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THE INVARIANT SUBSPACE PROBLEM FOR RANK ONE
PERTURBATIONS

ADI TCACIUC

Abstract. We show that for any bounded operator T acting on an infinite dimen-
sional Banach space there exists an operator F of rank at most one such that T + F
has an invariant subspace of infinite dimension and codimension. We also show that
whenever the boundary of the spectrum of T or T ∗ does not consist entirely of eigen-
values, we can find such rank one perturbations that have arbitrarily small norm.
When this spectral condition is not satisfied, we can still find suitable finite rank
perturbations of arbitrarily small norm, but not necessarily of rank one.

1. Introduction

The Invariant Subspace Problem is one of the most famous problem in Operator

Theory, and is concerned with the search of non-trivial, closed, invariant subspaces for

bounded operators acting on a separable Banach space. Considerable success has been

achieved over the years both for the existence of such subspaces for many classes of

operators, as well as for non-existence of invariant subspaces for particular examples

of operators. However, for the most important case of a separable Hilbert space, the

problem is still open. For the remaining of the paper, by ”subspace” we mean a norm

closed subspace.

For compact operators, von Neumann (for Hilbert spaces, unpublished), and Aron-

szjin and Smith [AS54] (for Banach spaces) showed that the Invariant Subspace prob-

lem has a positive answer. A remarkable result of the 1970s is Lomonosov’s [L73] proof

that every operator commuting with a compact operator has an invariant subspace,

thus substantially increasing the class of operators that have invariant subspaces. Enflo

[E76, E87] constructed the first examples of a Banach space and a bounded operator on

it without invariant subspaces, followed by a construction by Read [R84]. Later Read

constructed a wealth of such examples: operators on l1 [R85], strictly singular opera-

tors [R91], quasinilpotent operators[R97]. All such examples are built on non-reflexive

Banach spaces. The most spectacular result of the last decade is Argyros and Haydon
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2 A. TCACIUC

[AH11] construction of an infinite dimensional Banach space on which every operator

is the sum of a compact operator and a scalar multiple of the identity. Therefore, in

particular, every bounded operator on this space has an invariant subspace. This is

the first known example of a infinite dimensional Banach space having this property.

Later, Argyros and Motakis [AM14] constructed the first example of a reflexive infinite

dimensional Banach space on which all bounded operators have invariant subspaces.

It is still an open problem whether every infinite dimensional reflexive Banach space

has this property. We refer the reader to the monograph by Radjavi and Rosenthal

[RR03] for an overview and to the book by Chalendar and Partington [CP11]for more

recent approaches to the Invariant Subspace Problem.

In this paper we solve in full generality a question closely related to the Invariant

Subspace Problem: given a bounded operator on a Banach space, can we always find

a finite rank perturbation of it that has a ”non-trivial” invariant subspace? More

precisely, we prove the following theorem.

Theorem 1.1. Let X be a infinite dimensional complex Banach space, and T a bounded

operator acting on X. Then there exists a bounded operator F of rank at most one

such that T + F has a invariant subspace of infinite dimension and codimension.

Note that any finite dimensional or finite codimensional subspace is invariant under

some suitable finite rank perturbation, thus for this question ”non-trivial” subspace

means a subspace of infinite dimension and codimension. Such a subspace will be

henceforth called a half-space. A half-space that is invariant for some finite rank

perturbation of T is called almost-invariant for T (see Section 2 for an equivalent

definition).

Invariant subspaces for perturbations of bounded operators have been studied for a

long time, mostly in the Hilbert space setting. For example, Brown and Pearcy [BP71]

proved that for any T ∈ B(H), where H is an infinite-dimensional separable Hilbert

space, and for any ε > 0, there exists a compact operator K with norm at most

ε such that T + K has an invariant half-space. As an immediate consequence of

Voiculescu’s [V76] famous non-commutative Weyl-von Neumann Theorem it follows

that there exists a compact operator K such that T + K has a reducing half-space,

that is, a half-space that is invariant for both T +K and (T +K)∗.

