thinhorn and bighorn is likely tangled with potential gene flow 78 events (Loehr, Carey, Ylonen, & Suhonen, 2008; Loehr et al., 2006), making the Pachyceriforms 79 a compelling group in which to study ancient admixture and its adaptive consequences. Notably, 80 it is hypothesized that admixture events contributed to the dark coat color pattern seen in Stone 81 sheep (Figure 1a-b), while Dall's ancestor (Loehr et al., 2006, 2008), which was isolated in the 82 Alaskan refugium, developed its white coat color (Figure 1c) (Klein, 1965). While bighorn and 83 thinhorn may have experienced gene flow in the past, they have distinct contemporary 84 distributions: bighorn sheep are widely distributed in western North America as far north as the 85 Rocky Mountains in British Columbia and Alberta (Festa-Bianchet, 2020a). Thinhorn sheep are 86 found in more northerly regions of North America, and their subspecies ranges overlap. Dall 87 sheep are found in Alaska, the Northwest Territories, the Yukon and in northwest British 88 Columbia. Stone's sheep are endemic to northern British Columbia, overlapping with Dall sheep 89 along the Yukon border where they are admixed. (Festa-Bianchet, 2020b; Sim et al., 2016). 90 To date, no work has used whole-genome sequences to reveal the ancient admixture 91 processes that might have happened between bighorn and thinhorn sheep. By comparing genomic 92 sequences from multiple individuals of each species, we were able to trace their evolutionary 93

- history back to when ancient admixture took place and infer how introgression has impacted theirspeciation and shaped their genome composition.
- 96

97 Materials and Methods

- 98 Whole-genome assessment
- 99 Data acquisition and filtering

Whole-genome sequencing data of bighorn and thinhorn sheep (Table S1) were obtained 100 from an unpublished work (Chen, Xu, & Li, unpublished). These samples were collected in 101 native areas in the USA and Canada (Table S1). Five bighorn individuals were from Montana and 102 one from Alberta. The two subspecies of thinhorn comprised three Stone individuals from British 103 Columbia, and one Dall from the Northwest Territories. After obtaining genomic DNA from 104 blood using standard phenol-chloroform extraction procedure, TruSeq PCR-free preparation kits 105 (Illumina, San Diego, CA) were used to construct paired-end sequencing libraries with an insert 106 size of approximately 350-bp. Whole-genomes were sequenced on the Illumina HiSeq X Ten 107 Sequencer (Illumina Inc.). 108

We used the bighorn (N=6) and thinhorn (N=4) genomic data, together with publicly 109 available short-read sequences of snow sheep (Upadhyay et al., 2020) and goat (*Capra hircus*) 110 (Table S1). All reads were checked for quality using FastQC v.0.11.8 (Andrews, 2019). For the 111 bighorn and thinhorn data, quality filters were applied to all paired-end reads obtained by 112 excluding reads with unidentified nucleotides (N-content) ≥ 10 , more than 10 nucleotides aligned 113 to the adaptor or mismatches >10%, more than 50% of read bases with Phred quality score (O-114 score) less than 5, and putative PCR duplicates generated in the library construction process 115 (Chen, Xu & Li, unpublished). No adaptors were kept. We verified that the snow sheep had 116

117	short-reads within the 20-30 phred-score range. For the goat short-read data, which we used as
118	outgroup, we trimmed lower quality reads (phred-score <20) and sequences with length smaller
119	than 50-bp with Trimmomatic v.39 (Bolger, Lohse, & Usadel, 2014). We used BBMap v.38.87
120	(Bushnell, 2020) to check and fix paired-end reads' order. All individuals were mapped against
121	the domestic sheep genome, which includes 26 autosomes plus the X chromosome (NCBI
122	accession no. GCA_002742125.1; Oar_rambouillet_v1.0), using BWA-MEM v.0.7.17 with
123	default parameters (Li & Durbin, 2009). The mapped short-read data of each individual was
124	further filtered, sorted, indexed, and their mapping success was checked with Samtools v.1.10 (Li
125	et al., 2009). The overall depth (Table S1) and per base coverage for each individual (Figure S1)
126	were retrieved by employing Samtools and BEDTools v.2.29.2 (Quinlan & Hall, 2010),
127	respectively. Finally, we obtained a pseudohaploid consensus for each genome using ANGSD
128	v.0.929 (doFasta 2; Korneliussen, Albrechtsen, & Nielsen, 2014), in which we applied quality
129	filters (minMapQ 30; minQ 20; setMinDepth 5). Each nucleotide was determined randomly,
130	coming from either strands, by considering the number of base counts. These consensus
131	sequences, from bighorn, snow, thinhorn and goat, were masked for repetitive regions based on
132	the domestic sheep coordinates with BEDTools.

133

134 *Dataset generation*

Nuclear whole-genomes were separated into genomic fragments (GF) to perform the
following analyses. Alignments of 16 different datasets (128 subsets) were built using a custom
python script (Figueiro, 2019), depending on the individuals used and analyses done (Table 1;
Figure S2-S8). We generated non-overlapping 10-kb GFs (no step size) with BEDTools for each
focal species (bighorn and thinhorn sheep) to estimate their nucleotide diversity (Dataset 1: Table

140	1). Furthermore, we generated GFs of 1-Mb (Dataset 2), 100-kb (Dataset 3), and 10-kb (Dataset
141	4) for the phylogenomic analyses (Table 1). We set step sizes between GF either 6-kb or 100-kb
142	to compensate for possible biases due to the extent of linkage disequilibrium (Kijas et al., 2014)
143	or recombination (Xin et al., 2020), respectively. We also included a bigger step size (200-kb)
144	and to test whether the same signal was obtained. To investigate the full spectrum of the
145	evolutionary history, Datasets 2-4 included six bighorn, four thinhorn, and one snow sheep, plus
146	the domestic sheep as the outgroup. We then focused on datasets that allowed for fine scale
147	comparisons of 10-kb GFs, using the step sizes described previously (Datasets 5-7: Table 1).
148	Datasets 5 and 6 had the same ingroup individuals (N=6) except for the addition of the goat as the
149	outgroup in Dataset 6 (N=7). Dataset 7 had only one individual of each species/subspecies (Table
150	1; N=5) and used the domestic sheep as an outgroup. We used trimAl v.1.4.rev22 (Capella-
151	Gutierrez, Silla-Martinez, & Gabaldon, 2009) in Datasets 1-7 to filter spurious sequences that
152	included missing data in more than 20% of sequences (gt 0.8), and only considered alignments
153	with 50% or more sequence retained. For the introgression analyses, we generated and used all
154	non-overlapping windows of 100-kb with no step size (Datasets 8-16: Table 1; Figure S2-S8).
155	We organized subsets within each dataset for the 5- (Datasets 8-13: Figure S2-S7) and 4-taxon
156	(Datasets 14-16: Figure S8) introgression analyses, differing in the bighorn and thinhorn
157	individuals included.

158

159 *Population assessment*

To assess the population structure of bighorn (N=6) and thinhorn (Dall N=1; Stone N=3) individuals, a haplotype-based variant call of the whole mapped genomes was done with default parameters in Platypus v.0.8.1 (Rimmer et al., 2014). We performed a PCA with Plink v.2.0

Page 8 of 43

(Chang et al., 2015; Purcell & Chang, 2019) and applied quality filters that included a threshold
of 0.1 for missing call frequency of variants and samples. These results were compared to their
collection site (Table S1). Results were visualized with the R package ggplot2 v.3.3.2 (Wickham,
2016).

Additionally, we estimated the diversity of each focal species by calculating diversity per 167 nucleotide site (π) per focal species using the python egglib v.3.0.0 package (De Mita & Siol, 168 2012). Here we employed Dataset 1 alignments (all bighorn and thinhorn individuals separately; 169 Table 1) with non-overlapping 10-kb GFs, and differences per window were divided by the 170 effective number of analyzed sites within each GF. Only windows present in all sequences were 171 considered. Lastly, we performed an outlier test, which removed windows with excessive π 172 values falling more than 1.5 times the interquartile range above the third quartile or below the 173 first quartile. 174

The filtered values obtained for thinhorn and bighorn were compared statistically using IBM SPSS Statistics v.27 (IBM Corp., 2020). The windows were separated into all chromosomes, autosomes, and the X chromosome, all of which were tested for normality with a Kolmogorov-Smirnov test. We also visualized whether the distribution was normal by verifying the histogram and Q-Q plot. We applied the non-parametric Mann-Whitney U test to compare diversity values of each data partition and compared autosomes to the X-chromosome of each species separately. In all scenarios, we used a p-value threshold of 0.05.

182

183 Phylogenomic analyses

184 *Gene tree estimation and species tree reconstruction*

Page 9 of 43

Molecular Ecology

185	We employed a maximum-likelihood method (RAxML-MPI v.8.2.12) (Stamatakis, 2014)
186	to infer phylogenomic trees for each GF in their respective Datasets (2-7) (Table 1). We used the
187	rapid bootstrap estimation using 100 replicates. We applied the GTRGAMMA substitution
188	model, since RAxML was designed to handle parameter rich models of GTR (Stamatakis, 2014).
189	All other parameters were kept at default. The results of Datasets 5-7 (each with fewer and more
190	representative individuals) were summarized using Newick Utilities v.1.6 (Junier & Zdobnov,
191	2010), considering specific evolutionary relationships among thinhorn and bighorn (Figure 1d-f).
192	These topologies were constrained to vary the sister relationships of bighorn and thinhorn
193	individuals, whereas the domestic and snow sheep (as well as goat in Dataset 6) remained as
194	outgroups (topologies outside of this were called "Other Topologies"). We focused on topologies
195	that represented the original speciation event (topology 1), as well as topologies that placed Stone
196	(topologies 2 and 3) or Dall (topologies 4 and 5) as sister to bighorn (Figure 1d-f). The nodal
197	supports of our main topologies were verified based on a >70 threshold, where we counted the
198	number of windows representing a specific phylogenetic relationship (e.g., Stone and bighorn as
199	sisters). Additionally, we tested whether using the goat genome as an outgroup would impact the
200	phylogenomic inferences of Dataset 6 and compared these results to Dataset 5.
201	The resulting trees (topologies 1-5 and other topologies) from Datasets 5-7 were used to

The resulting trees (topologies 1-5 and other topologies) from Datasets 5-7 were used to generate consensus species trees for all chromosomes, autosomes, and the X chromosome using Astral-III (Zhang, Rabiee, Sayyari, & Mirarab, 2018). First, we obtained unrooted trees with ape v.5.4-1 in R (Paradis & Schliep, 2019), followed by estimating the species trees for each dataset and partition. All parameters in Astral were kept at default.

