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In polygynous species, secondary sexual traits such as weapons or elaborate
ornaments have evolved through intrasexual competition for mates. In some
species, these traits are present in both sexes but are underdeveloped in the
sex facing lower intrasexual competition for mates. It is often assumed that
these underdeveloped sexually selected traits are a vestige of strong sexual
selection on the other sex. Here, we challenge this assumption and investi-
gate whether the expression of secondary sexual traits is associated with
fitness in female bighorn sheep. Analyses of 45 years of data revealed that
female horn length at 2 years, while accounting for mass and environmental
variables, is associated with younger age at primiparity, younger age of first
offspring weaned, greater reproductive lifespan and higher lifetime repro-
ductive success. There was no association between horn length and
fecundity. These findings highlight a potential conservation issue. In this
population, trophy hunting selects against males with fast-growing horns.
Intersexual genetic correlations imply that intense selective hunting of
large-horned males before they can reproduce can decrease female horn
size. Therefore, intense trophy hunting of males based on horn size could
reduce female reproductive performance through the associations identified
here, and ultimately reduce population growth and viability.
1. Introduction
In polygynous species where males use secondary sexual traits to compete for
mates, the evolution of those traits in females is usually attributed to one or
more of the following mechanisms: shared genetic architecture [1], intrasexual
resource competition [1,2], predator defence [2] or male-mate choice [3]. The
shared genetic architecture hypothesis, first recognized and described by
Darwin [4] as ‘correlated inheritance’, states that although directional selection
only affects male traits, the underlying genetic architecture (the same genes
affect the trait in both sexes) results in females exhibiting underdeveloped
forms of the same traits, despite no obvious fitness benefit for females [5].
Female traits maintained via shared genetic architecture, such as the long tail
feathers of barn swallow (Hirundo rustica) [6], are thought to not affect female
fitness. Alternatively, the intrasexual competition hypothesis holds that
these traits may aid access to resources [7]. For example, female dung beetles
(Onthophagus sagittarius) use horns to compete for dung, where they raise
their offspring [8,9]. Additionally, secondary sexual characteristics in females
can be an anti-predation adaptation, such as the horns of many female
bovids [2]. Finally, female ornamentation may influence male-mate choice [3].
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A common, often extremely sexually dimorphic, second-
ary sexual trait is the cranial weaponry of many ungulates.
The use of cranial weaponry in male–male competition is
well documented [9–11], but its function in females is
debated. Stankowich & Caro [2] theorize that the horns of
female bovids are an anti-predator adaptation, with larger
more conspicuous species more likely to exhibit headgear
[2,12]. Cranial weaponry may also function in female intra-
sexual competition; female reindeer (Rangifer tarandus) use
antlers to compete for forage [13], and female Soay sheep
(Ovis aries) with more developed horns win more intrasexual
interactions [14]. Alternatively, shared genetic architecture
may explain female cranial weaponry as a vestige of strong
sexual selection in males for that trait [5]. Regardless of
which mechanism is responsible for the development of
horns in female ungulates, individual variation in cranial
weaponry size may either influence or indicate variation in
female fitness. If cranial weaponry functions as an anti-pred-
ator trait, individuals with larger horns may be better able to
defend themselves. If weaponry size simply reflects overall
body condition or resource acquisition, it may be correlated
with body mass and therefore with reproductive success.
Alternatively, given the high cross-sex heritability of head-
gear length in some ungulates [15], females who inherit
alleles for more exaggerated headgear may also inherit alleles
for other traits associated with greater fitness potential. For
example, heavier mass as well as disease and parasite resist-
ance are all correlated with the expression of male secondary
sexual traits in diverse species [16–18]. Here we investigate if
the expression of cranial weaponry in females is associated
with reproductive fitness in a wild ungulate population.