An equivalent formulation of this problem was introduced by Androulakis, Popov,

Tcaciuc, and Troitsky [APTT09], and in the same paper the authors proved that cer-

tain weighted shifts admit rank one perturbations that have invariant half-spaces. The
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question was solved in affirmative for reflexive Banach spaces by Popov and Tcaciuc

[PT13], who showed that for every bounded operator on a reflexive Banach space,

some rank one perturbation of it has an invariant half-space. In the same paper, for

the Hilbert space case, the authors prove the existence of ”good” perturbations that

are also of small norm. This gives a substantial improvement over the result of Brown

and Pearcy mentioned above, by showing that for any bounded operator T ∈ B(H),

and for any ε > 0 there exists a finite rank operator F with norm at most ε such that

T + F has an invariant half-space. Moreover, when either the boundary of T or T ∗

does not consist entirely of eigenvalues, F can be taken to be rank one. In [TW17] this

result was extended to the reflexive case.

Partial solutions for general Banach spaces were given by Sirotkin and Wallis, first

for weakly-compact operators and for quasinilpotent operators in [SW14], then for

strictly singular operators in [SW16]. In the latter paper they also showed that any

bounded operator acting on a Banach space admits a compact perturbation that has

an invariant half-space. Common almost-invariant half-spaces for algebras of operators

have been studied in [P10], [MPR13], and [SW16]. In [MPR13] the authors show that

whenever a norm closed algebra of operators on a Hilbert space admits a common

almost-invariant half-space, then it actually admits a common invariant half-space.

This result was extended in [SW16] to norm closed algebras of operators on Banach

spaces.

In Section 3 of this paper we solve the problem in full generality. In Section 4 we

refine the method to obtain, under certain spectral assumptions, perturbations small

in norm.

2. Definitions and Preliminaries

For a Banach space X, we denote by B(X) the algebra of all (bounded linear)

operators on X. When T ∈ B(X), we write σ(T ), σp(T ),σess(T ), ρ(T ) and ∂σ(T ) for

the spectrum of T , point spectrum of T , the essential point spectrum of T , the resolvent

set of T and the topological boundary of the spectrum, respectively. The closed span

of a set {xn}n of vectors in X is denoted by [xn]. A sequence (xn)∞n=1 in X is called a

basic sequence if any x ∈ [xn] can be written uniquely as x =
∑∞

n=1 anxn, where the

convergence is in norm (see [LT77, section 1.a] for background on Schauder bases and

basic sequences). If W is a subset of X∗, the dual of X, then the pre-annihilator of W

in X, denoted by W>, is defined as:
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W> := {x ∈ X : f(x) = 0 for all f ∈ W}

It is straightforward to verify that W> is a closed subspace of X. The following defi-

nition was introduced in [APTT09], towards an equivalent formulation of the question

under consideration.

Definition 2.1. If T ∈ B(X) and Y is a subspace of X, we say that Y is almost-

invariant for T if there exists a finite dimensional subspace E of X such that TY ⊆
Y + E. The smallest dimension of such an E is called the defect of Y for T

It was proved in [APTT09] (see Proposition 1.3) that a half-space Y is almost-

invariant with defect k for a bounded operator T , if and only if there exists a rank

k operator F such that Y is invariant for T + F , in other words the equivalency we

mentioned before.

Note that when X is not separable, any bounded operator T will have an invariant

half-space. Indeed, it is sufficient to consider Y the closed span of the set {T n(xk) :

n, k ∈ N}, where (xn)∞n=1 is a linearly independent sequence in X. Clearly Y is infinite

dimensional T -invariant subspace of X, and since it is separable (while X is not), it is

also a half-space. Therefore, for the rest of the paper we may only consider separable

Banach spaces.

The main result of [APTT09] was the following theorem, which was used in that pa-

per to prove the existence of almost-invariant half-spaces for certain classes of weighted

shifts, and it will also be important here. Recall that a sequence (xn) in a Banach space

is called minimal if, for every k ∈ N, xk does not belong to the closed linear span of

the set {xn : n 6= k} (see also [LT77, Section 1.f]).

Theorem 2.2. [APTT09, Theorem 3.2], [MPR12, Remark 1.3] Let X be a Banach

space and T ∈ B(X) satisfying the following conditions:

(i) The unbounded component of the resolvent set ρ(T ) contains {z ∈ C : 0 <

|z| < ε} for some ε > 0.

(ii) There is a vector e ∈ X whose orbit {T ne}∞n=0 is a minimal sequence.

Then T has an almost-invariant half-space with defect at most one.