206

207 Divergence time estimation

208	To characterize patterns of divergence across the genomes, we estimated their species tree
209	divergence times with BPP v.4.3.0 (Flouri, Jiao, Rannala, & Yang, 2018), a multispecies
210	coalescent (MSC) model method that considers the presence of incomplete lineage sorting (ILS).
211	Here we employed Dataset 5 alignments (Step sizes: 100 and 200-kb) that resulted in the species
212	tree rooted by the domestic sheep. This dataset was chosen to fulfill the requirements of BPP,
213	which included at least two individuals of our focal group (thinhorn and bighorn sheep). We
214	applied the A00 model that estimates the parameters based on a given species tree model. The
215	mitogenome estimation of the sheep root age (8.31 Ma; Lv et al., 2015) was used as the inverse-
216	gamma prior (3, 0.01662). The burnin, samplefreq, and nsample parameters were set to 10000,
217	20, and 20000, respectively. All other parameters were left default, and convergence was verified
218	with Tracer v.1.7.1 (Rambaut, Drummond, Xie, Baele, & Suchard, 2018). The results were then
219	recalibrated based on the 8.31 Ma root age.
220	We investigated speciation among our focal species by estimating the absolute divergence
220 221	We investigated speciation among our focal species by estimating the absolute divergence per site (d_{xy}) between thinhorn and bighorn using a python egglib package. Here we explored the
220 221 222	We investigated speciation among our focal species by estimating the absolute divergence per site (d_{xy}) between thinhorn and bighorn using a python egglib package. Here we explored the relationship and potential hybridization events between Stone and bighorn, considering how
220 221 222 223	We investigated speciation among our focal species by estimating the absolute divergence per site (d_{xy}) between thinhorn and bighorn using a python egglib package. Here we explored the relationship and potential hybridization events between Stone and bighorn, considering how divergent Dall or Stone were from bighorn. We used Dataset 5, in which bighorn individuals
220 221 222 223 224	We investigated speciation among our focal species by estimating the absolute divergence per site (d_{xy}) between thinhorn and bighorn using a python egglib package. Here we explored the relationship and potential hybridization events between Stone and bighorn, considering how divergent Dall or Stone were from bighorn. We used Dataset 5, in which bighorn individuals were from different locations (Table S1), to consider the impact of having distinct intraspecific
220 221 222 223 224 225	We investigated speciation among our focal species by estimating the absolute divergence per site (d_{xy}) between thinhorn and bighorn using a python egglib package. Here we explored the relationship and potential hybridization events between Stone and bighorn, considering how divergent Dall or Stone were from bighorn. We used Dataset 5, in which bighorn individuals were from different locations (Table S1), to consider the impact of having distinct intraspecific demographic histories. One individual (B4) was from the National Bison Range, a population
220 221 222 223 224 225 226	We investigated speciation among our focal species by estimating the absolute divergence per site (d_{xy}) between thinhorn and bighorn using a python egglib package. Here we explored the relationship and potential hybridization events between Stone and bighorn, considering how divergent Dall or Stone were from bighorn. We used Dataset 5, in which bighorn individuals were from different locations (Table S1), to consider the impact of having distinct intraspecific demographic histories. One individual (B4) was from the National Bison Range, a population that experienced intraspecific admixture after intentional introduction of individuals to perform a
220 221 222 223 224 225 226 227	We investigated speciation among our focal species by estimating the absolute divergence per site (d_{xy}) between thinhorn and bighorn using a python egglib package. Here we explored the relationship and potential hybridization events between Stone and bighorn, considering how divergent Dall or Stone were from bighorn. We used Dataset 5, in which bighorn individuals were from different locations (Table S1), to consider the impact of having distinct intraspecific demographic histories. One individual (B4) was from the National Bison Range, a population that experienced intraspecific admixture after intentional introduction of individuals to perform a 'genetic rescue' (Hogg, Forbes, Steele, & Luikart, 2006; Miller et al., 2014; Miller, Poissant,
220 221 222 223 224 225 226 227 228	We investigated speciation among our focal species by estimating the absolute divergence per site (d _{xy}) between thinhorn and bighorn using a python egglib package. Here we explored the relationship and potential hybridization events between Stone and bighorn, considering how divergent Dall or Stone were from bighorn. We used Dataset 5, in which bighorn individuals were from different locations (Table S1), to consider the impact of having distinct intraspecific demographic histories. One individual (B4) was from the National Bison Range, a population that experienced intraspecific admixture after intentional introduction of individuals to perform a 'genetic rescue' (Hogg, Forbes, Steele, & Luikart, 2006; Miller et al., 2014; Miller, Poissant, Hogg, & Coltman, 2012). The other individual (B6) originated from Ram Mountain, which is an
220 221 222 223 224 225 226 227 228 229	We investigated speciation among our focal species by estimating the absolute divergence per site (d_{xy}) between thinhorn and bighorn using a python egglib package. Here we explored the relationship and potential hybridization events between Stone and bighorn, considering how divergent Dall or Stone were from bighorn. We used Dataset 5, in which bighorn individuals were from different locations (Table S1), to consider the impact of having distinct intraspecific demographic histories. One individual (B4) was from the National Bison Range, a population that experienced intraspecific admixture after intentional introduction of individuals to perform a 'genetic rescue' (Hogg, Forbes, Steele, & Luikart, 2006; Miller et al., 2014; Miller, Poissant, Hogg, & Coltman, 2012). The other individual (B6) originated from Ram Mountain, which is an isolated, native population with no historical intraspecific admixture (Coltman, Festa-Bianchet,
220 221 222 223 224 225 226 227 228 229 230	We investigated speciation among our focal species by estimating the absolute divergence per site (d _{xy}) between thinhorn and bighorn using a python egglib package. Here we explored the relationship and potential hybridization events between Stone and bighorn, considering how divergent Dall or Stone were from bighorn. We used Dataset 5, in which bighorn individuals were from different locations (Table S1), to consider the impact of having distinct intraspecific demographic histories. One individual (B4) was from the National Bison Range, a population that experienced intraspecific admixture after intentional introduction of individuals to perform a 'genetic rescue' (Hogg, Forbes, Steele, & Luikart, 2006; Miller et al., 2014; Miller, Poissant, Hogg, & Coltman, 2012). The other individual (B6) originated from Ram Mountain, which is an isolated, native population with no historical intraspecific admixture (Coltman, Festa-Bianchet, Jorgenson, & Strobeck, 2002; Miller et al., 2014). We divided the differences obtained for each

combination of species (Dall or Stone *vs.* bighorn) by the effective number of analyzed sites within each GF. To compare their d_{xy} , we only considered windows present in all comparisons. Additionally, we performed an outlier test, and these results were tested for normality and significance, in the same manner as described for nucleotide diversity. We compared the results for all chromosomes, autosomes, and the X chromosome, considering an alpha value of 0.05.

237 Ancient hybridization pattern estimation

238 *Reticulate evolution evaluation*

Considering the likely reticulate evolutionary events in the speciation of these taxa, we 239 further estimated the phylogenomic signal in the presence of hybridization and ILS by employing 240 PhyloNet (Than, Ruths, & Nakhleh, 2008; Wen, Yu, Zhu, & Nakhleh, 2018). The species 241 networks were inferred from gene trees that included bootstrap support, and we set a nodal 242 support threshold of \geq 70. We used Subset 7.3 gene trees without branch lengths to perform 243 independent runs (Table 1). These trees had one representative individual per subspecies/species. 244 We estimated specific numbers of reticulations (0, 1, 2, and 3) using maximum-likelihood 245 (InferNetwork ML) in 50 runs, returning the five best networks. These analyses were optimized 246 after the search based on their branch lengths and inheritance probability. To obtain the best 247 representing number of reticulations, we assessed the log probabilities of the five best networks 248 of each run and calculated information criterion tests (AIC and BIC). These calculations were 249 performed according to Yu, Dong, Liu, & Nakhleh (2014). Networks were plotted with 250 Dendroscope v.3 (Huson & Scornavacca, 2012), in which branch lengths in coalescent units and 251 inheritance probabilities were shown. Finally, we summarized the five best networks 252 (SummarizeNetworks 5) using the major trees rule. 253

255 Introgression analysis

Given their recent and rapid radiation, as well as a possible reticulate evolution, we 256 investigated patterns of introgression throughout bighorn and thinhorn genomes. Dfoil (Pease & 257 Hahn, 2015), a D-statistics method, was employed by assuming a symmetric five-taxon 258 phylogeny, which translates to having two in-group clades $(P_1/P_2 vs. P_3/P_4)$ and an outgroup (O), 259 where one in-group (P_1/P_2) is younger than the other (P_3/P_4) . The test accounts for the presence 260 and frequency of derived alleles in different taxon combinations, allowing the distinction between 261 genealogical discordance driven by ILS and by introgression (Pease & Hahn, 2015). For all 262 analyses, we considered a p-value cutoff of 0.01, and all other parameters were kept at default. 263 We used all non-overlapping 100-kb GFs as input and reported all that were significant. The 264 resulting significant introgression signals were summarized with *dfoil analyze.py*, from which 265 we obtained the total count per direction of gene flow (e.g., $P_1 \rightarrow P_3$). We ran an exhaustive 266 analysis of all taxa combinations using the different thinhorn individuals as P_1 and P_2 , and 267 bighorn as P_3 and P_4 (Datasets 8-13: Figure S2-S7). The domestic sheep genome was used as an 268 outgroup in all scenarios. To further study introgression patterns and narrow down possible 269 adaptive genes, we estimated the asymmetric 4-taxon D-statistics (Green et al., 2010) in Dfoil. In 270 this scenario, we used Dall as P_1 and Stone as P_2 , followed by bighorn individuals as P_3 , and the 271 domestic sheep as the outgroup (Datasets 14-16: Figure S8). In contrast to the 5-taxon method, 272 the resulting introgression signal represented bidirectional patterns ($P_1 \leftrightarrow P_3$; $P_2 \leftrightarrow P_3$). We 273 obtained the total counts of significant introgression patterns. 274 The 4-taxon subset 14.6 GFs with the best mapping success genomes (one per 275 subspecies/species; Table 1) and a given introgression signal (i.e., Dall or Stone↔ bighorn) were 276

compared to the location of coat color, which were either complete or partially complete within 277 278 their 100-kb GFs. These genes were obtained from literature review (Table S2) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) melanogenesis pathway (humans: hsa04916; 279 280 sheep: oas04916; reference pathway: ko04916) (Kanehisa, 2019; Kanehisa, Furumichi, Sato, Ishiguro-Watanabe, & Tanabe, 2020; Kanehisa, Sato, Furumichi, Morishima, & Tanabe, 2019). 281 Gene descriptions were acquired from the NCBI database (https://www.ncbi.nlm.nih.gov/gene). 282 Furthermore, we investigated the protein-protein interaction (PPI) networks per introgression 283 pattern of coat color genes using string v.11.0 (Szklarczyk et al., 2015). This analysis illustrates 284 whether the genes found within GFs with introgression signal code for proteins that interact. 285 Quality filters were applied, including a high confidence threshold of 0.700, an FDR stringency 286 of 1%, and we set the organism as Ovis spp. Cytoscape v.3.8.1 (Shannon et al., 2003) was used to 287 improve visualization of the interaction networks. The genes with PPI and that directly interact 288 were visualized as networks and color-coded based on the outputted pathway. We considered 289 those pathways with strength higher than 2, which included 7 or more genes connected in the 290 network. Additionally, we compared the GFs to the location of all other genes. If a gene was 291 present in more than one type of introgression GF, we considered the window with at least 30-kb 292 more inside its 100-kb interval. When genes were present within the entire 100-kb intervals of 293 both introgression patterns, we excluded them. We compared the counts of either CDS or genes 294 present in regions with and without introgression signal (Dall or Stone and bighorn separately) 295 using a chi-squared test. 296

To ensure robust comparison and consistent introgression signal, we combined the 4taxon Datasets 14-16 (Figure S8) (hereafter "4-taxon combined dataset") to narrow down the potential adaptive introgression patterns. Only windows in common between all datasets were

used, and we verified whether the introgression signal between Dall or Stone and bighorn would 300 301 be lost by employing different individuals of the focal species. This dataset was compared to the selection analysis (see the "Natural selection inference" section), from which we obtained either 302 303 complete or partially complete genes within their GFs. Gene descriptions were obtained from NCBI. We used the coding regions (CDS) found within the 4-taxon combined dataset to identify 304 functional genes in biological processes using the PANTHER database v.14.0 with Homo sapiens 305 as the model organism (Thomas et al., 2003; Mi et al., 2010; Mi, Muruganujan, Ebert, Huang, & 306 Thomas, 2019; Mi et al., 2019). We also considered the function of some potentially introgressed 307 genes not recognized by PANTHER (i.e., LOC plus gene number) as they are absent in Homo 308 sapiens. We compared the presence of genes in regions with and without introgression signal in 309 the 4-taxon combined dataset using a chi-squared test in the same way we did for the 4-taxon 310 subset 14.6. 311

312

313 *Natural selection inference*

To infer the adaptive significance of potential introgression blocks, we extracted CDS 314 from each genome using the domestic sheep genome coordinates using gffread (Pertea & Pertea, 315 2020). Extracted regions were verified using the reciprocal best hits method and the RefSeq CDS 316 for the domestic sheep. Since all genomes were aligned to the domestic sheep and the same 317 annotation file was used for CDS extraction, we were able to concatenate the CDS sequences for 318 each gene as aligned sequences. These files were converted to *phylip* format prior to estimating 319 per gene dN/dS ratios using a looped perl script (Hughes, 2011). We inferred natural selection 320 patterns by employing CODEML in PAML (Yang, 2007) to estimate per CDS omega values (ω 321 or dN/dS), which assessed the signals observed among the different lineages. The estimated ω 322

indicates whether the natural selection signal was negative/purifying ($\omega < 1$), neutral ($\omega = 1$), or positive ($\omega > 1$) (Yang, 2007). We set a threshold for each selection signal based on the observed distribution of ω (purifying: $\omega < 0.8$; neutral: $0.8 \le \omega \le 1.2$; positive: $\omega > 1.2$). We removed any CDS from the analysis with out-of-bounds values ($\omega \ge 5$ and ≤ 0.0004 ; "OOB") to calculate the median ω per 100-kb window (same size of the introgression analyses) with R v4.0.2 (R Core Team, 2020) and Rstudio v1.3.1056 (RStudio Team, 2020). Results were visualized with the R package ggplot2.