The functions of horns in female bighorn sheep (Ovis cana-
densis) and their association with reproductive fitness are
largely unknown. Horn length is highly genetically correlated
across the sexes [15], thus females with long horns are
expected to be both progeny and parents of longer-horned,
typically higher-fitness males [10]. Jorgenson et al. [19] found
that female yearlings with larger horns were more likely to
have offspring earlier in life, however, that study did not con-
trol for a possible effect of body mass, which is also associated
with age at primiparity [20,21]. Thus far, the relationships
between horn size, body mass and age at primiparity have
not been disentangled. Factors other than horn size known
to be associated with reproductive traits include body mass
[22] and population density [23], with density during early
life being particularly important for reproductive potential
[20,24]. Additionally, potential associations between female
horns and reproductive fitness may lead to correlated, indirect
effects on fitness via anthropogenic selective pressures on
male horn length. Similar to other species, male bighorn
sheep are subject to phenotype-based harvest [24–26]. Intense
selective harvest can result in an evolutionary response in horn
size, leading to a reduction in breeding values for horn length
in both sexes [27]. Hence, if an association between female
horn length and reproductive fitness exists in bighorn sheep,
selective harvest of males may negatively affect population
demography as seen in other species [28–30].

Despite the reproductive benefits conferred by horns to
male bighorn sheep [10] in the absence of selective harvest
[27,31], and the functionality of female weapons in some
ungulates [13,14], little is known about the relationship
between horn size and fitness in most ungulate species.
Given the fitness benefits potentially conferred by cross-sex
shared genetic architecture [15,17], we hypothesize that
females with longer horns may have higher reproductive fit-
ness. We used approximately 45 years of longitudinal data to
examine the effect of horn length, body mass, population
density and other environmental variables on four com-
ponents of reproductive fitness (age at primiparity, age at
first offspring weaned, reproductive lifespan and fecundity)
and lifetime reproductive success (LRS).
2. Methods
(a) Study site/population
RamMountain, Alberta (52o80 N, 115o80 W, 1082–2173 m elevation)
is a rocky outcrop encompassing approximately 38 km2 of alpine
and sub-alpine terrain, approximately 30 km east of the main
Rocky Mountain range. The sheep population is geographically
and genetically distant [32] from the main species range. Monitor-
ing started in 1971 [33] and is ongoing. The Ram Mountain
population was historically subjected to trophy hunting of males
based on horn size [27]. In 1996, a more restrictive regulation
was introduced, and a moratorium has stopped sport hunting
since 2011.

(b) Monitoring
Between late May and September, sheep were trapped in a corral
baited with salt. At each capture, body mass was measured with
a spring scale to the nearest 125 g. Horn length and base circumfer-
ence (cm) were measured using a flexible tape. At first capture, a
tissue sample was taken for DNA analyses and pedigree construc-
tion. Reproductive status was determined by observing lactation at
capture, or by mother–offspring interactions. Mother–offspring
pairs were determined by behavioural observations and confirmed
by a genetic pedigree constructed using 26 microsatellite markers
[10,34]. For this study, we analysed data from 1973 to 2018 for
females of the 1973–2016 cohorts.

(c) Individual measurements
For females from the 1973 to 2016 cohorts, we recorded age at
primiparity (years), age at first offspring weaned (years),
yearly reproductive status (to examine reproductive lifespan),
adjusted horn length (cm) and body mass (kg) to 15 September
at two years to allow for comparison between individuals.
Using repeated measurement of the same individual in the
same season, horn length was adjusted using individual horn
growth rates and mass was adjusted using mixed-effect models
[35]. Age at primiparity was defined as the first occasion in
which a female lactated (assessed by inspection of the udder
during captures). We defined weaning as rearing offspring to
mid-September. Our measure of reproductive lifespan was the
number of years between first and last reproductive activity,
defined as the last occasion in which a female lactated. Fecundity
and LRS were examined for females from the 1973 to 2012
cohorts for which entire reproductive histories were available.
Fecundity was the proportion of reproductive years in which
an offspring was weaned and LRS was the total number of off-
spring weaned by each female. To control for environmental
variation, we recorded population density, winter temperature
and winter precipitation for the first year of life for each female
and for each year from age two to primiparity or first weaning
of offspring. As in previous publications, population density
was the number of adult females in June. Mean winter tempera-
ture (°C) and mean winter precipitation (cm) were the average of
monthly temperatures and precipitation recorded at the Envi-
ronment Canada meteorological station in Nordegg (52o300 N,
116o030 W, elevation: 1320 m, about 20 km west of Ram



Table 1. Results of Cox mixed-effect models testing the association of female horn length and body mass at 2 years with age at primiparity, age at first
offspring weaned and reproductive lifespan for female bighorn sheep at Ram Mountain, Alberta, 1973 to 2018. Each model included cohort, ID and year as
random effects. Best model for each trait is in italics.