As we mentioned in the Introduction, the almost-invariant half-space problem was

solved for reflexive Banach spaces by Popov and Tcaciuc in [PT13]. An important step

was the following theorem which proves the existence of almost-invariant half-spaces
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provided a certain spectral condition holds, and this result will also feature in our proof

of the general case:

Theorem 2.3. [PT13, Theorem 2.3] Let X be an infinite dimensional Banach space

and let T ∈ B(X) such that there exists µ ∈ ∂σ(T ) that is not an eigenvalue. Then T

admits an almost-invariant half-space with defect one.

3. Every bounded operator has an almost-invariant half-space

An important ingredient in our proof is the following w∗-analogue of the Bessaga-

Pelczynski selection principle. An outline of the proof first appeared in a paper by

Johnson and Rosenthal (see Theorem III.1 and Remark III.1 in [JR72]). For a shorter

proof see the recent paper of González and Martinez-Abejón [GM12]. Recall that a

sequence (xn) in a Banach space is called semi-normalized if 0 < inf ‖xn‖ ≤ sup ‖xn‖ <
∞.

Theorem 3.1. [JR72][GM12] If (x∗n) is a semi-normalized, w∗-null, sequence in a dual

Banach space X∗, then there exists a basic subsequence (y∗n) of (x∗n), and a bounded

sequence (yn) in X such that y∗i (yj) = δij for all 1 ≤ i, j <∞.

We begin by proving an essential step for the general case, step that deals with the

situation when T ∗ satisfies a spectral condition similar to the one in the hypothesis of

Theorem 2.3.

Theorem 3.2. Let X be a separable Banach space and T ∈ B(X) a bounded operator

such that ∂σ(T ∗) \ σp(T ∗) 6= ∅. Then T has an almost-invariant half-space with defect

at most one.

Proof. Let λ ∈ ∂σ(T ∗) \σp(T ∗) and without loss of generality assume λ = 0, otherwise

work with T−λI. Let (λn) be a sequence in the resolvent ρ(T ∗) such that λn → 0. Then

we have that ‖(λnI − T ∗)−1‖ → ∞ and, from Uniform boundness principle, it follows

that there exists e∗ ∈ X∗ such that ‖(λnI − T ∗)−1e∗‖ → ∞. Put h∗n := (λnI − T ∗)−1e∗

and x∗n := h∗n/‖h∗n‖. Easy calculations show that

(1) T ∗x∗n = λnx
∗
n −

e∗

‖h∗n‖
Claim 1: (x∗n) has a subsequence that is w∗-null.

From Banach-Alaoglu we have that BX∗ , the unit ball of X∗, is w∗-compact, and

since X is separable, BX∗ is also w∗-metrizable. Therefore, by passing to a subsequence,
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we can assume that x∗n
w∗
−→ y∗ for some y∗ ∈ X∗. Remains to show that y∗ = 0. Since

λn → 0, x∗n
w∗
−→ y∗, and ‖h∗n‖ → ∞ we have that

(2) T ∗x∗n
w∗
−→ T ∗y∗ and λnx

∗
n −

e∗

‖h∗n‖
w∗
−→ 0

From (1) and (2) it follows that T ∗y∗ = 0. However 0 is not an eigenvalue, so we

must have that y∗ = 0 and the Claim 1 is proved.

Claim 2: (x∗n) has a subsequence (x∗nk
) such that [x∗nk

]> is a half-space of X.

By passing to a subsequence we can assume that x∗n
w∗
−→ 0. From Theorem 3.1, by

passing to a further subsequence, we can assume that (x∗n) is a basic sequence and there

exists (xn) ⊆ X such that x∗n(xk) = δnk for any n, k ∈ N. It is routine to check that

both (xn) and (x∗n) are linearly independent, and that [x2n+1] ⊆ [x∗2n]>, therefore [x∗2n]>

is infinite dimensional. We also have that for any n ∈ N x∗2n([x∗2n]>) = 0, therefore

[x∗2n]> is infinite codimensional as well and Claim 2 is proved.

In view of the previous Claims, by passing to a subsequence we may assume that

(x∗n) is a basic sequence and that Z := [x∗n]> = [h∗n]> is a half-space of X.

Note that for any z ∈ Z, and for any n ∈ N, we have that

h∗n(Tz) = T ∗h∗n(z) = (λnh
∗
n − e∗)z = λnh

∗
n(z)− e∗(z) = −e∗(z)

If Z ⊆ ker e∗ then we have that for all n ∈ N and for all z ∈ Z, h∗n(Tz) = 0. Hence

TZ ⊆ Z and we are done.