Finally, we analyzed the selection patterns observed within blocks with introgression 330 signals. We calculated the branch-site model in CODEML by employing two different topologies 331 with either Dall or Stone as sister to bighorn (Figure 1e-f), which allowed us to calculate ω values 332 for these specific branches (hereafter called "foreground"). Snow and the domestic sheep were 333 considered background branches together with Dall or Stone depending on the topology being 334 employed (Figure 1e-f). The likelihood ratio test (LRT) differentiates a null and an alternative 335 hypothesis, where the former proposes either neutral or purifying selecting on foreground and 336 background, while the latter demonstrates signals of positive selection in the foreground (Yang, 337 2007). We compared the resulting CDS ω ratios to the 4-taxon subset 14.6 and 4-taxon combined 338 dataset, considering the introgression pattern observed within each GF (Dall or Stone↔bighorn). 339 We used the LRT per CDS to calculate the p-value and false discovery rate (FDR) with the 340 package pchisq (Becker, Chambers, & Wilks, 1988; Johnson, Kotz, & Balakrishan, 1994, 1995) 341 and qvalue (Storey, Bass, Dabney, & Robinson, 2020) in r, respectively. We considered an alpha 342 value of 0.05 with one as degree of freedom and 3.84 as the critical number. 343

344

345 **Results**

346 Whole-genome and population assessment

347 After mapping all bighorn, snow, and thinhorn sheep sequences against the domestic sheep genome, the reconstructed repeat-masked genomes spanned on average a total of 47.9% 348 349 (Table S1). Most of these genomes had reasonable coverage throughout, ranging from 15-27.5X, in which bighorn and thinhorn sheep had similar values, whereas snow sheep had the lowest 350 quantity of data mapped (Figure S1; Table S1). Additionally, we also mapped the goat genome, 351 which represented 47.7% after repeat-masking, with a 28.9X coverage (Figure S1k; Table S1). 352 Bighorn and thinhorn genomes demonstrated population structure, as the six bighorn 353 individuals clustered together and were well resolved from thinhorn sheep along PC axis 1 354 (Figure S9; Table S1). PC axis 2 separated Stone sheep from Dall sheep (Figure S9). Patterns of 355 nucleotide diversity varied among species (Before outlier test: 134,230 GFs; after: 119,343 GFs). 356 Autosomal diversity was significantly higher than the X chromosome in each species (p-357 value<0.001) (Figure S10). Significant differences in diversity were found among species for all 358 chromosomes and autosomes with thinhorn exceeding bighorn (Figure S10a-b, d), whereas the X 359 chromosome diversity was significantly higher for bighorn than thinhorn (Figure S10c-d). 360

361

362 Speciation events through a phylogenomic perspective

Pachyceriform evolutionary history is characterized by multiple gene trees throughout their genomes regardless of the dataset, GF and step size used (Figure 1d-f, S11; Table S3-S4). After constraining, we observed that the accepted species tree (topology 1) was most prevalent, followed by topologies 2-3 and 4-5 (Table S4). The topologies had variable nodal bootstrap support, in which the species tree was the most supported, followed by topologies 2 and 3, representing the relationship between Stone and bighorn (Table S5-S7). These values followed

369	the same pattern for all datasets used, even when using the goat as an outgroup (Table S5-S7).
370	Moreover, the species tree was also prevalent under MSC in all datasets analyzed (Figure 1d,
371	S12-S13). While using Datasets 2, 3 and 4 (with all individuals of each species), we observed the
372	same topology when considering all chromosomes or only autosomes (Figure S12a). However,
373	when considering only the X chromosome, individuals of each species had varying positions
374	within their clades for the different GFs and step sizes (Figure S12b-g). The species trees
375	observed for Datasets 5 to 6 (with fewer individuals per subspecies/species) were not variable for
376	the different chromosomal partitions regardless of outgroup taxa (Figure S13a-c).
377	Given the species tree observed, we estimated the relative node ages and subsequently the
378	divergence times of their speciation event (Figure 2a; Table S8). The relative node ages estimated
379	for subsets 5.2 and 5.3 were robust and consistent for the different nodes (Table S8). From the
380	relative node ages, we estimate that the thinhorn clade (Dall and Stone) speciated from bighorn at
381	approximately 2.50 and 2.21 Ma for analyses done with 100-kb and 200-kb step sizes,
382	respectively. This trio and snow sheep separated at around 2.85 and 2.63 Ma (Figure 2a).
383	Looking further into bighorn and thinhorn divergence (GFs with 100-kb and 200-kb step size
384	respectively: 10,758 and 6,207), Stone and bighorn were significantly less divergent than Dall
385	and bighorn for all chromosomes and autosomes in the two subsets under Mann-Whitney U
386	(Figure S14-S15a-b, d). The X chromosome had a similar pattern, though it was not significantly
387	different (Figure S14-S15c-d). Additionally, the sister-species divergence (Figure S14-S15) was
388	consistently higher than the intraspecific diversity (Figure S10).
389	

390 Speciation mediated by ancient hybridization

Based on the different topologies observed for the phylogenomic inference (Figure 1d-f. 391 392 S11; Table S4), we estimated a species network with distinct numbers of reticulation events (Figure S16-S19). We determined that three reticulation events demonstrated the best log 393 394 probability and best fitted the models (AIC and BIC) (Table S9). When summarizing these reticulation networks, the most supported phylogeny was topology 1 (Figure 2a). We observed 395 one reticulation event representing the origin of snow, and other two reticulations involved each 396 with the origin of the trio (bighorn and thinhorn) and of Stone (from bighorn and Dall ancestors) 397 (Figure 2b; S19). 398

To further investigate ancient hybridization patterns, we conducted the 5-taxon 399 introgression analysis (Figure S2-S7). Most GFs showed a bidirectional relationship between the 400 thinhorn lineage and a bighorn individual ($P_{1,2} \leftrightarrow P_3$ or $P_{1,2} \leftrightarrow P_4$) (Figure S20; Table S10-S11). 401 When Stone sheep individuals were P_1 and P_2 (Datasets 8-10: Figure S20a; Table S10), the 402 number of GFs with introgression signal from and into bighorn were similar. In contrast, when 403 Dall and Stone individuals were P_1 and P_2 (Datasets 11-13: Figure S20b; Table S11), we 404 observed that more GFs supported gene flow between Stone and bighorn. In this case, the 405 direction of introgression was mostly from bighorn to Stone. This same pattern was observed in 406 the 4-taxon D-statistics analysis (Datasets 14-16: Figure S21-S23), where a greater number of 407 GFs supported the relationship between Stone and bighorn $(P_1 \leftrightarrow P_3)$ in all scenarios. The GF 408 support was almost four times greater than that between Dall and bighorn $(P_2 \leftrightarrow P_3)$ (Figure S21-409 23), as observed in subset 14.6 with the best genomes (Figure 3a). By combining Datasets 14-16, 410 we identified 80 GFs with signals between Dall and bighorn, and 333 between Stone and 411 bighorn. 412

413	The GFs observed in subset 14.6 were compared to the coat color gene locations (Figure
414	3a-b; Table S12). We found 22 coat color genes in GFs with signals of introgression between
415	Stone and bighorn sheep, and six such genes in GFs between bighorn and Dall sheep (Figure 3b).
416	Based on the output from string for Stone and bighorn signals, 14 genes were directly part of the
417	melanogenesis pathway (Table S13), but only seven interact directly (PPI p-value: 3.1E-10)
418	(Figure 3c). The melanogenesis pathway had the highest number of coat color genes when
419	considering genes not directly connected in the network, but other pathways were also observed
420	and were related to various functions (Table S13). We identified an additional gene, CALML6
421	(Figure 3b), that was not included in the string output, but is known to be in the human
422	melanogenesis reference pathway (hsa04916). Moreover, two genes (DTNBP1 and HPS4) were
423	connected but involved in the biogenesis of lysosomal organelle complex (Figure 3b-c). There
424	was no significant PPI enrichment (p-value: 1) for genes present within GFs with signals of Dall
425	and bighorn. However, TCF7L2 was directly involved in the melanogenesis pathway, and AP1S1
426	and CTNS were part of the lysosome pathway (Figure 3b). The number of coat color genes
427	present in regions with or without introgression signal between Dall or Stone and bighorn (Table
428	S14-S15) did not differ significantly (Dall \leftrightarrow bighorn: $X^2_{(CDS)}=2.0$, p-value _(CDS) = 0.2; $X^2_{(genes)}=0.1$,
429	p-value _(genes) = 0.8; Stone↔ bighorn: $X^2_{(CDS)}$ =1.7, p-value _(CDS) =0.2; $X^2_{(genes)}$ =0.2, p-value _(genes) =0.7).
430	The genes present within the 4-taxon combined dataset (Figure S24; Table S16) were
431	associated with multiple functions. Most functions were related to common biological processes,
432	such as cell organization and metabolism (Figure S24). There were more genes present within
433	GFs with introgression signal between Stone and bighorn (genes=324; CDS=531) than Dall and
434	bighorn (genes=68; CDS=93) (Table S16). Furthermore, a gene within Stone and bighorn
435	introgression signals was related to behavior (Figure S24b), as well as coat color genes within

GFs with introgression signal between Dall or Stone and bighorn (Figure 3b). Olfactory genes 436 437 were also observed in this combined dataset (Dall and bighorn: 11; Stone and bighorn: 17). Coat color genes were observed at the same frequency in regions with or without introgression signal 438 between Dall and bighorn (Table S14-S15) (Dall \leftrightarrow bighorn: $X^2_{(CDS)}=0.9$, p-value_(CDS)= 0.4; 439 $X^{2}_{(genes)}=2.4$, p-value_(genes)= 0.1). We observed a trend in which coat color CDS/genes within GFs 440 with introgression signal between Stone and bighorn were more present than would be expected 441 by chance (Table S15); however, only one such comparison was significant (Stone↔bighorn: 442 $X^{2}_{(CDS)}$ =43.5, p-value_(CDS)=4.3E-11). 443

444

445 Potential adaptive introgression

Given the ancient hybridization patterns observed between Dall or Stone and bighorn, we 446 also observed distinct selection signals throughout their genomes. We used the distribution of ω 447 to set a threshold for each selection signal (Figure S25). After filtering CDS based on OOB or 448 insufficient genomic information, we observed 19,151 CDS in the one ratio analysis. Throughout 449 Dataset 7 genomes (one individual per subspecies/species), most CDS within bins underwent 450 purifying selection (89.64%; mean $\omega = 0.19$), followed by neutral (7.53%; mean $\omega = 0.96$) and 451 positive signals (2.83%; mean $\omega = 1.86$) (Figure 4). When considering only bins containing coat 452 color CDS, we observed mostly purifying signals (93.3%; mean $\omega = 0.15$), followed by positive 453 (4.2%; mean $\omega = 1.65$) and neutral (2.5%; mean $\omega = 0.98$) selection. The distribution of median 454 ω per 100-kb window showed a consistent pattern over all chromosomes (Figure 4). Furthermore, 455 when employing the branch-site model, we failed to reject the null hypothesis in most CDS 456 (Table S12, S16) and observed no positive selection in the coat color genes within Subset 14.6 457

458 (Table S12). Only one gene underwent positive selection in the 4-taxon combined dataset (Table459 S16).