model

age at primiparity age at first offspring weaned reproductive lifespan

d.f. AICc Δi d.f. AICc Δi d.f. AICc Δi

environment + horn

length + body mass

82.06 1707.26 0 117.14 1752.14 0 137.76 1332.33 45.89

environment + body mass 83.58 1712.98 5.72 116.26 1754.47 2.33 141.28 1292.87 6.43

environment + horn length 83.76 1719.83 12.57 119.96 1759.49 7.35 141.88 1287.20 0.76

environment 85.99 1729.67 22.41 119.15 1767.65 15.51 141.63 1286.44 0

Table 2. Generalized mixed-effect models testing the association of horn length and body mass at 2 years with fecundity and LRS for female bighorn sheep at
Ram Mountain, Alberta cohorts 1973–2012. Each model included cohort, ID and year as random effects. Best model for each trait is in italics.

model

fecundity LRS

d.f. AICc Δi d.f. AICc Δi

environment + horn length 7 1343.38 1.00 7 701.23 0

environment + horn length + body mass 8 1345.49 3.11 8 701.80 0.57

environment + body mass 7 1344.38 2.00 7 703.19 1.96

environment 6 1342.38 0 6 706.30 5.07
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Mountain) from November to March (see also [21]). Prior to
analysis all measurements were standardized by subtracting
the mean and dividing by the standard deviation (s.d.), to com-
pare the effect of variables with differing units of measurement.
(d) Statistical analysis
To analyse factors associated with age at primiparity, age at first
offspring weaned and reproductive lifespan, we used R v. 4.0.3
[36], packages survival v. 3.2.13 [37] and coxme v. 2.2.16 [38] to
calculate Cox mixed-effect survival models. We considered
12 models, four for each of the three sets of observations, to exam-
ine how environmental effects, adjusted horn length at age two
and adjusted mass at age two were associated with age at primi-
parity, age at first weaning success and reproductive lifespan
(tables 1 and 3). Female cohort, observation year and individual
ID were included in all models as random effects. We obtained
the hazard ratios for each fixed effect from coxme. We performed
model selection on Cox mixed-effect survival models by ranking
each set of four models by their Akaike information criterion cor-
rected for small samples size (AICc) and selecting the model with
the lowest AICc (table 1). We tested the validity of the best fitting
models by their relationship between the Schoenfeld residuals [39]
and time using the survival package [37]. Schoenfeld residuals are
the difference between observed and predicted values for any cov-
ariate at any given event time and should have a non-significant
relationship with time in valid models.

To analyse factors associated with fecundity and LRS, we
used R package lme4 v. 1.1–27.1 [40] to fit generalized linear
mixed-effect models (GLMM). We considered eight models in
total, four for each of the two sets of observations, to examine
how environmental effects, adjusted horn length at age two
and adjusted mass at age two were associated with fecundity
and LRS (tables 2 and 4). Female cohort, grouped into 4-year
periods to avoid overfitting, was included in all models as the
sole random effect. Gaussian and Poisson error families were
used for the fecundity and LRS models, respectively. We used
r2glmm v. 0.1.2 [41] to calculate r2 values for each fixed effect
in Gaussian model. We calculated pseudo r2 values for fixed
effects in Poisson models by subtracting the marginal r2 value
of the model with the target variable from the marginal r2

value of the whole model. Marginal r2 values were calculated
using the R package Mumin v. 1.43.17 [42]. We performed
model selection on GLMMs by selecting the model with the
lowest AICc (tables 1 and 2). We tested the fit of residuals
from the best fitting models to a normal distribution by the
Shapiro–Wilk normality test [43].
3. Results
Age at primiparity and age at first successful weaning data-
sets included 217 females, where horn length at 2 years
ranged from 9.8 to 28.6 cm and body mass from 41.0 to
71.6 kg, with means of 19.0 cm (3.0 s.d.) and of 57.8 kg
(5.7 s.d.), respectively. Age at primiparity ranged from 2 to
7 years, and age at first offspring weaned ranged from 2 to
9 years. The median age was 3 years for both variables (elec-
tronic supplementary material, figure S1). The reproductive
lifespan dataset included 160 females, whose average horn
length and body mass at 2 years were 19.6 cm (3.0 s.d.) and
58.8 kg (4.9 s.d.), respectively. Reproductive lifespan ranged
from 1 to 15 years, with a median of six (electronic sup-
plementary material, figure S1). LRS and fecundity were
known for 152 females and ranged from 1 to 12 lambs
weaned and 20% to 100% annual fecundity, with a median
of four and mean of 74.6%, respectively (electronic sup-
plementary material, figure S1). The average horn length
and body mass at 2 years in these datasets were 19.2 cm
(3.1 s.d.) and 58.3 kg (5.5 s.d.), respectively. Temporal trends
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Table 4. Estimates from best generalized mixed-effect models examining associations of environmental variation and horn length with reproductive lifespan,
environmental variation with fecundity, and horn length, body mass and environment with LRS for female bighorn sheep at Ram Mountain, Alberta, cohorts
1973–2012.

