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Introduction 
Haughton is a 23-km diameter impact structure on Devon Island, Canada [1, 2]. The target 
stratigraphy comprised ~1880 m of Lower Paleozoic sedimentary rocks, unconformably overlying 
the Precambrian Canadian Shield [2]. Near the centre of the structure, is a location characterized 
by negative gravimetric and positive magnetic anomalies, known as “Anomaly Hill” [3]. Highly-
shocked, pumice-like lithic clasts are abundant at this locale, and include gneissic and carbonate-
rich clasts [4, 5]. In this study, we examined 20 zircon grains from a single crystalline clast 
collected at Anomaly Hill, to reveal microstructures at the micrometer to nanometer scale. Earlier 
work on Haughton zircons [6] did not incorporate EBSD, and so, is missing a wealth of information 
to facilitate the identification of key microstructures including FRIGN (former reidite in granular 
neoblasts) zircon, non-FRIGN granular textures, neoblasts versus sub-grain rotation formation of 
subdomains, and various dissociation textures, as described in [7, 8]. The goal of our study is to 
constrain the shock conditions experienced by crystalline basement rocks at Haughton using 
zircon, a mineral that is increasingly recognized as a sensitive shock indicator.  

Samples and Methods 
Twenty Zr-bearing grains were characterized using a petrographic microscope, a ZEISS Sigma 
300 FESEM in BSE imaging mode and a micro-Raman spectrometer. A 532 nm Ar+ laser was 
directed through the 100X objective lens of an optical microscope to achieve a ~1 μm spot size. 
Peak positions and intensities in the Raman spectrum were compared to those acquired from 
zircon, baddeleyite, and reidite reported by [9]. Phase and orientation maps of 18 zircon grains 
were acquired via EBSD mapping with a Tescan MIRA3 FESEM fitted with Oxford Instruments 
Aztec combined EDS-EBSD system. EBSD/EDS data were collected using an EBSD detector 
and XMax 20 mm SDD EDS detector with a specimen tilt of 70°, acceleration voltage of 20 kV, 
and a working distance of 18.5 mmEBSD data were processed using Oxford Instruments Channel 
5.12 by removing isolated erroneous data points via a ‘wildspike’ filter, followed by extrapolative 
infill of unindexed points using a minimum of seven nearest neighbours. Maps of EBSD pattern 
quality, phase, crystallographic orientation, and pole figures were produced in Channel 5.12. 

Results and Discussion 
Shock Effects in Zircon: Zircon records a range of distinct microstructures, including: crystalline 

zircon with no definitive evidence of shock, but some fracturing and limited crystal-plasticity (n = 
10); poor crystallinity zircon, often with irregular fractures and microvesicles (n = 3); lamellar 
reidite within zircon (n = 2); patchy and/or granular textured reidite (n = 3); and granular textured 
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zircon (n = 2). No evidence of planar deformation bands, shock twins, or thermal decomposition, 
were observed.  

Lamellar reidite appear in BSE images as thin (<1 μm wide), closely-spaced sets of bright, 
roughly parallel lamellae that cut across the primary growth zoning of zircon. These lamellae are 
identified as reidite by a broad, low-intensity peak at 608 cm-1 in the Raman spectrum, along with 
a doublet at 816 and 862 cm-1. Peaks are accompanied by a triplet at 192, 200, and 212 cm-1, 
and sharp, well-defined peaks at 344, 426, 962, and 994 cm-1, all of which are consistent with 
zircon. Reidite lamellae yield poor EBSD patterns that could not be indexed. Granular reidite 
occurs as sub-micrometer size individual grains in poorly crystalline zircon and is spatially 
associated with fractures and grain margins of highly-crystalline zircon. In contrast to lamellar 
reidite, reidite with this texture are indexed well by EBSD mapping. EBSD maps show that reidite 
typically has a distinctive epitaxial crystallographic orientation relationship with the host zircon, 
with one {110}reidite aligned with (001)zircon, and the other {110}reidite aligned with {110}zircon. These 
relationships have been described elsewhere [7, 10] and are readily explained by transformation 
from a single zircon orientation via multiple symmetrically equivalent pathways, resulting in 
broadly two orthogonal reidite orientations. Discrete, sub-micrometer granular-textured zircon 
domains are spatially associated with reidite, and predominantly define up to three mutually 
orthogonal crystallographic orientation clusters. This microstructure is attributed to neoblasts 
formed by back-transformation to zircon from reidite [7], a texture termed FRIGN by [8].  

The remaining zircons described in this study exhibit typical igneous textures, with a subset 
possessing highly porous growth zones and margins. These porous grains yield Raman spectra 
that exhibit low intensity, broad peaks at 344, 426, 962, and 994 cm-1. Broadened peaks in the 
Raman spectrum suggest these materials are poorly crystalline, consistent with localized radiation 
damage of U-rich growth zones (i.e., metamict zircon). Vesicles are interpreted as a consequence 
of degassing from pre-existing impurity-rich metamict domains during impact-related heating.

Conclusions 
Our combined FESEM, Raman and EBSD study has identified reidite exhibiting a range of 
microtextures in a subset of zircon grains. The presence of FRIGN zircon, identified for the first 
time at Haughton (this study), but lack of zircon dissociation textures, indicates that basement 
temperatures locally reached >1200°C but did not exceed ~1673°C. Based on the experimentally-
determined stability of reidite [e.g., 13], shock pressures were >30 GPa, consistent with a shock 
stage III classification [11].  However, the heterogeneous distribution of shock features in zircon 
suggests that shock pressure and temperature conditions varied locally at the grain scale.
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