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Abstract

We propose a model based on the logistic equation and linear kinetics to study
the effect of toxicants with various initial concentrations on a cells’ population.
To efficiently estimate the model’'s parameters, we design an Expectation
Maximization algorithm. The model is validated by showing that it accurately
represents the information provided by in-vitro experiments.

Introduction

At the Alberta Centre of Toxicology the effect of various toxicants on

growth /death and morphology of human cells is investigated using the
xCELLigence Real-Time Cell Analysis High Troughput in vitro assay. The cell
index is measured as a proxy for the number of cells, and for each test
substance in each cell line, time-dependent concentration response curves
(TCRCs) are generated. The toxicants are grouped in clusters, according to
the mode of action. The goal of this study is to find a model that could
accurately reproduce these curves.
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Figure 1: TCRCs for the toxicant PF431396

n(t): cell index at time ¢
Co(t): internal toxicant concentration
_ 4 C'E(t): external toxicant concentration

dCo(t)

dt B: cell growth rate

dC’g(t) _ )\%Co(t)n(t) _ ngCE(t)n(t) K capacity volume

A\?, m#: toxicant uptake and input rates from environment

A3, m3: toxicant uptake and loss rates from cells

To estimate the parameters we write the system in a state-space form. From
the experimental data recorded in the TCRCs we get observations, possibly
affected by measurement errors, only for the cell index n(t). Using the Euler
integration scheme with time step h, we get the discrete state-space system:
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» 151 = |n,Cy, CE]" is the state of the system

» .. Is the observation at time step k + 1

» v and wyg, are uncorrelated, vy ~ N(0, Q) and wp ~ N(0, R)

> his the timestep; C'= |1 0 0]; 1|1 = n(0), z1]2] = Cy(0) = 0 and
r13] = CE(0) comes from the measured data at £y = 0

Parameter Estimation

» Using the experimental data corresponding to the negative control (no
toxicant) we can estimate S and K using the nonlinear least square method
based on the analytic solution of the logistic equation.

The remaining parameters © = {Q, R, a;, A1, Xy, 1, 2} are estimated using the
state-space model and the Expectation Maximization (EM) algorithm based on
the the unscented filter (UF).

The UF is an alternative to the extended Kalman filter (EKF) to calculate the
filtered values ; = Elzly1, ..., v, B = E[(x; — Zi)(xi — Z3)'|y1, . . ., i, the
predicted values £i+1 — E[$i+1‘y1, Yo, . .. ;yz']; P7;+1 — E[(QZHl — @7;+1)(5137;+1—
Zi+1)'|y1, . - ., yi] and the smoothed values z;y = Elz;|y; ...yn] and

Py =El(xi— ) (@ — :zzfv)t Y1 ... yn| based on the available observations
Y1 .- -YN-

The state equation is non-linear, so an approximation is needed during the
E-step. The likelihood and the conditional likelihood

P(x1,...,2N, Y1, .-, YN|y1, ..., yn) are approximated based on a linearization
of the state equation.

The EM Algorithm

Initialize the model parameters © = {Q), R, o, A\, Ao, 1, 12}

Repeat until the log likelihood has converged

he E step: compute E = Ellog P(1, . .
For k=1 to N

Run the UF filter to compute Zj11, Pii1, it f)k+1 and P,
For k=N to 1

Calculate the smoothed values xy, and P x
The M step

Update the values of the parameters © to maximize E
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Model Validation

» We divide the experimental data into a training set (around 70% of the data),
and a test set. We use the IV observations in the training set to estimate the
parameters.

» Once the parameters are estimated, we can predict the future values of z;,
1 =N+1,N+2,.... We validate the model by comparing these predictions
with the experimental data in the test set.

Table 1: Estimated Values of Parameters

Cluster 5 K m A1 A9 T2 Q

0.074 18.17 0.209 0.177 0.204 0.5 0.016
0.077 21.913 0.143 0.0098 0.0786 0.147 0.351
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Figure 2: Estimation results for monastrol: dot for experimental data, line for filtered or predicted ob-
servations; (a) CE(0)=100.00uM, (b) CE(0)=33.33uM, (c) CE(0)=11.11uM, (d) CE(0)= 3.70uM,
(e) CE(0)=1.23uM, (f) CE(0)= 0.41uM, (g) CE(0)=0.14uM, (h) CE(0)=45.72nM
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Figure 3: Estimation results for HA1100 hydrochloride: dot for experimental data, line for filtered or
predicted observations; (a) CE(0)=1.00mM, (b) CE(0)=0.33mM, (c) CE(0)=0.11mM, (d) CE(0)=
37.04uM, (e) CE(0)=12.35uM, (f) CE(0)=4.12uM, (g) CE(0)=1.37uM, (h) CE(0)= 0.46uM

Conclusions

"he proposed mathematical model is in good agreement with the experimental

TCRCGs.

"he EM algorithm based on the unscented filter gives accurate predictions of
the concentration of toxicant outside the cells.

The model can be used to determine an appropriate range for the initial
concentration of chemicals C'E/(0) used in the experiments such that both
values smaller and larger than the threshold between extinction and persistence
are included.
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