variable

fecundity LRS

coefficient (s.e.) p r2 coefficient (s.e.) p r2

fixed effects

adjusted horn length at 2 years 0.131 (0.049) 0.007 0.050

density experienced as a lamb −0.271 (0.127) 0.032 0.057 −0.027 (0.077) 0.721 0.006

winter precipitation experienced as a lamb −0.002 (0.317) 0.994 0 −0.014 (0.055) 0.797 0.007

winter temperature experienced as a lamb −1.422 (0.930) 0.126 0.020 −0.071 (0.055) 0.198 0.035

variance variance

random effects

grouped cohort 62.45 0.041
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for horn length, fecundity, reproductive lifespan and LRS
were characterized by a decline until the early to mid-1990s
followed by an increase (figure 1). Conversely, age at primi-
parity and at first offspring weaned increased until the
1990s then declined. Electronic supplementary material,
figure S2 reports temporal trends in environmental variables.

For factors associated with age at primiparity and age at
first offspring weaned, the best model contained adjusted
horn length at age two, adjusted mass at age two and all
environmental effects (tables 1 and 3). In thesemodels, adjusted
horn length and adjusted mass at age two had hazard ratio of
1.34 and 1.40, respectively, for the likelihood of transitioning
from a nonparous to a primiparous state at any age, and 1.57
and 1.51, respectively, for the likelihood of transitioning from
a non-weaning to a weaning state at any age. Thus, for every
additional 3.0 cm (1 s.d.) of horn length and 5.5 kg (1 s.d.) of
mass, the likelihood of being primiparous increased by 39.8%
and 34.0%, respectively, and for every additional 3.0 cm
(1 s.d.) of horn length and 5.5 kg (1 s.d.) of mass, the likelihood
of first weaning an offspring increased by 57.4% and 51.1%,
respectively (figure 2). These likelihoods increased exponen-
tially with every year spent nonparous or non-weaning.

For factors associated with reproductive lifespan, the best
model contained only environmental variables (tables 1 and
3). This model, however, was only weakly supported over
one containing horn length at age two and environmental
variables, with a delta AICc of 0.76. The Schoenfeld residuals
of Cox survival models (electronic supplementary material,
table S2) revealed a significant relationship between birth
density and age (time) in the primiparity model, as expected
due to temporal trends in density. We subsequently repeated
this model series twice, once with birth density removed and
again with an interaction between birth density and age
included (electronic supplementary material, table S3).
These models showed the same pattern as the original
models when ranked by AICc; therefore, age at primiparity
was associated with both horn length and mass at 2 years
in addition to environmental effects.

For factors associated with fecundity, the best model con-
tained only environmental effects (tables 2 and 4). For LRS,
the best model contained adjusted horn length at 2 years
and all environmental effects (tables 2 and 4; figure 3). In
this model, r2 value for adjusted horn length was 0.050.
The residuals of these models were normally distributed
according to Shapiro–Wilk normality tests [43].
4. Discussion
Variation in age at primiparity and age at first offspring
weaned in female bighorn sheep was associated with both
horn length and body mass when controlling for environ-
mental factors. Additionally, we found an association
between LRS and horn length when controlling for environ-
mental factors. Both female mass and environmental factors
were associated with age at primiparity and age at first off-
spring weaned [19–21]. However, horn size appeared to
explain more variation than bodymass in age at first offspring
weaned, and to be the most explanatory variable of variation
in LRS. Thus, larger horns correlate with higher reproductive
fitness in both male [10] and female bighorn sheep.