460

461 **Discussion**

462 Evolutionary history of Pachyceriforms

By analyzing multiple whole-genome sequences, we confirmed the species tree of the 463 Pachyceriform clade, the topology seen previously by employing different molecular markers 464 (e.g., Bunch et al., 2006; Dotsev et al., 2019; Rezaei et al., 2010). We observed a clear species 465 delimitation of bighorn and thinhorn sheep (Figure S12-S13; Table S4), including subspecies 466 distinction of the latter. Concomitantly, we observed that π (Figure S10) of each species was 467 lower than the divergence level between them (Figure S14-S15). Moreover, this was also 468 confirmed by reconstruction under MSC, where regardless of how many individuals were used, 469 the species tree was still recovered (Figure S12). The main variation in this species tree topology 470 was the movement of bighorn or thinhorn individuals within their respective clades when 471 considering GF and step sizes on the X chromosome (Figure S12b-g). Their different collection 472 sites as well as mapping success could have impacted their positions (Table S1). 473

While demonstrating a robust species tree signal, we also observed distinct genealogical discordance patterns throughout their genomes (Table S4). These conflicting signals were possibly due to their recent and rapid radiation (Figure 2a; Table S8), which could have retained signals of ILS and ancient hybridization (Degnan & Rosenberg, 2009). These gene trees presented high topological movement of snow sheep in the different datasets and partitions (Table S4). Genome quality and coverage plays an important role in how the phylogenies are estimated (Young & Gillung, 2019), and the different topological positions of snow sheep could

be due to its lower genome coverage (Table S1). More snow sheep genomes are needed to fully
understand its role in the speciation of this group. Additionally, there were no major topological
differences when using either the domestic sheep (Dataset 5) or goat (Dataset 6) as the outgroup
(Table S4). Thus, the genealogical discordance observed was not caused or affected by outgroup
biases.

Moreover, even when the topologies were constrained to remove potential biases, we still 486 observed conflicting signals that placed Dall or Stone as sister to bighorn (Table S3-S4). These 487 topologies varied in bootstrap support, where the topology 1 (known "species tree") was the most 488 supported, followed by topologies 2-3 (Stone and bighorn) and 4-5 (Dall and bighorn) (Table S5-489 S7). We observed lower support for some phylogenomic relationships (Table S5-S7), which 490 could be due to genome mapping success, as well as to the lower π (Figure S10) and divergence 491 (Figure S14-S15) within and between species, respectively. A certain number of informative sites 492 are needed to maintain higher bootstrap values (Soltis & Soltis, 2003), and sequences of closely 493 related species, such as bighorn and thinhorn, can generate lower phylogenomic support. The low 494 π was also characterized by significant differences between thinhorn and bighorn on the all 495 chromosomes and autosomes (Figure S10a-b, d). The bighorn individuals were mostly from 496 regions with intraspecific admixture (Hogg et al., 2006; Miller et al., 2014; Miller et al., 2012), 497 which could explain the pattern observed. On the X chromosome, however, we observed that π 498 was significantly higher in bighorn (Figure S10c-d). Additionally, the X chromosome of both 499 bighorn and thinhorn was less diverse than the autosomes (Figure S10). Some studies have 500 observed that the X chromosome presents lower recombination rates, which can decrease the 501 genetic variability of species when compared to the rest of the genome (Edelman et al., 2019; 502 Figueiro et al., 2017; Li et al., 2019). Another explanation is that there are fewer copies of the X 503

chromosome when compared to autosomes. When assuming sex-specific Ne equivalent, we can
therefore consider the Ne on the X chromosome as only 0.75 beta of the autosomes (Kardos et
al., 2015; Hammer et al., 2008; Hedrick, & Parker 1997).

507 The significant difference between d_{xy} values (Dall and bighorn vs. Stone and bighorn) also supported the gene trees observed, specifically those estimated with more GFs (Figure S14). 508 The relationship between Stone and bighorn was more prevalent throughout the genomes when 509 compared to Dall and bighorn, and they were less divergent than Dall and bighorn, which also 510 agrees with previous studies (Loehr et al., 2006, 2008; Hoefs & Bunch, 2001). There were no 511 significant differences on the X chromosome (with 100 or 200-kb step size), which is potentially 512 generated by lower recombination rates and number of copies as described previously. These 513 patterns may have been driven by ancient hybridization with potential genomic incorporation 514 between Stone and bighorn. The less extensive Dall and bighorn introgression signals would be 515 potentially due to the presence of ILS or other phenomena, such as natural selection, as it was 516 less common and less supported in the different datasets, GF and step sizes used. Incongruent 517 signals, such as ILS, are randomly placed throughout the genome (Degnan & Rosenberg, 2009; 518 Payseur & Rieseberg, 2016), which might not have affected the nucleotide divergence estimates 519 of Dall and bighorn, resulting in higher divergence between them. 520

521

522 Ancient hybridization and its adaptive consequences

Given the genealogical discordance we observed from vertical transmission, we investigated whether Pachyceriform speciation underwent reticulate evolution. We detected at least three possible reticulation events (Table S9). Therefore, it is extremely important to consider ILS and hybridization events in phylogenomic inferences when dealing with recent speciation, as

Page 24 of 43

527	has been demonstrated for bears (Kumar et al., 2017). PhyloNet provides a consistent recovery of
528	the "true" species tree under high levels of gene flow events (Solís-Lemus, Yang & Ané, 2016),
529	and enabled us to summarize the best log probability reticulate networks, which resulted in
530	topology 1 (species tree: Figure 2a). By analyzing the best network (Figure 2b; Table S9), we
531	observed that snow sheep might have an important role to how bighorn and thinhorn originated;
532	however, more individuals are needed to further evaluate this relationship. Here we considered all
533	gene trees of subsets 7.3, including those where snow sheep moved between branches (N=6,780),
534	since it would be arbitrary to remove these phylogenies, and we tried to compensate by applying
535	a bootstrap threshold. Lower quality sequences could impact the reticulations observed (Cao, Liu,
536	Ogilvie, Yan, & Nakhleh, 2019), although most of the genomes used in this study were of
537	reasonable sequence coverage and quality (Figure S1; Table S1).
538	Furthermore, bighorn and thinhorn originated from at least one reticulation event (Figure
539	2b). We also observed a signal placing Stone as having originated from Dall and bighorn's
540	ancestor, with more contribution from Dall (71%) (Figure 2b), which agrees with the π , d _{xy} , and
541	introgression results (Figure S10; S14-S15; S20-S23). These networks demonstrate a complex
542	mosaic of events that took place and gave rise to today's known bighorn and thinhorn species.
543	They could have had a hybrid speciation, and not just hybridization events (Cao et al., 2019). The
544	ancient hybridization event(s) between Stone and bighorn has also been detected using
545	conventional genetic markers (e.g., Loehr et al., 2006, 2008; Meadows et al., 2006; Worley et al.,
546	2004).
547	We have improved our understanding of these ancient event(s) by analyzing multiple
548	bighorn and thinhorn individuals to identify potential introgression signatures within their

549 genomes. Most of the introgression signals observed for the 5-taxon analyses were bidirectional

550	between the lineage of thinhorn and bighorn (Figure S20; Table S10-S11). This pattern was
551	observed regardless of using only Stone as P_1/P_2 or Dall and Stone as P_1 and P_2 , respectively,
552	which could mean that a ghost lineage might be crucial in interpreting these results (Pease &
553	Hahn, 2015). Hybridization might have happened between a ghost lineage ancestral to bighorn
554	and Dall, followed by further hybridization between bighorn and the lineage leading to Stone
555	sheep. When we compared using only Stone as P_1/P_2 (Figure S20a) to using Dall and Stone as P_1
556	and P ₂ (Figure S20b), the number of windows from bighorn to Stone increased when both Dall
557	and Stone were used. This observation, and their lower divergence patterns (Figure S14-S15),
558	confirm more recent admixture between Stone and bighorn.
559	Although the 5-taxon results were robust across all possible combinations, using two
560	bighorn individuals per analysis could generate biases since these individuals had distinct
561	population histories (Coltman et al., 2002; Miller et al., 2014, 2012). Therefore, we decided to
562	further investigate their introgression patterns by employing an asymmetric analysis, where only
563	one bighorn individual per subset was used (Figure S8). Even then, we observed the same signal
564	as the 5-taxon analyses, where there were more signals between Stone and bighorn (Figure 3a;
565	Figure S21-S23). When we compared all datasets ("4-taxon combined dataset"), we observed
566	fewer signal, which could be explained by genetic drift of these neutral introgression blocks
567	(Burgarella et al., 2019). However, by only keeping those in common between introgression
568	patterns, we were able to retrieve a more robust introgression signal between these species, which
569	retained a stronger bidirectional relationship between Stone and bighorn. Moreover, based on all
570	comparisons done, there were more genes present within GFs with introgression signal between
571	Stone and bighorn (Table S12, S14). These GFs included potentially functional coat color genes.

572	Coat color genes observed in GFs with introgression signal were mostly related to the
573	melanogenesis pathway, although other functional pathways were also observed (Figure 3b-c;
574	Table S12-S14). All analyzed GFs within subset 14.6 and the 4-taxon combined dataset
575	demonstrated a strong purifying signal throughout the different chromosomes when considering
576	an ω per gene among species (Figure 4). Purifying selection removes deleterious alleles,
577	maintaining proper gene function (Charlesworth, 1993), and this pattern was associated with
578	lower genetic diversity (Figure S10) and potentially caused by background selection (Branca et
579	al., 2011; Comeron, 2017; Cvijovic, Good, & Desai, 2018; Talla et al., 2019). When analyzing
580	the branch-site model, coat color genes observed in the D-statistics GFs were mostly under either
581	neutral or purifying selection, and some of them have key roles in how pigment is produced and
582	distributed (Figure 3b; Table S12, S14). Most of these genes were found within Stone and
583	bighorn windows, which demonstrates that these blocks could have been incorporated, and their
584	functions retained. This is consistent with enriched coat color CDS present in GFs with
585	introgression signal between Stone and bighorn (Table S15). For example, the gene CALML6
586	found within Stone and bighorn has roles in the melanogenesis pathway, as well as olfaction
587	(Ramos-Lopez et al., 2019).

We observed several genes related to olfactory functions in sheep which were under neutral or purifying selection (Table S16). Thus, the function of *CALML6* may be maintained by selection as it is linked to multiple biologically important traits. We also observed genes related to the lysosomal organelle complex (*HPS4* and *DTNBP1*: Figure 3b-c), and mutations in this complex lead to diseases in humans (Sitaram & Marks, 2012; Serre, Busuttil, & Botto, 2018). Most genes present within these genomic blocks with introgression signals were related to trivial biological functions, but we also observed a behavior-related gene (Table S16). Deficit in

595	SHANK2 generates reduced social interaction, and impaired spatial learning (Won et al., 2012).
596	Darker coat color can be potentially associated with social dominance and mating behavior in
597	sheep (Loehr et al., 2008), and SHANK2 might contribute to variation in these characteristics.
598	Moreover, almost all CDS within Stone and bighorn GFs demonstrated no positive selection
599	(Table S12, S14), and the one gene that exhibited positive selection (Table S16) lacked functional
600	annotation (<u>https://www.ncbi.nlm.nih.gov/gene/286464</u>). Considering the higher presence of
601	purifying selection among lineages (Figure 4), as well as the failure to reject the branch-site
602	model null hypothesis of either neutral or purifying signals in most genes, it is possible that
603	introgression between Stone and bighorn maintained a dark coat color genetic architecture
604	already present rather than re-introducing it.
605	In contrast, the GFs with introgression signal between Dall and bighorn contained
606	relatively few coat color genes, and those that were present did not interact directly (Figure 3b;
607	Table S12). In the 4-taxon combined dataset we observed only two genes within these GFs,
608	neither of which displayed positive selection. One gene (CCNI) is involved in pro-inflammatory
609	functions in the skin and stimulated by UVB to maintain normal epidermal melanocyte (Henrot,
610	Truchetet, Fisher, Taïeb, & Cario, 2018; Xu et al., 2018), whereas the (CTNS) is related to
611	melanin synthesis (Chiaverini et al., 2012) and controls the presence of a negative regulator of
612	this pathway (Sturm, 2012). Within these GFs, we also observed olfactory-related genes (Table
613	S15); however, no genes related to behavior were found.

