Designing a Model for the Enzyme-Substrate Complex to Investigate the Detailed Catalytic Mechanism of Lactoperoxidase by Quantum Chemical Methods Brandon Manary, Jorge Llano* Department of Physical Sciences, MacEwan University, PO Box 1796, Alberta T5J 2P2, Canada

Proximal side of heme

Figure 1. The path (\rightarrow) of substrate molecules along the diffusion channel found by an RMSD overlapping of the LPO crystallographic structures.

Figure 4. The ground-state of the enzyme with water bound to iron in the active site (PDB: 2PT3, 3GCL).

Figure 5. Intermediate structure (PDB: 3BXI) that precedes the enzyme-product complex in the reaction mechanism.

• The oxygen of OSCN⁻ is bound directly to the iron atom.

utures The 1 The 1 T

Figure 6.

	consisten Condo	Decolution	Iven hound Lizen	4	Ligand have d Crasies	Terrowower	Deferrer co
PDB Accession Code		Resolution	Iron-bound Ligan	.0.	Ligand-bound Species	Taxonomy	Reference
3BXI	(LPO)	2.3 Å	NCSO-			<i>Bos taurus</i>	11
3FAQ	(LPO)	2.7 Å	CN ⁻		NCSO ⁻	Bubalus bubalis	12
3ERI	(LPO)	2.5 Å	SCN ⁻			Bos taurus	13
3NYH	(LPO)	1.77 Å	Br [_]			Bos taurus	14
3V6Q	(LPO)	2.0 Å	СО		Br [_]	Bos taurus	PDB, 2011
3TGY	(LPO)	2.35 Å	H ₂ Asc	(ascorbic acid)		Bos taurus	PDB, 2011
3Q9K	(LPO)	1.7 Å	C_6H_5 -NH-HC=S	(methanethioamide)		Bos taurus	PDB, 2011
2PT3	(LPO)	2.34 Å	H ₂ O		PO ₄ ³⁻	Bos taurus	PDB, 2007
3GCL	(LPO)	2.5 Å	H ₂ O		ASA	Bos taurus	PDB, 2009
2QRB	(LPO)	2.5 Å	Cl-			Bos taurus	PDB, 2007
2IPS	(LPO)	3.1 Å	SCN ⁻			Bos taurus	PDB, 2006
3NAK	(LPO)	3.3 Å				Capra hircus	PDB, 2010
3N8F	(LPO)	3.25 Å				Capra hircus	PDB, 2010
20JV	(LPO)	2.4 Å	CN ⁻		I-	Capra hircus	PDB, 2007
1D7W	(MPO)	1.9 Å				Homo sapiens	15
1DNW	(MPO)	1.9 Å				Homo sapiens	15
1CXP	(MPO)	1.8 Å				Homo sapiens	16

Figure 2. Representation of LPO's tertiary structure with superimposed active-sites embedded. The active sites (circled) of all the crystallographic structures were overlapped and centered on the heme group.

Figure 3. Representation of the active sites of centered on the heme group.

- Glu257, Gln258, Gln104, Arg255, His109 located over the distal side of the heme do not show significant conformational flexibility in all the aligned iron-complexed structures.
- Phe381 and Pro424 are conformationally flexible because they belong structurally to the diffusion channel of the enzyme.

Conclusions

- The catalytic functional groups (i.e., Glu257, Gln258, Gln104, Arg255, His109) located on the distal side of these enzymes form a network that hinders their side-chain conformational flexibility, regardless of the bulkiness of the ligand docked in the active site.
- All the residues within a distance of approximately 15 Å from the iron center will be included in the chemical model of the active site that will be used to compute the detailed catalytic mechanism of LPO and MPO by quantum chemical methods.

References

(1)	Thomas, E. L.; Milligan, T. W.; Joyner, R. E.; Jefferson, M. M. Infect. A
(2)	Shin, K.; Horigome, A.; Wakabayashi, H.; Yamauchi, K.; Yaeshima, T
(3)	Haukioja, A.; Ihalin, R.; Loimaranta, V.; Lenander, M.; Tenovuo, J. J.
(4)	Tenovuo, J. <i>J. Dent. Res.</i> 2002 , <i>81</i> , 807.
(5)	Cegolon, L.; Salata, C.; Piccoli, E.; Juarez, V.; Palu, G.; Mastrangelo, G
(6)	Barrett, T. J.; Hawkins, C. L. <i>Chem. Res. in Toxicol.</i> 2012 , <i>25</i> , 263.
(7)	Flemmig, J.; Remmler, J.; Rohring, F.; Arnhold, J. <i>J. Inorg. Biochem.</i>
(8)	Bafort, F.; Parisi, O.; Perraudin, J. P.; Jijakli, M. H. Enzyme Res. 2014
(9)	Furtmuller, P. G.; Arnhold, J.; Jantschko, W.; Zederbauer, M.; Jakopi
(10)	Davies, M. J. <i>J. Clin. Biochem. Nutr.</i> 2011 , <i>48</i> , 8.
(11)	Singh, A. K.; Singh, N.; Sharma, S.; Shin, K.; Takase, M.; Kaur, P.; Srir
(12)	Sheikh, I. A.; Singh, A. K.; Singh, N.; Sinha, M.; Singh, S. B.; Bhushan
(13)	Singh, A. K.; Singh, N.; Sinha, M.; Bhushan, A.; Kaur, P.; Srinivasan, A
(14)	Singh, A. K.; Pandey, N.; Sinha, M.; Kaur, P.; Sharma, S.; Singh, T. P. I.
(15)	Blair-Johnson, M.; Fiedler, T.; Fenna, R. <i>Biochem.</i> 2001 , <i>40</i> , 13990.
(16)	Fiedler, T. J.; Davey, C. A.; Fenna, R. E. J. Biol. Chem. 2000, 275, 119
(17)	http://www.ks.uiuc.edu/Research/vmd/

all the LPO structures overlapped and

ГGY, 3Q9K, 2PT3 3GCL, 2QRB, 2IPS, 2OJV).

Immun. 1994, 62, 529. , T.; Iwatsuki, K. *J. Breath Res.* **2008**, *2*, 017014. *. Med. Microbiol.* 2004, *53*, 855.

G.; Calistri, A. Int. J. Hyg. Environ. Health 2014, 217, 17.

. **2014**, *130*, 84. **14**, *2014*, 517164. oitsch, C.; Obinger, C. J. Inorg. Biochem. 2005, 99, 1220.

nivasan, A.; Singh, T. P. *Biophys. J.* **2009**, *96*, 646. n, A.; Kaur, P.; Srinivasan, A.; Sharma, S.; Singh, T. P. *J. Biol. Chem.* **2009**, *284*, 14849. , A.; Sharma, S.; Singh, T. P. *J. Biol. Chem.* **2009**, *284*, 20311. *Int. J. Biochem. Mol. Biol.* **2011**, *2*, 328.

964.