Otherwise, we can find z0 ∈ Z such that z0 /∈ ker e∗. Put f := Tz0 and for any

z ∈ Z define a scalar αz by αz := e∗(z)
e∗(z0)

. Then, for any n ∈ N and z ∈ Z we have:

h∗n(Tz − αzf) = h∗n(Tz − αzf)

= h∗n

(
Tz − e∗(z)

e∗(z0)
Tz0

)
= h∗n(Tz)− e∗(z)

e∗(z0)
h∗n(Tz0)

= −e∗(z) +
e∗(z)

e∗(z0)
e∗(z0) = 0

Therefore, for any z ∈ Z we have that Tz − αzf ∈ Z, so

Tz = Tz − αzf + αzf ∈ Z + [f ], for all z ∈ Z

It follows that TZ ⊆ Z + [f ], hence Z is an almost-invariant half-space for T with

defect [f ]. �
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We are now ready to prove the general case, Theorem 1.1, which we restate below

in the equivalent formulation of almost-invariant half-spaces.

Theorem 3.3. Let X be a separable Banach space. Then any bounded operator T ∈
B(X) has an almost-invariant half-space with defect at most one.

Proof. If ∂σ(T ) \ σp(T ) 6= ∅ or ∂σ(T ∗) \ σp(T ∗) 6= ∅ then by applying Theorem 2.3 or

Theorem 3.2, respectively, we obtain that T has an almost-invariant half-space with

defect at most one. Therefore, remains to consider the situation when any value in

∂σ(T ) = ∂σ(T ∗) is an eigenvalue for both T and T ∗.

Easy calculations show that an eigenvector for T ∗ cancels any eigenvector of T

corresponding to different eigenvalues. It follows that when ∂σ(T ) = ∂σ(T ∗) is infinite,

we can actually build an invariant half-space as span of countably many eigenvectors

corresponding to a countably infinite subset of ∂σ(T ) such that the complement in

∂σ(T ) is also infinite (see proof of Theorem 2.7 in [PT13] for details).

Remains to consider the case when ∂σ(T ) is finite. In this situation we have ∂σ(T ) =

σ(T ). We can assume without loss of generality that σ(T ) is a singleton. Indeed if

σ(T ) = {λ1, λ2, . . . , λn}, for each 1 ≤ i ≤ n consider the Riesz projection Pi associated

to λi. That is, P 2
i = Pi, PiT = TPi (so each Xi := PiX is a T -invariant subspace

of X), σ(T |PiX) = {λi}, and P1 + P2 + · · · + Pn = I. It follows that one of the

subspaces Xi is infinite dimensional and, for that particular i, consider the operator

S := T |Xi
: Xi → Xi. If S has an almost-invariant half-space Y ⊆ Xi, then the same

Y is also an almost-invariant half-space for T , with the same defect. Therefore, we

may assume σ(T ) = {λ} and, by replacing T with T − λI, we may also assume λ = 0.

Next we show that either we can find a vector z such that the orbit {T nz} is a

minimal sequence, or there exists an infinite dimensional T -invariant subspace Y such

that restriction of T to Y has dense range. The argument is similar to the second half

of the proof of Theorem 2.7 in [PT13], we include it here for the sake of completeness.

For any n ∈ N, denote by Yn = T nX, with Y0 := X. We have that each Yn is invariant

under T , Yn+1 = TYn and X ⊇ Y1 ⊇ Y2 ⊇ . . . . Also note that for any j, n ∈ N
and any y ∈ Yj we have that T n(y) ∈ Yj+n. Note that we can assume each Yj is

infinite dimensional; indeed, otherwise, if j is the smallest index for which Yj is finite

dimensional, then any half-space of Yj−1 containing Yj is an invariant half-space for

T . If Y1 is of infinite codimension in X, then Y1 is an invariant half-space for X and

we are done. Therefore we can assume that Y1 is of finite codimension in X, hence

complemented in X, and we can write X = Y1 ⊕ Z, where Z is finite dimensional. If
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Z = {0} then T has dense range. Otherwise, let {z1, z2, . . . zk} be a basis for Z and

assume the orbit {T nzj}n is not minimal for any 1 ≤ j ≤ k. For any 1 ≤ j ≤ k denote

by pj the smallest index such that T pjzj ∈ [T nzj]n 6=pj . It is easy too see that for this

choice of pj we actually have that T pjzj ∈ [T nzj]n>pj (see, e.g. Lemma 2.6 in [PT13]) ,

thus T pjzj ∈ Ypj+1, for any 1 ≤ j ≤ k. If we let p0 := max{p1, p2, . . . pk}, it follows that