614 Moreover, the lack of positive selection could be associated to the type of selective 615 pressure. When hard sweeps are present, stronger selection effects are observed, in which π 616 decreases, making inference of selection from these regions better to detect (Burgarella et al., 617 2019). However, other signals can be difficult to detect, such as soft sweeps, which maintain π

with no drastic changes around these regions (Harris, Sackman, & Jensen, 2018). Both types of
sweeps can be present in introgression regions and contribute to adaptive introgression
(Burgarella et al., 2019). Although the branch-site model is a great tool to detect selection, it can
become overwhelmed by the saturation of dS, leading to higher false-negatives (Gharib &
Robinson-Rechavi, 2013), and lose detection power at low divergence regions (Yang & dos Reis,
2010).

624

625 Genome-wide evolutionary aspects

Our results with different window and step sizes demonstrate a complex network of 626 events and confirm that distinct parts of the genome present different evolutionary histories. Such 627 patterns have been demonstrated for various groups, e.g., butterflies (Martin et al., 2016), bears 628 (Kumar et al., 2017), cats (Figueiro et al., 2017; Li et al., 2019) and mosquitoes (Fontaine et al., 629 2015). With smaller window sizes we more accurately infer speciation by having GFs with more 630 specific recombination rates, and not just great genomic blocks with various rates. High and low 631 recombination rates play an important role in detecting the "true" phylogeny and the presence of 632 introgression patterns, since the former are diminished under lower rates (Edelman et al., 2019). 633 Thus, the importance of evaluating and applying different sizes to determine the evolutionary 634 history of species, specifically of those with recent and rapid radiation. 635

636

637 Concluding remarks

Stone and bighorn present clear evidence of ancient hybridization throughout their
genomes, with a stronger signal between Stone and bighorn, and a less divergent relationship
than between Dall and bighorn. This ancient hybridization left distinct introgression patterns

641	throughout Stone and bighorn genomes, such as genes related to coat color and behavior, which
642	may have implications for how Stone sheep developed/maintained their distinct pelage. Through
643	gene flow, genomic blocks were incorporated into Stone individuals leading to their dark
644	coloration, whereas in the absence of such introgression Dall maintained its white coat pattern.
645	Alternatively, the ancestral Pachyceriforms may have exhibited a darker coat color, and the white
646	coat of Dall is subsequent adaptation to northern environments. The Pachyceriform clade is
647	thought to have evolved from either an Ammon- or Nivicola-like individual, both of which
648	theoretically have darker coat color (Bunch et al., 2006; Cowan, 1940).
649	In contrast, the signals of hybridization obtained between Dall and bighorn were less
650	apparent and more random. The genealogical discordance patterns observed between Dall and
651	bighorn could have been caused by multiple mechanisms. First, Stone sheep may have been a
652	vector for blocks from bighorn as a result of secondary contact with Dall following the ice retreat,
653	given the wide separation between the geographic ranges of Dall and bighorn (Klein, 1965; Loehr
654	et al., 2006, 2008). A similar process has been proposed for bears (Kumar et al., 2017), in which
655	the geographically wide-spread grizzly bear would have been the vector species between polar or
656	American black bear and Asiatic black bear. Another possibility would be that other phenomena
657	generated incongruent signals throughout Dall's genome, such as ILS and natural selection.
658	

659 Acknowledgements

This study was financially supported by grants from the National Key Research and

- 661 Development Program-Key Projects of International Innovation Cooperation between
- 662 Governments (2017YFE0117900), the External Cooperation Program of Chinese Academy of
- 663 Sciences (152111KYSB20190027) and a Natural Sciences and Engineering Research Council of

- 664 Canada Discovery Grant to DWC. We are grateful to the hunters, outfitters and biologists who
- provided specimens for whole genome sequencing. We also thank Marty Kardos and two
- anonymous reviewers for their constructive comments and feedback.
- 667
- 668 **References**
- Andrews, S. (2019, January). *FastQC: a quality control tool for high throughput sequence data* [Software]. Retrieved from https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
- Barlow, A., Cahill, J. A., Hartmann, S., Theunert, C., Xenikoudakis, G., Fortes, G. G., ...
 Hofreiter, M. (2018). Partial genomic survival of cave bears in living brown bears. *Nature*
- Final end of the set of the set
- Becker, R. A., Chambers, J. M., & Wilks, A. R. (1988). The new S language. Wadsworth &
 Brooks/Cole.
- Bolger, A. M., Lohse, M., Usadel, B. (2014) Trimmomatic: A flexible trimmer for Illumina
 Sequence Data. *Bioinformatics*, *30*(15), 2114–2120. doi:
 https://doi.org/10.1093/bioinformatics/btu170
- Branca, A., Paape, T. D., Zhou, P., Briskine, R., Farmer, A. D., Mudge, J., ... Tiffin, P. (2011).
 Whole-genome nucleotide diversity, recombination, and linkage disequilibrium in the model
 legume Medicago truncatula. *Proceedings of the National Academy of Sciences of the United States of America*, 108(42). doi: https://doi.org/10.1073/pnas.1104032108
- Bravo, G. A., Antonelli, A., Bacon, C. D., Bartoszek, K., Blom, M. P. K., Huynh, S., ... Edwards,
 S. V. (2019). Embracing heterogeneity: Coalescing the tree of life and the future of
 phylogenomics. *PeerJ*, 2019(2), 1–60. doi: https://doi.org/10.7717/peerj.6399
- Bunch, T. D., Wu, C., Zhang, Y. P., & Wang, S. (2006). Phylogenetic analysis of snow sheep
- 687 (Ovis nivicola) and closely related taxa. *Journal of Heredity*, 97(1), 21–30. doi: 688 https://doi.org/10.1093/jhered/esi127
- Burgarella, C., Barnaud, A., Kane, N. A., Jankowski, F., Scarcelli, N., Billot, C., ... Berthouly Salazar, C. (2019). Adaptive introgression: An untapped evolutionary mechanism for crop
 adaptation. *Frontiers in Plant Science*, 10, 1–17. doi:
- 692 https://doi.org/10.3389/fpls.2019.00004
- Bushnell, B. (2020, October). *BBMap: BBMap short read aligner, and other bioinformatic tools*.
 [Software]. Retrieved from https://sourceforge.net/projects/bbmap/
- Cao, Z., Liu, X., Ogilvie, H. A., Yan, Z., & Nakhleh, L. (2019). Practical aspects of phylogenetic
 network analysis using PhyloNet. *BioRxiv*. doi: https://doi.org/10.1101/746362
- Capella-Gutiérrez, S., Silla-Martínez, J. M., & Gabaldón, T. (2009). trimAl: A tool for automated
 alignment trimming in large-scale phylogenetic analyses. *Bioinformatics*, 25(15), 1972–
 1973. doi: https://doi.org/10.1093/bioinformatics/btp348
- Chang, C. C., Chow, C. C., Tellier, L. C. A. M., Vattikuti, S., Purcell, S. M., & Lee, J. J. (2015).
 Second-generation PLINK: Rising to the challenge of larger and richer datasets.
- 702 *GigaScience*, 4(1), 1–16. doi: https://doi.org/10.1186/s13742-015-0047-8
- Charlesworth, B. (2012). The effects of deleterious mutations on evolution at linked sites.
- 704 *Genetics*, 190(1), 5–22. doi: https://doi.org/10.1534/genetics.111.134288

- Chiaverini, C., Sillard, L., Flori, E., Ito, S., Briganti, S., Wakamatsu, K., ... Ballotti, R. (2012).
 Cystinosin is a melanosomal protein that regulates melanin synthesis. *The FASEB Journal*, 26(9), 3779–3789. doi: https://doi.org/10.1096/fj.11-201376
- Cieslak, M., Reissmann, M., Hofreiter, M., & Ludwig, A. (2011). Colours of domestication.
 Biological Reviews, 86(4), 885–899. doi: https://doi.org/10.1111/j.1469-185X.2011.00177.x
- Coltman, D. W., Festa-Bianchet, M., Jorgenson, J. T., & Strobeck, C. (2002). Age-dependent
- sexual selection in bighorn rams. *Proceedings of the Royal Society B: Biological Sciences*,
 269(1487), 165–172. doi: https://doi.org/10.1098/rspb.2001.1851
- Comeron, J. M. (2017). Background selection as null hypothesis in population genomics: Insights
 and challenges from drosophila studies. *Philosophical Transactions of the Royal Society B: Biological Sciences*, 372(1736). https://doi.org/10.1098/rstb.2016.0471
- Cowan, I. M. (1940). Distribution and Variation in the Native Sheep of North America.
 American Midland Naturalist, 24(3), 505. doi: https://doi.org/10.2307/2420858
- Cvijović, I., Good, B. H., & Desai, M. M. (2018). The effect of strong purifying selection on
 genetic diversity. *Genetics*, 209(4), 1235–1278. doi:
- 720 https://doi.org/10.1534/genetics.118.301058
- 721 De Mita, S., & Siol, M. (2012). EggLib: Processing, analysis and simulation tools for population
- genetics and genomics. *BMC Genetics*, *13*(1), 27. doi: https://doi.org/10.1186/1471-2156 13-27
- Degnan, J. H., & Rosenberg, N. A. (2009). Gene tree discordance, phylogenetic inference and the
 multispecies coalescent. *Trends in Ecology and Evolution*, 24(6), 332–340. doi:
 https://doi.org/10.1016/j.tree.2009.01.009
- Deng, J., Xie, X. L., Wang, D. F., Zhao, C., Lv, F. H., Li, X., Yang, J., ... Li, M. H. (2020).
 Paternal Origins and Migratory Episodes of Domestic Sheep. *Current Biology*, *30*(20),
 4085-4095.e6. doi: https://doi.org/10.1016/j.cub.2020.07.077
- D'Mello, S. A. N., Finlay, G. J., Baguley, B. C., & Askarian-Amiri, M. E. (2016). Signaling
 pathways in melanogenesis. *International Journal of Molecular Sciences*, *17*(7), 1–18. doi:
 https://doi.org/10.3390/ijms17071144
- 733 Dotsev, A. V., Kunz, E., Shakhin, A. V., Petrov, S. N., Kostyunina, O. V., Okhlopkov, ...
- Zinovieva, N. A. (2019). The first complete mitochondrial genomes of snow sheep (Ovis
 nivicola) and thinhorn sheep (*Ovis dalli*) and their phylogenetic implications for the genus
- 736 Ovis. *Mitochondrial DNA Part B: Resources*, 4(1), 1332–1333. doi:
- 737 https://doi.org/10.1080/23802359.2018.1535849
- Edelman, N. B., Frandsen, P. B., Miyagi, M., Clavijo, B., Davey, J., Dikow, R. B., ... Patterson,
 N. (2019). Butterfly radiation. *Science*, *599*, 594–599.
- Ekblom, R., & Wolf, J. B. W. (2014). A field guide to whole-genome sequencing, assembly, and
 annotation. *Evolutionary Applications*, 7(9), 1026–1042. https://doi.org/10.1111/eva.12178
- Fan, R., Xie, J., Bai, J., Wang, H., Tian, X., Bai, R., ... Dong, C. (2013). Skin transcriptome
 profiles associated with coat color in sheep. *BMC Genomics*, *14*(1). doi:
 https://doi.org/10.1186/1471-2164-14-389
- Feulner, P. G. D., Gratten, J., Kijas, J. W., Visscher, P. M., Pemberton, J. M., & Slate, J. (2013).
 Introgression and the fate of domesticated genes in a wild mammal population. *Molecular Ecology*, 22(16), 4210–4221. doi: https://doi.org/10.1111/mec.12378
 - 31

