

INHER INORLOS GOLLINIA

Investigating the Steen River impact structure in NW Alberta

Presented by: **Dr. Erin Walton** MacEwan University

Thursday, March 5, 2015 11 a.m. - 12 p.m. Room 5-322 Join Dr. Erin Walton as she describes her investigation of the remnant of the largest known impact crater in the Western Canada Sedimentary Basin.

An Overview of Impact Cratering: The Steen River Impact Structure

Dr. Erin L. Walton

Assistant Professor Earth & Planetary Science Section Department of Physical Sciences MacEwan University, Edmonton, AB, Canada

How are Impacts Different?

- 1. Rare
- 2. Immense Energy
- 3. Instant Effects
- 4. Concentrated Energy Release
- 5. Extreme Physical Conditions
- 6. Unique Deformation Effects

Fig. 1.2 Osinski & Pierazzo 2013 Impact Cratering: processes & products

2.4 km diameter LinnCrater on the Moon (LRO)

3.3 km diameter Zumba Crater on Mars (HiRISE)

Impact craters come in all shapes and sizes ranging from "simple" to "complex"

Rayed craters on the Moon including Copernicus (D = 93 Km upper left) and Tycho (D = 85 km lower right) from LRO

Tooting crater on Mars imaged by HiRISE

Impact craters come in all shapes and sizes ranging from "simple" to "complex"

Impactite Classification

- Impactite is the general term given to any rock affected by one or more hypervelocity impact events
 - \rightarrow applies to both terrestrial and extraterrestrial rocks

Distribution of Impact Craters on Earth

Elements Magazine

Location of the Steen River Impact Structure

- The SRIS is a complex impact structure
 - 59°31'N, 117°39'W
 - ~25 km diameter
- Target rocks: 70 m of Mississippian calcareous shale underlain by 1530 m of Devonian (Wabamun Group, Hay river shale, Elk Point group) on top of granites and granitic gneisses of the Precambrian basement

"Fieldwork"

The SRIS is buried beneath ~206 m of marine shale

Drilled in 1960s and early 2000

Core at CRC and MCRF

400-

400 —

400 —

Appearance of core between 697 – 740 ft ; tan, compact, meltclast-rich

400 -

Below a depth of 740 ft the core takes on a reddish appearance (observed to 786 ft)

Contact between "red" core on right and and "green" core on the left which occurs at ~786 feet (240 m)

The ST003 core from 240 m – 360 m is dominated by a clast-rich melt bearing breccia with green colour

- Groundmass has a distinct green colour
- Impact melt glass is black
- Clast population dominated by crystalline basement rocks
 - General increase in clast size
 down core
 - Clasts are typically enrobed in melt
- Limestone clasts are rare

- Mineralogy of the groundmass
 - Major minerals include
 Pyroxene + sanidine +
 Na-rich feldspar with
 poikilitic texture
 - Pyroxene is very calcic

- Mineralogy of the groundmass
 - Major minerals include
 Pyroxene + sanidine +
 Na-rich feldspar with
 poikilitic texture

- Mineralogy of the groundmass
 - Volumetrically minor titanite, ilmenite, magnetite and grossular

Impact Melt Glass in Green Crater Fill

- Thermal decomposition of zircon to baddelyite + glass
 - T > 1700 °C
- Most glass is devitrified

How do we classify SRIS Impactites?

- Interpretation

 of groundmass:
 formed from a
 high degree of
 thermal
 metamorphism
 of an extremely
 fine-grained
 superheated
 dust
- Similar texture to "suevite" but unique matrix

Thin Section 1242A in transmitted light

Amphibole in the target rock is ferropargasite with general formula,

 $(Na_{0.41}K_{0.27})(Ca_{1.82}Na_{0.10}Mn_{0.08})(Fe^{2+}_{3.04}Mg_{1.33}AI_{0.29}Ti_{0.19}Fe^{3+}_{0.14})$ $(Si_{6.60}AI_{0.40})O_{22}(OH)_{2}$

 \rightarrow In direct contact with shock veins, pargasite has undergone a nearly isochemical transformation to almandine garnet,

 $(Fe_{1.37}Ca_{0.97}Mg_{0.42}Na_{0.2}Mn_{0.05})(AI_{0.92}Si_{0.36}Fe_{0.35Mg0.22}Ti_{0.10})Si_{3}O_{12,}$ with 36% majorite component

wt% oxide

Stratigraphy Depth, m Thin Section 1242A in transmitted light (ft) 0 50 -(164)Almandine garnet $(Fe_{1.54}Mg_{1.31}Ca_{0.05}Na_{0.04}Mn_{0.03})$ (AI_{1.81}Si_{0.11}Mg_{0.04}Ti_{0.03})Si₃O₁₂ has 100crystallized from the (328) shock vein with 11% majorite component 150-(492) 0.05 cm 200 -(656) 250· (820) 300 -(984) 350 -(1148)

400 -

The Distribution of HP-HT Minerals

- Coesite associated with shock veins
- Reaction kinetics are greatly enhanced in or close to shock melts due to heat derived from shockinduced frictional melts
- Previous studies could not isolate coesite at SRIS
- Whys

Shock melts once formed with cool by conduction of heat to the surrounding host rock

Comparison with Meteorites

- Shock veins ubiquitous in meteorites
- P-T indicated by minerals are much higher compared to SRIS
- Originate closer to the point of impact

Top, BSE image Tissint and bottom, hand specimen of Zagami (Martian basalts)

Summary of Observations at SRIS

- Over 170 m of crater fill impactites sampled
- Preserves overall preimpact stratigraphy
 - Impact melt glass throughout – different colours likely represent alteration
 - Comparison with "suevite" at the 24 km Ries Impact Structure
- Mineralogy of shock veins suggest shock pressures 15-17 GPa

"Suevite" clast rich impact melt-bearing breccia at Ries, Germany

Ongoing Research Projects

- Constrain age of the crater
 - Quoted as 95 ± 7 Ma
 - Single whole rock K-Ar age on breccia
- Use shocked / decomposed zircons and newly crystallized titanite
- Look at amount of erosion which could have taken place prior to infill of the crater

What does an age represent when you "date" a rock like this?

Student Involvement at SRIS

- Astromaterials Research and Training Opportunities (ASTRO) Cluster funding provided by the CSA in 2014
 - Summer student Alexandra Hughes
- NSERC Undergraduate Student Research Awards (USRA) funding for summer 2015 work on SRIS
 - Summer student Ebberly MacLagan
 - Study glasses, identify impactor
- Pursuing funding through MITACS Accelerate Program funding for graduate student research on the SRIS with industry partnership
- Opportunities at MacEwan University through EASC 498
 Independent Research Project

Acknowledgements

- Funding: NSERC Discovery Grant, Strategic Oil & Gas Ltd.
- Gordon Jean, Rob Natyshen and Diane Goulet at MCRF
- Tyler Hauck at AGS for SRIS figures
- Martin van Dollen and Andrew Locock at UofA
- Collaborators: Dr. Chris Herd, Dr. Des Moser, Alex Hughes

Here's a cool website: <u>http://impact.ese.ic.ac.uk/ImpactEffects/</u>

"Earth Impact Effects Program" run by the Imperial College of London and Purdue University Used to calculate the regional and global environmental consequences of impact events on Earth!