T p0zj = T p0−pj(T pjzj) ∈ Yp0+1 for any 1 ≤ j ≤ k. Therefore, since {z1, z2, . . . zk} is a

basis for Z, we have that T p0z ∈ Yp0+1 for any z ∈ Z. We also have that T p0y ∈ Yp0+1

for any y ∈ Y1, and since X = Y1⊕Z it follows that Tp0x ∈ Yp0+1 for any x ∈ X. This

means that T p0X ⊆ Yp0+1, so Yp0 ⊆ Yp0+1. On the other hand, Yp0+1 ⊆ Yp0 , therefore

Yp0+1 = Yp0 and the last equality means that T|Yp0
has dense range.

If we find a vector z such that the orbit {T nz} is a minimal sequence, we can apply

Theorem 2.2 and obtain that T has an almost-invariant half-space with defect at most

one. Otherwise, there exists Y an infinite dimensional subspace of X such that T|Y

has dense range. Consider S := T |Y : Y → Y . Since S has dense range it follows that

S∗ is injective. Note that σ(S) = σ(T ) = {0}, therefore 0 ∈ σ(S∗) = σ(S) is not an

eigenvalue. We can now apply Theorem 3.2 to conclude that S, hence also T , has an

almost-invariant half-space with defect at most one. �

4. Perturbations of small norm

We proved in the previous section that for any T ∈ B(X) we can find a rank one

perturbation F such that T + F has an invariant half-space. In this section we show

that, under the same spectral assumptions as in Theorem 3.2, such F may be chosen

to be small in norm. When the spectral conditions are not satisfied we still can find

a finite rank perturbation F of small norm, but not necessarily rank one, such that

T+F has an invariant half-space. In [TW17] the authors proved the following theorem,

which we will also use here.

Theorem 4.1. [TW17, Proposition 2.2] Let X be an infinite dimensional Banach

space and let T ∈ B(X) such that there exists µ ∈ ∂σ(T ) that is not an eigenvalue.

Then for any ε > 0 there exists a rank one operator F with ‖F‖ < ε such that T + F

has an invariant half-space.

Thus, this theorem gives the existence of perturbations of small norm when the

boundary of the spectrum of T has non-eigenvalues. We begin by proving a companion

theorem to the one above, in the situation when T ∗ satisfies a similar type of spectral

condition.
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Theorem 4.2. Let X be a Banach space and T ∈ B(X) a bounded operator such that

∂σ(T ∗) \ σp(T ∗) 6= ∅. Then for any ε > 0 there exists a rank one operator F with

‖F‖ < ε such that T + F has an invariant half-space.

Proof. Fix ε > 0. Let λ ∈ ∂σ(T ∗) \ σp(T ∗) and, as before, without loss of generality

assume λ = 0. Given λn ∈ ρ(T ∗), λn → 0, consider vectors e∗ ∈ X∗, ‖e∗‖ = 1, h∗n :=

(λnI − T ∗)−1e∗ and x∗n := h∗n/‖h∗n‖, and (xn) in X a as in the proof of Theorem 3.2.

By passing to a subsequence, consider also (xn) a bounded sequence in X biorthogonal

to (x∗n), as given by Theorem 3.1. Let M be such that ‖xn‖ ≤ M for all n ∈ N
and by passing to a further subsequence assume that

∑∞
n=1‖h∗n‖−1 < ε/M (recall that

‖h∗n‖ → ∞) , and Z := [x∗n]> is a half-space.

Define f ∈ X by

f :=
∞∑
n=1

1

‖h∗n‖
xn

We have ∥∥∥ ∞∑
n=1

1

‖h∗n‖
xn

∥∥∥ ≤ ∞∑
n=1

∥∥∥ 1

‖h∗n‖
xn

∥∥∥ ≤ ∞∑
n=1

M

‖h∗n‖
≤M

ε

M
= ε

Therefore f is well defined and ‖f‖ ≤ ε. Note that for all n, the bounded functional

h∗n satisfies

h∗n(f) = ‖h∗n‖x∗n(f) = ‖h∗n‖x∗n

(
∞∑
i=1

1

‖h∗i ‖
xi

)
= ‖h∗n‖

∞∑
i=1

1

‖h∗i ‖
x∗n(xi) = 1

Consider now the rank one operator F := e∗ ⊗ f , that is, for any x ∈ X, F (x) =

e∗(x)f . We have that ‖F‖ = ‖e∗‖‖f‖ < ε and will show that Z is an invariant half-

space for T +F . To this end, it is enough to show that for any z ∈ Z, and any n ∈ N,

we have that h∗n(Tz + Fz) = 0. Indeed:

h∗n(Tz + Fz) = h∗n(Tz) + h∗n(Fz) = T ∗h∗n(z) + e∗(z)h∗n(f)

= λnh
∗
n(z)− e∗(z) + e∗(z)

= λnh
∗
n(z) = 0.