Festa-Bianchet, M. (2020a). Ovis canadensis. The IUCN Red List of Threatened Species 2020, e.T15735A22146699. doi: https://dx.doi.org/10.2305/IUCN.UK.2020-749 750 2.RLTS.T15735A22146699.en. Downloaded in April 2021. Festa-Bianchet, M. (2020b). Ovis dalli. The IUCN Red List of Threatened Species 2020, 751 e.T39250A22149895. doi: https://dx.doi.org/10.2305/IUCN.UK.2020-752 2.RLTS.T39250A22149895.en. Downloaded in April 2021. 753 Figueiro, H.V. (2019, June). Introgression-penguins [Source code]. Retrieved from 754 https://github.com/henriquevf/Introgression-penguins 755 Figueiró, H. V., Li, G., Trindade, F. J., Assis, J., Pais, F., Fernandes, G., ... Eizirik, E. (2017). 756 Genome-wide signatures of complex introgression and adaptive evolution in the big cats. 757 Science Advances, 3(7), 1–14. doi: https://doi.org/10.1126/sciadv.1700299 758 759 Flouri, T., Jiao, X., Rannala, B., & Yang, Z. (2018). Species tree inference with BPP using 760 genomic sequences and the multispecies coalescent. *Molecular Biology and Evolution*, 35(10), 2585–2593. doi: https://doi.org/10.1093/molbev/msy147 761 762 Fontaine, M. C., Pease, J. B., Steele, A., Waterhouse, R. M., Neafsey, D. E., Sharakhov, I. V., ... Besansky, N. J. (2015). Extensive introgression in a malaria vector species complex 763 revealed by phylogenomics. Science, 347(6217), 1258524. doi: 764 https://doi.org/10.1126/science.1258524 765 Geist, V. (1971). Mountain sheep. A study in behavior and evolution. Chicago and London: 766 University of Chicago Press. 767 Gharib, W., Robinson-Rechavi, M. (2013). The branch-site test of positive selection is 768 surprisingly robust but lacks power under synonymous substitution saturation and variation 769 in gc. Molecular Biology and Evolution, 30(7), 1675–1686. doi: https://doi.org/ 770 10.1093/molbev/mst062 771 Gratten, J., Pilkington, J. G., Brown, E. A., Beraldi, D., Pemberton, J. M., & Slate, J. (2010). The 772 genetic basis of recessive self-colour pattern in a wild sheep population. Heredity, 104(2), 773 206–214. doi: https://doi.org/10.1038/hdy.2009.105 774 Hammer, M. F., Mendez, F. L., Cox, M. P., Woerner, A. E., Wall, J. D. (2008). Sex-biased 775 evolutionary forces shape genomic patterns of human diversity. *PLoS Genetics*, 4(9), 776 e1000202. doi: https://doi.org/10.1371/journal.pgen.1000202 777 Harris, M. L., Baxter, L. L., Loftus, S. K., & Pavan, W. J. (2010). Sox proteins in melanocyte 778 development and melanoma. Pigment Cell and Melanoma Research, 23(4), 496–513. doi: 779 https://doi.org/10.1111/j.1755-148X.2010.00711.x 780 Harris, R. B., Sackman, A., Jensen, J. D. (2018). On the unfounded enthusiasm for soft selective 781 sweeps II: Examining recent evidence from humans, flies, and viruses. PLOS Genetics, 782 14(12), e1007859. doi: https://doi.org/10.1371/journal.pgen.1007859 783 Hedrick, P. W. (2013). Adaptive introgression in animals: Examples and comparison to new 784 mutation and standing variation as sources of adaptive variation. *Molecular Ecology*, 22(18), 785 4606–4618. doi: https://doi.org/10.1111/mec.12415 786 Hedrick, P. W., Parker, J. D. (1997). Evolutionary genetics and genetic variation of haplodiploids 787 and x-linked genes. Annual Review of Ecology and Systematics, 28, 55-83. doi: 788 https://doi.org/10.1146/annurev.ecolsys.28.1.55 789 790 Henrot, P., Truchetet, M. E., Fisher, G., Taïeb, A., & Cario, M. (2018). CCN proteins as potential actionable targets in scleroderma. Experimental Dermatology, 28(1), 11-18. doi: 791 https://doi.org/10.1111/exd.13806 792

- Hiendleder, S., Kaupe, B., Wassmuth, R., & Janke, A. (2002). Molecular analysis of wild and
 domestic sheep questions current nomenclature and provides evidence for domestication
 from two different subspecies. *Proceedings of the Royal Society B: Biological Sciences*,
 269(1494), 893–904. doi: https://doi.org/10.1098/rspb.2002.1975
- Hoefs, M., & Bunch, T. D. (2001). Lumpy jaw in wild sheep and its evolutionary implications.
 Journal of Wildlife Diseases, 37(1), 39–48. doi: https://doi.org/10.7589/0090-3558-37.1.39
- Hogg, J. T., Forbes, S. H., Steele, B. M., & Luikart, G. (2006). Genetic rescue of an insular
 population of large mammals. *Proceedings of the Royal Society B: Biological Sciences*,
 273(1593), 1491–1499. doi: https://doi.org/10.1098/rspb.2006.3477
- Hu, X. J., Yang, J., Xie, X. L., Lv, F. H., Cao, Y. H., Li, W. R., ... Li, M. H. (2018). The genome
 landscape of Tibetan sheep reveals adaptive introgression from Argali and the history of
 early human settlements on the Qinghai-Tibetan Plateau. *Molecular Biology and Evolution*, *36*(2), 283–303. doi: https://doi.org/10.1093/molbev/msy208
- Hughes, J. (2011, October). Sequence-manipulation/Fasta2Phylip.pl [Source code]. Retrieved
 from https://github.com/josephhughes/Sequence-manipulation/blob/master/Fasta2Phylip.pl
- Huson, D. H., Scornavacca, C. (2012). Dendroscope 3: an interactive tool for rooted phylogenetic
 trees and networks. Systematic Biology, 61(6), 1061–1067. doi:
- 810 https://doi.org/10.1093/sysbio/sys062
- IBM Corp. (2020). *IBM SPSS Statistics for Windows, Version 27.0* [Software]. Armonk, NY:
 IBM Corp. Retrieved from https://www.ibm.com/ca-en
- Jackson, E., Heidl, M., Imfeld, D., Meeus, L., Schuetz, R., & Campiche, R. (2019). Discovery of
 a highly selective MC1R agonists pentapeptide to be used as a skin pigmentation enhancer
 and with potential anti-aging properties. *International Journal of Molecular Sciences*,
- 816 20(24), 1–16. doi: https://doi.org/10.3390/ijms20246143
- Johnson, N. L., Balakrishnan, N., & Kotz, S. (1994). *Continuous univariate distributions* (2nd
 ed., Vol. 1). New York: John Wiley & Sons.
- Johnson, N. L., Balakrishnan, N., & Kotz, S. (1995). *Continuous univariate distributions* (2nd
 ed., Vol. 2). New York: John Wiley & Sons.
- Junier, T., & Zdobnov, E. M. (2010). The Newick utilities: high-throughput phylogenetic tree
 processing in the UNIX shell. *Bioinformatics*, 26(13), 1669–1670. doi:
 https://doi.org/10.1093/bioinformatics/btq243
- Kanehisa, M. (2019). Toward understanding the origin and evolution of cellular organisms.
 Protein Science, 28(11), 1947–1951. doi: https://doi.org/10.1002/pro.3715
- Kanehisa, M., Furumichi, M., Sato, Y., Ishiguro-Watanabe, M., & Tanabe, M. (2020). KEGG:
 integrating viruses and cellular organisms. *Nucleic Acids Research*, 1–7. doi:
- 828 https://doi.org/10.1093/nar/gkaa970
- Kanehisa, M., Sato, Y., Furumichi, M., Morishima, K., & Tanabe, M. (2019). New approach for
 understanding genome variations in KEGG. *Nucleic Acids Research*, 47(D1), D590–D595.
 doi: https://doi.org/10.1093/nar/gkv962
- Kardos, M., Luikart, G., Allendorf, F. W. (2015). Measuring individual inbreeding in the age of
 genomics: marker-based measures are better than pedigrees. *Heredity*, *115*, 63–72. doi:
 https://doi.org/10.1038/hdy.2015.17
- Kijas, J. W., Porto-Neto, L., Dominik, S., Reverter, A., Bunch, R., McCulloch, R., ... the
- International Sheep Genomics Consortium. (2014). Linkage disequilibrium over short

837	physical distances measured in sheep using a high-density SNP chip. Animal Genetics,
838	45(5), 754–757. doi: https://doi-org.login.ezproxy.library.ualberta.ca/10.1111/age.12197
839	Klein, D. R. (1965). Postglacial Distribution Patterns of Mammals in the Southern Coastal
840	Regions of Alaska. Arctic, 18(1), 7. doi: https://doi.org/10.14430/arctic3446
841	Kobayashi, Y., Mizusawa, K., Saito, Y., & Takahashi, A. (2012). Melanocortin systems on
842	pigment dispersion in fish chromatophores. Frontiers in Endocrinology, 3, 1–6. doi:
843	https://doi.org/10.3389/fendo.2012.00009
844	Korneliussen, T. S., Albrechtsen, A., & Nielsen, R. (2014). ANGSD: Analysis of Next
845	Generation Sequencing Data. BMC Bioinformatics, 15(1), 1–13. doi:
846	https://doi.org/10.1186/s12859-014-0356-4
847	Koseniuk, A., Ropka-Molik, K., Rubiś, D., & Smołucha, G. (2018). Genetic background of coat
848	colour in sheep. Archives Animal Breeding, 61(2), 173–178. doi:
849	https://doi.org/10.5194/aab-61-173-2018
850	Kulski, J. K. (2016). Next-Generation Sequencing — An Overview of the History, Tools, and
851	"Omic" Applications. In Next Generation Sequencing - Advances, Applications and
852	Challenges (Issue tourism, p. 13). InTech. doi: https://doi.org/10.5772/61964
853	Kumar, V., Lammers, F., Bidon, T., Pfenninger, M., Kolter, L., Nilsson, M. A., & Janke, A.
854	(2017). The evolutionary history of bears is characterized by gene flow across species.
855	Scientific Reports, 7(April), 1–10. doi: https://doi.org/10.1038/srep46487
856	Li, G., Figueiró, H. V., Eizirik, E., Murphy, W. J. (2019a). Recombination-Aware
857	Phylogenomics Reveals the Structured Genomic Landscape of Hybridizing Cat Species.
858	<i>Molecular Biology and Evolution</i> , <i>36</i> (10), 2111–2126. doi:
859	https://doi.org/10.1093/molbev/msz139
860	Li, C., Nguyen, V., Clark, K. N., Zahed, T., Sharkas, S., Filipp, F. V., & Boiko, A. D. (2019b).
861	Down-regulation of FZD3 receptor suppresses growth and metastasis of human melanoma
862	independently of canonical WNT signaling. Proceedings of the National Academy of
863	Sciences of the United States of America, 116(10), 4548–4557. doi:
864	https://doi.org/10.1073/pnas.1813802116
865	Li, H., & Durbin, R. (2009). Fast and accurate short read alignment with Burrows-Wheeler
866	transform. <i>Bioinformatics</i> , 25(14), 1754–1760. doi:
867	https://doi.org/10.1093/bioinformatics/btp324
868	Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Durbin, R. (2009). The
869	Sequence Alignment/Map format and SAMtools. <i>Bioinformatics</i> , 25(16), 2078–2079. doi:
870	https://doi.org/10.1093/bioinformatics/btp352
871	Loehr, J., Carey, J., Ylönen, H., & Suhonen, J. (2008). Coat darkness is associated with social
872	dominance and mating behavior in a mountain sheep hybrid lineage. Animal Behaviour,
873	76(5), 1545–1553. doi: https://doi.org/10.1016/j.anbehav.2008.07.012
874	Loehr, J., Worley, K., Grapputo, A., Carey, J., Veitch, A., & Coltman, D. W. (2006). Evidence
875	for cryptic glacial refugia from North American mountain sheep mitochondrial DNA.
876	Journal of Evolutionary Biology, 19(2), 419–430. doi: https://doi.org/10.1111/j.1420-
877	9101.2005.01027.x
878	Lopes, F., Oliveira, L. R., Kessler, A., Crespo, E., Majluf, P., Sepúlveda, M., Bonatto, S. L.
879	(2020). Gene-tree species-tree discordance in the eared seals is best explained by incomplete
880	lineage sorting tollowing explosive radiation in the southern hemisphere. <i>BioRxiv</i> . doi:
881	https://doi.org/https://doi.org/10.1101/2020.08.11.246108

882 Lv, F. H., Peng, W. F., Yang, J., Zhao, Y. X., Li, W. R., Liu, M. J., ... Li, M. H. (2015). Mitogenomic meta-analysis identifies two phases of migration in the history of Eastern 883 884 Eurasian sheep. Molecular Biology and Evolution, 32(10), 2515–2533. doi: https://doi.org/10.1093/molbev/msv139 885 Martin, S. H., Most, M., Palmer, W. J., Salazar, C., McMillan, W. O., Jiggins, F. M., Jiggins, C. 886 D. (2016). Natural Selection and Genetic Diversity in the Butterfly Heliconius melpomene. 887 888 Genetics, 203(1), 525–541. doi: https://doi.org/10.1534/genetics.115.183285 McKay, B. S. (2018). Pigmentation and vision: Is GPR143 in control? Journal of Neuroscience 889 Research, 97(1), 77-87. doi: https://doi.org/10.1002/jnr.24246 890 Meadows, J. R. S., Hanotte, O., Drögemüller, C., Calvo, J., Godfrey, R., Coltman, D., ... Kijas, J. 891 W. (2006). Globally dispersed Y chromosomal haplotypes in wild and domestic sheep. 892 893 Animal Genetics, 37(5), 444–453. doi: https://doi.org/10.1111/j.1365-2052.2006.01496.x Mi, H., Dong, Q., Muruganujan, A., Gaudet, P., Lewis, S., & Thomas, P. D. (2010). PANTHER 894 version 7: Improved phylogenetic trees, orthologs and collaboration with the Gene Ontology 895 Consortium. Nucleic Acids Research, 38(SUPPL.1), 204–210. doi: 896 https://doi.org/10.1093/nar/gkp1019 897 Mi, H., Muruganujan, A., Ebert, D., Huang, X., & Thomas, P. D. (2019). PANTHER version 14: 898 More genomes, a new PANTHER GO-slim and improvements in enrichment analysis tools. 899 Nucleic Acids Research, 47(D1), D419–D426. doi: https://doi.org/10.1093/nar/gky1038 900 Mi, H., Muruganujan, A., Huang, X., Ebert, D., Mills, C., Guo, X., & Thomas, P. D. (2019). 901 Protocol Update for large-scale genome and gene function analysis with the PANTHER 902 classification system (v.14.0). Nature Protocols, 14(3), 703–721. doi: 903 https://doi.org/10.1038/s41596-019-0128-8 904 Miller, J. M., Malenfant, R. M., David, P., Davis, C. S., Poissant, J., Hogg, J. T., ... & Coltman, 905 D. W. (2014). Estimating genome-wide heterozygosity: Effects of demographic history and 906 marker type. *Heredity*, 112(3), 240–247. doi: https://doi.org/10.1038/hdy.2013.99 907 Miller, J. M., Poissant, J., Hogg, J. T., & Coltman, D. W. (2012). Genomic consequences of 908 genetic rescue in an insular population of bighorn sheep (Ovis canadensis). *Molecular* 909 *Ecology*, 21(7), 1583–1596. doi: https://doi.org/10.1111/j.1365-294X.2011.05427.x 910 Ohbayashi, N., & Fukuda, M. (2020). Recent advances in understanding the molecular basis of 911 melanogenesis in melanocytes. F1000Research, 9, 1-10. doi: 912 https://doi.org/10.12688/f1000research.24625.1 913 Palkopoulou, E., Lipson, M., Mallick, S., Nielsen, S., Rohland, N., Baleka, S., ... Reich, D. 914 (2018). A comprehensive genomic history of extinct and living elephants. Proceedings of 915 the National Academy of Sciences of the United States of America, 115(11), E2566–E2574. 916 doi: https://doi.org/10.1073/pnas.1720554115 917 Paradis, E., & Schliep, K. (2019). Ape 5.0: An environment for modern phylogenetics and 918 evolutionary analyses in R. Bioinformatics, 35(3), 526-528. doi: 919 https://doi.org/10.1093/bioinformatics/bty633 920 Payseur, B. A., & Rieseberg, L. H. (2016). A genomic perspective on hybridization and 921 speciation. Molecular Ecology, 25(11), 2337–2360. doi: https://doi.org/10.1111/mec.13557 922 Pease, J. B., & Hahn, M. W. (2015). Detection and polarization of introgression in a five-taxon 923 phylogeny. Systematic Biology, 64(4), 651-662. doi: https://doi.org/10.1093/sysbio/syv023 924 Pertea, G., & Pertea, M. (2020). GFF Utilities: GffRead and GffCompare. F1000Research, 9, 1-925 20. doi: https://doi.org/10.12688/f1000research.23297.2 926

927	Poelstra, J. W., Vijay, N., Bossu, C. M., Lantz, H., Ryll, B., Müller, I., Wolf, J. B. W. (2014).									
928	The genomic landscape underlying phenotypic integrity in the face of gene flow in crows.									
929	Science, 344(6190), 1410–1414. doi: https://doi.org/10.1126/science.1253226									
930	Purcell, S., Chang, C. (2019, December). PLINK 2.0 [Software]. Retrieved from www.cog-									
931	genomics.org/plink/2.0/									
932	Quinlan, A. R., & Hall, I. M. (2010). BEDTools: A flexible suite of utilities for comparing									
933	genomic features. <i>Bioinformatics</i> , 26(6), 841–842. doi:									
934	https://doi.org/10.1093/bioinformatics/btq033									
935	Rambaut, A., Drummond, A. J., Xie, D., Baele, G., & Suchard, M. A. (2018). Posterior									
936	summarization in Bayesian phylogenetics using Tracer 1.7. Systematic Biology, 67(5), 901-									
937	904. doi: https://doi.org/10.1093/sysbio/syy032									
938	Ramos-Lopez, O., Riezu-Boj, J. I., Milagro, F. I., Zulet, M. A., Santos, J. L., & Martinez, J. A.									
939	(2019). Associations between olfactory pathway gene methylation marks, obesity features									
940	and dietary intakes. Genes & Nutrition, 14(1), 11. doi: https://doi.org/10.1186/s12263-019-									
941	0635-9									
942	R Core Team. (2020). R: A language and environment for statistical computing [Software].									
943	Vienna, AT: R Foundation for Statistical Computing. Retrieved from https://www.R-									
944	project.org/									
945	Rezaei, H. R., Naderi, S., Chintauan-Marquier, I. C., Taberlet, P., Virk, A. T., Naghash, H. R.,									
946	Pompanon, F. (2010). Evolution and taxonomy of the wild species of the genus Ovis									
947	(Mammalia, Artiodactyla, Bovidae). Molecular Phylogenetics and Evolution, 54(2), 315-									
948	326. doi: https://doi.org/10.1016/j.ympev.2009.10.037									
949	Rimmer, A., Phan, H., Mathieson, I., Iqbal, Z., Twigg, S. R. F., Wilkie, A. O. M., Lunter, G.									
950	(2014). Integrating mapping-, assembly- and haplotype-based approaches for calling									
951	variants in clinical sequencing applications. Nature Genetics, 46(8), 912–918. doi:									
952	https://doi.org/10.1038/ng.3036									
953	Rochus, C. M., Tortereau, F., Plisson-Petit, F., Restoux, G., Moreno-Romieux, C., Tosser-Klopp,									
954	G., & Servin, B. (2018). Revealing the selection history of adaptive loci using genome-wide									
955	scans for selection: An example from domestic sheep. BMC Genomics, 19(1), 1–17. doi:									
956	https://doi.org/10.1186/s12864-018-4447-x									
957	Rochus, C. M., Westberg Sunesson, K., Jonas, E., Mikko, S., & Johansson, A. M. (2019).									
958	Mutations in ASIP and MC1R: dominant black and recessive black alleles segregate in									
959	native Swedish sheep populations. Animal Genetics, 50(6), 712–717. doi:									
960	https://doi.org/10.1111/age.12837									
961	RStudio Team. (2020). <i>RStudio: Integrated development environment for R</i> [Software]. Boston,									
962	MA: RStudio, PBC. Retrieved from http://www.rstudio.com/									
963	Serre, C., Busuttil, V., & Botto, J. M. (2018). Intrinsic and extrinsic regulation of human skin									
964	melanogenesis and pigmentation. International Journal of Cosmetic Science, 40(4), 328–									
965	347. doi: https://doi.org/10.1111/ics.12466									
966	Shannon, P., Markiel, A., Ozier, O., Baliga, N. S., Wang, J. T., Ramage, D., Ideker, T. (2003)									
967	Cytoscape: A software environment for integrated models of biomolecular interaction									
968	networks. Genome Research, 13(11), 2498–2504. doi: https://doi.org/10.1101/gr.1239303									
969	Shurtliff, Q. R. (2013). Mammalian hybrid zones: A review. <i>Mammal Review</i> , 43(1), 1–21. doi:									
970	https://doi.org/10.1111/j.1365-2907.2011.00205.x									