Therefore (T + F )(Z) ⊆ Z and this concludes the proof. �

Next we will prove the result in its full generality, when no assumptions on the

spectrum are made.

Theorem 4.3. Let X be a Banach space and T ∈ B(X) a bounded operator. Then for

any ε > 0 there exists a finite rank operator F with ‖F‖ < ε such that T + F has an
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invariant half-space. Moreover, if ∂σ(T ) \ σp(T ) 6= ∅ or ∂σ(T ∗) \ σp(T ∗) 6= ∅, F can

be taken to be rank one.

Proof. Fix ε > 0. Note that the ”moreover” part is simply Theorem 4.1 when ∂σ(T ) \
σp(T ) 6= ∅ and Theorem 4.2 when ∂σ(T ∗) \ σp(T ∗) 6= ∅. Remains to consider the

case when ∂σ(T ) = ∂σ(T ∗) consist only of eigenvalues. If these sets are infinite, the

same argument as in the proof of Theorem 2.7 in [PT13] (also used in Theorem 3.3

in the previous section ) shows that T actually has an invariant half-space. When

∂σ(T ) = ∂σ(T ∗) is finite, we can assume as we did in the proof of Theorem 3.3 that T

is quasinilpotent, and 0 is an eigenvalue for both T and T ∗.

Denote by N the kernel of T and by R the closure of the range of T . If N is infinite

dimensional, then any subspace of N that is a half-space will be an invariant half-

space for T . Since T ∗ is not injective it follows that the range of T is not dense in X.

Clearly R is infinite dimensional, and if it is infinite codimensional as well, then R is

an invariant half-space for T . Therefore we may assume that N is finite dimensional

and R is finite codimensional. Denote by n := dim(N) and by m := codim(R), and

write X = N ⊕Y and X = R⊕Z. Fix bases {f1, f2, . . . , fn} of N and {g1, g2, . . . , gm}
of Z. We will consider separately the cases n ≤ m and n > m.

If n ≤ m, consider the rank n operator G : N → Z defined by G(fi) = gi, for any

1 ≤ i ≤ n. Extend G to X by letting G|Y = 0. It is easy to verify that for any scalar

α 6= 0, T +αG is injective. Recall that the essential spectrum is stable under compact

perturbations, and that the spectrum of a compact perturbation of a quasinilpotent

operator is at most countable, with 0 the only possible accumulation point (see e.g.

[AA02], Corollary 7.50)). It follows that 0 ∈ ∂σ(T +αG) and since T +αG is injective,

0 is not an eigenvalue for T +αG. Choose α > 0 such that ‖αG‖ < ε/2. We can apply

Theorem 4.1 for T +αG and find F0 ∈ B(X) a rank one operator such that ‖F0‖ < ε/2

and T + αG + F0 has an invariant half-space. Then F := αG + F0 is an operator of

rank n+ 1 that satisfies the conclusion.

If m < n, consider the rank m operator G : N → Z defined by G(fi) = gi for any

1 ≤ i ≤ m, and G(fi) = 0 for any m < i ≤ n. Extend G to a rank m operator

on X = N ⊕ Y by letting G|Y = 0. It follows easily that for any scalar α 6= 0,

T + αG has dense range. The same argument as in the previous paragraph gives that

0 ∈ ∂σ(T +αG) for any α 6= 0. Since T +αG has dense range, it follows that (T +αG)∗

is injective and 0 ∈ ∂σ(T + αG)∗ is not an eigenvalue for (T + αG)∗ . Pick α > 0

such that ‖αG‖ < ε/2, and apply Theorem 4.2 for T + αG. As before, we can find
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F0 ∈ B(X) a rank one operator such that ‖F0‖ < ε/2 and T +αG+F0 has an invariant

half-space. Setting F := αG+ F0 we obtain the conclusion, and this ends the proof.

�
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