971	Sim, Z., Hall, J. C., Jex, B., Hegel, T. M., Coltman, D. W. (2016) Genome-wide set of SNPs										
972	reveals evidence for two glacial refugia and admixture from postglacial recolonization in an										
973	alpine ungulate. <i>Molecular Ecology</i> , 25(15), 3696-3705. doi:										
974	https://doi.org/10.1111/mec.13701										
975	Sitaram, A., & Marks, M. S. (2012). Mechanisms of protein delivery to melanosomes in pigment										
976	cells. Physiology, 27(2), 85–99. doi: https://doi.org/10.1152/physiol.00043.2011										
977	Solís-Lemus, C., Yang, M., & Ané, C. (2016). Inconsistency of species tree methods under gene										
978	flow. Systematic Biology, 65(5), 843-851. doi: https://doi.org/10.1093/sysbio/syw030										
979	Soltis P. S., Soltis D. E. (2003). Applying the bootstrap in phylogeny reconstruction. <i>Statistical</i>										
980	Science. $18(2)$, $256-267$. doi: https://doi.org/10.1214/ss/1063994980.										
981	Somenzi, E., Ajmone-Marsan, P., & Barbato, M. (2020). Identification of ancestry informative										
982	marker (AIM) panels to assess hybridisation between teral and domestic sheep. Animals,										
983	10(4). doi: https://doi.org/10.3390/ani10040582										
984	Stamatakis, A. (2014). RAXML version 8: A tool for phylogenetic analysis and post-analysis of										
985	large phylogenies. <i>Bioinformatics</i> , 30(9), 1312–1313. doi:										
986	https://doi.org/10.1093/bioinformatics/btu033										
987	Storey, J. D., Bass, A. J., Dabney, A., Robinson, D. (2020). qvalue: Q-value estimation for false										
988	discovery rate control [R package version 2.22.0]. Retrieved from										
989	nttp://gitnub.com/jdstorey/qvalue										
990	Sturm, R. A., & Duffy, D. L. (2012). Human pigmentation genes under environmental selection.										
991	Genome Biology, 13(9). doi: https://doi.org/10.1180/gb-2012-13-9-248										
992	Szklarczyk, D., Franceschini, A., Wyder, S., Forslund, K., Heller, D., Huerta-Cepas, J., von										
993	tree of life Nucleic Acids Research (2011) D447 D452 doi:										
994	tree of file. Nucleic Actas Research, $45(D1)$, $D447-D452$. doi: https://doi.org/10.1002/mor/glav1002										
995	Talla V. Salar I. Kawakami T. Dinaa V. Vila P. Erihara M. Wildund C. Conzelaz I.										
996	(2010) Dissocting the Effects of Selection and Mutation on Constitution Diversity in Three										
997	Wood White (Lontidon) Putterfly Species, <i>Canoma Biology and Evolution</i> , 11(10), 2875										
996	2886 doi: https://doi.org/10.1003/gbe/evz212										
999 1000	Than C Buths D & Nakhleh I (2008) PhyloNet: A software package for analyzing and										
1000	reconstructing reticulate evolutionary relationships <i>BMC Bioinformatics</i> 0 1–16 doi:										
1001	https://doi.org/10.1186/1471-2105-9-322										
1002	Thomas P D Campbell M I Keiariwal A Mi H Karlak B Daverman R Narechania										
1003	A (2003) PANTHER. A library of protein families and subfamilies indexed by function										
1005	Genome Research 13(9) 2129–2141 doi: https://doi.org/10.1101/gr 772403										
1005	Unadhvav M Hauser A Kunz E Krebs S Blum H Dotsev A Medugorac I (2020)										
1007	The First Draft Genome Assembly of Snow Sheep (Ovis nivicola) <i>Genome Biology and</i>										
1008	Evolution 12(8) 1330–1336 doi: https://doi.org/10.1093/gbe/evaa124										
1009	Vianna J A Fernandes F A N Frugone M J Figueiró H V Pertierra L R Noll D										
1010	Bowie R C K (2020) Genome-wide analyses reveal drivers of penguin diversification										
1011	Proceedings of the National Academy of Sciences of the United States of America 117(36)										
1012	22303–22310. doi: https://doi.org/10.1073/pnas.2006659117										
1013	Wasmeier, C., Romao, M., Plowright, L., Bennett, D. C., Raposo, G., & Seabra, M. C. (2006).										
1014	Rab38 and Rab32 control post-Golgi trafficking of melanogenic enzymes. <i>Journal of Cell</i>										
1015	<i>Biology</i> , 175(2), 271–281. doi: https://doi.org/10.1083/icb.200606050										

- Wen, D., Yu, Y., Zhu, J., & Nakhleh, L. (2018). Inferring phylogenetic networks using PhyloNet.
 Systematic Biology, 67(4), 735–740. doi: https://doi.org/10.1093/sysbio/syy015
- Wickham, H. (2016). ggplot2: Elegant graphics for data analysis. Springer-Verlag New York.
 Retrieved from https://ggplot2.tidyverse.org
- Won, H., Lee, H. R., Gee, H. Y., Mah, W., Kim, J. I., Lee, J., ... Kim, E. (2012). Autistic-like
 social behaviour in Shank2-mutant mice improved by restoring NMDA receptor function.
 Nature, 486(7402), 261–265. doi: https://doi.org/10.1038/nature11208
- Worley, K., Strobeck, C., Arthur, S., Carey, J., Schwantje, H., Veitch, A., & Coltman, D. W.
 (2004). Population genetic structure of North American thinhorn sheep (Ovis dalli). *Molecular Ecology*, *13*(9), 2545–2556. doi: https://doi.org/10.1111/j.1365294X.2004.02248.x
- Wu, C. C., Klaesson, A., Buskas, J., Ranefall, P., Mirzazadeh, R., Söderberg, O., & Wolf, J. B.
 W. (2019). In situ quantification of individual mRNA transcripts in melanocytes discloses
 gene regulation of relevance to speciation. *Journal of Experimental Biology*, 222(5). doi:
 https://doi.org/10.1242/jeb.194431
- Xin, L., Yang, J., Shen, M., Xie, X-L., Liu, G-J., Xu, Y-X., ... Li, M-H. (2020). Whole-genome
 resequencing of wild and domestic sheep identifies genes associated with morphological and
 agronomic traits. *Nature communications*, *11*(2815). doi: https://doi.org/10.1038/s41467 020-16485-1
- Xu, Z., Chen, L., Jiang, M., Wang, Q., Zhang, C., & Xiang, L. F. (2018). CCN1/Cyr61
 Stimulates Melanogenesis through Integrin α6β1, p38 MAPK, and ERK1/2 Signaling
 Pathways in Human Epidermal Melanocytes. *Journal of Investigative Dermatology*, *138*(8),
 1825–1833. doi: https://doi.org/10.1016/j.jid.2018.02.029
- Yang, Z. (2007). PAML 4: Phylogenetic analysis by maximum likelihood. *Molecular Biology and Evolution*, 24(8), 1586–1591. doi: https://doi.org/10.1093/molbev/msm088
- Yang, Z., dos Reis, M. (2010). Statistical properties of the branch-site test of positive selection.
 Molecular Biology and Evolution, 28(3), 1217–1228. doi: https://doi.org/10.1093/molbev/msq303
- Young, A. D., Gillung, J. P. (2019). Phylogenomics principles, opportunities and pitfalls of
 big-data phylogenetics. *Systematic Entomology*, 45, 225–247. doi:
 https://doi.org/10.1111/syen.12406
- Zhang, C., Rabiee, M., Sayyari, E., & Mirarab, S. (2018). ASTRAL-III: Polynomial time species
 tree reconstruction from partially resolved gene trees. *BMC Bioinformatics*, *19*(Suppl 6),
 15–30. doi: https://doi.org/10.1186/s12859-018-2129-y
- 1050
- 1051

1052 Data Accessibility

- 1053 All whole-genome short-read sequences of the six bighorn and four thinhorn sheep individuals
- 1054 were obtained in collaboration with professor Menghua Li's research group (Chen, Xu, & Li,
- unpublished). Sequence submission to a public domain (NCBI) will happen after the publication

1056	of the work Chen, Xu, & Li. The domestic sheep assembly (NCBI accession no.
1057	GCA_002742125.1), as well as snow sheep (NCBI accession no. ERX4127321; Upadhyay et al.,
1058	2020) and goat (NCBI accession no. SRX1918187; SRX1890394) short-read sequences were
1059	obtained from NCBI.
1060	
1061	Author Contributions
1062	• Conceptualization: SHDS, DWC
1063	• Data curation: SHDS, MHL, FL, XL, AD, RMP, JMM
1064	• Formal analysis and investigation: SHDS RMP, JMM
1065	• Writing - original draft preparation: SHDS
1066	• Writing - review and editing: AD, DWC, FL, JMM, MHL, RMP, and XL
1067	• Funding acquisition: DWC, MHL
1068	• Resources: DWC, MHL
1069	

1070 **Tables and Figures**

1071 <u>Table 1. Datasets and respective subsets used in each analysis.</u>

Dataset	Subset	GF size	GF step size	Thinhorn	Bighorn	Snow	Domestic sheep	Goat	Number of individuals	Analyses
1	1.1	10-kb	None [†]		B1-6				6	a
1	1.2	10-kb	None [†]	D1, S1-3					4	а
2	2.1	1-Mb	6-kb	D1, S1-3	B1-6	SN	DS		12	b, c
2	2.2	1-Mb	100-kb	D1, S1-3	B1-6	SN	DS		12	b, c
2	2.3	1-Mb	200-kb	D1, S1-3	B1-6	SN	DS		12	b, c
3	3.1	100-kb	6-kb	D1, S1-3	B1-6	SN	DS		12	b, c

3	3.2	100-kb	100-kb	D1, S1-3	B1-6	SN	DS		12	b, c
3	3.3	100-kb	200-kb	D1, S1-3	B1-6	SN	DS		12	b, c
4	4.1	10-kb	6-kb	D1, S1-3	B1-6	SN	DS		12	b, c
4	4.2	10-kb	100-kb	D1, S1-3	B1-6	SN	DS		12	b, c
4	4.3	10-kb	200-kb	D1, S1-3	B1-6	SN	DS		12	b, c
5	5.1	10-kb	6-kb	D1, S1	B4, B6	SN	DS		6	b, c
5	5.2	10-kb	100-kb	D1, S1	B4, B6	SN	DS		6	b, c, d
5	5.3	10-kb	200-kb	D1, S1	B4, B6	SN	DS		6	b, c, d
6	6.1	10-kb	6-kb	D1, S1	B4, B6	SN	DS	GO	7	b, c
6	6.2	10-kb	100-kb	D1, S1	B4, B6	SN	DS	GO	7	b, c
6	6.3	10-kb	200-kb	D1, S1	B4, B6	SN	DS	GO	7	b, c
7	7.1	10-kb	6-kb	D1, S1	B6	SN	DS		5	b, c
7	7.2	10-kb	100-kb	D1, S1	B6	SN	DS		5	b, c,
7	7.3	10-kb	200-kb	D1, S1	B6	SN	DS		5	b, c, e
8	8.1-8.15	100-kb	None [†]	S1, S2	B1-6		DS		5	f
9	9.1-9.15	100-kb	None [†]	S1, S3	B1-6		DS		5	f
10	10.1-10.15	100-kb	None [†]	S2, S3	B1-6		DS		5	f
11	11.1-11.15	100-kb	None [†]	D1, S1	B1-6		DS		5	f
12	12.1-12.15	100-kb	None [†]	D1, S2	B1-6		DS		5	f
13	13.1-13.15	100-kb	None [†]	D1, S3	B1-6		DS		5	f
14	14.1-14.6	100-kb	None [†]	D1, S1	B1-6		DS		4	g
15	15.1-15.6	100-kb	None [†]	D1, S2	B1-6		DS		4	g
16	16.1-16.6	100-kb	None [†]	D1, S3	B1-6		DS		4	g

1072 [†]Non-overlapping windows with no step size.

1073

1074

D1: Dall; S(1-3): Stone; B(1-6): bighorn; DS: domestic sheep; GO: goat. a: nucleotide diversity; b: phylogenomic analyses; c: consensus species tree estimate; d: divergence time and absolute divergence; e: reticulate evolution analyses; f: 5-taxon introgression analyses; g: 4-taxon introgression 1075 1076 analyses.

Figure 2. Speciation reconstruction of Pachyceriforms. (a) Species tree showing the divergence times estimated for GFs with 100 and 200-kb step size, respectively. Arrows indicate potential ancient hybridization between the thinhorn lineage and bighorn, as well as Stone and bighorn. (b) Best network reconstructed from a maximumlikelihood approach in PhyloNet. Gray values are branch-lengths in coalescent units. Blue lines represent reticulation edges with bold values showing their inheritance probabilities. The log probability is shown below the network (see Table S9 for the information criterion test).

Figure 3. Introgression analysis and its relation to potential adaptive genes. (a) 4-taxon D-statistics analysis of subset 1096 14.6, where the number of windows represents the introgression signal between Dall (D1 \leftrightarrow B6) or Stone (S1 \leftrightarrow B6) 1097 and bighorn. (b) Coat color genes within the D-statistics GFs and their respective function(s). These genes are listed 1098 by their introgression signal observed (i.e., D1 \leftrightarrow B6), and highlighted genes in grey are also present within the 4-1099 taxon combined dataset. (c) Protein-protein interaction network of genes present within GFs with introgression signal

between S1 and B6. Light blue genes are directly part of the melanogenesis pathway, as well as three other pathways

(see Table S13). Dark blue genes are involved in the aldosterone synthesis and secretion, and inflammatory mediator

regulation of TRP channel. Gray genes are a local network cluster associated with the biogenesis of lysosomal
 organelle complex. Disconnected genes are not shown (see Table S13 for the full gene list per pathway observed).

Chromosome

Figure 4. Plot of median ω values per 100-kb window. Chromosomes are ordered from 1 to 26 followed by X at the 1107 far right and alternate grayscale colors. Windows that contain a coat color gene are highlighted as black triangles. The cutoff lines, from bottom to top, separate purifying, neutral, and positive selection. 1108

1109