The relationship between horn length and female reproduc-
tive fitnessmay result from shared genetic architecture, if alleles
for greater fitness are associatedwith alleles for larger headgear.
Female horn length could indicate variation in condition or
other aspects of individual reproductive potential through its
association with other traits linked to the shared genetic archi-
tecture for horns [17]. Therefore, due to the high degree of
cross-sex heritability of horn length [15], females who inherit
alleles for larger horns are also likely to inherit alleles for greater
fitness phenotypes, a positive relationship already observed in
other fitness-related traits in this population [17], and similar
to correlations observed in other species [16,18]. This hypothesis
suggests that selective harvesting of males based on horn size
could deplete alleles for traits associated with greater female
reproductive fitness in bighorn sheep.

We observed temporal changes in reproductive traits that
appeared to be associated with trophy hunting activity in
this population. Female horn length at age 2 years decreased
and age at primiparity and first weaning success increased
until the near cessation of trophy hunting in 1996, after
which horn length at age 2 years increased and age at primi-
parity and at first weaning success decreased. These patterns
mirror the trends of expected breeding value for horn length
in both sexes and male horn circumference observed by
Pigeon et al. [27] and further exemplify how reducing hunting
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Figure 1. (a) Horn length at 2 years and (b) age at primiparity for female bighorn sheep from cohorts 1973 to 2015, and (c) age at first offspring weaned,
(d) fecundity, (e) reproductive lifespan and ( f ) LRS for female bighorn sheep from cohorts 1973 to 2012 at Ram Mountain, Alberta, Canada. Dashed vertical
line represents the near cessation of trophy hunting in 1996. Smooth line was fitted using loess. Point size represents overlapping data points.
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Figure 2. Associations of three different classes of female horn length at 2 years with (a) proportion of primiparous females and (b) proportion of females that
weaned their first offspring across ages. Dotted line, dashed line and solid line represent short, medium and long horn classes, respectively. Females with stan-
dardized horn lengths less than −0.5 s.d, between −0.5 and 0.5 s.d. or greater than 0.5 s.d., respectively, were assigned to the short, medium and long horn
length classes, respectively. Only females that experienced primiparity or weaned at least one offspring were included: (a) n = 189 and (b) n = 182.
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pressure can mitigate human-mediated evolutionary changes
[25]. Additionally, reproductive lifespan decreased from a
peak in about 1980 until the cessation of trophy hunting.
Many populations of mountain sheep in Canada are subjected
to similar trophy hunting regimes as that experienced by the
Ram Mountain population prior to 1996. Across Alberta,
declining male horn length has been observed over the past
approximately 40 years [44,45]. Assuming other populations
also exhibit cross-sex heritability of horn length [15], harvested
populations may also experience delayed age at primiparity
and the subsequent reduction in population growth as a
cross-sex correlated response to harvest selection.
While plausible, we cannot conclusively determine that
the correlation between horn length and reproductive fitness
results from shared genetic architecture. Individual variation
in nutritional intake, parasite load, non-additive genetic
effects or other unmeasured environmental effects could
also mediate the correlation between horn growth and repro-
ductive fitness. However, if environmental variability was the
main driver of the relationships we reported, we would have
expected body mass to play a greater role than horn length, as
body mass directly affects female reproductive potential [22].

Our findings suggest that secondary sexual traits, particu-
larly cranial weaponry, in females of sexually dimorphic
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species may be more than ornamental vestiges of intense
selection in males, as they are associated with fitness vari-
ation in females. These traits might confer direct benefits in
intrasexual competition or indirect benefits via shared genetic
architecture. Female horn length could increase intrasexual
competitiveness, given that the use of horns in intrasexual
resource competition has been observed in numerous other
species [8,9,13,14]. However, there is no evidence that horn
size determines the outcome of dominance interactions in
female bighorn sheep [46]. Regardless of the underlying
mechanism, the association of female horn length at 2 years
with early reproductive success and LRS highlights a poten-
tial important conservation issue for trophy-hunted
populations of bighorn sheep. Intense selective harvest has
been linked to an evolutionary decline in horn length in
both sexes [27]. Although female horn length was not a
target of selective hunting, it declined because of cross-sex
heritability [15]. Here, we show that females with smaller
horns have delayed primiparity and age at first successful
weaning, leading to a reduction in LRS. Therefore, selective
harvest may indirectly select for females with lower overall
reproductive fitness, which may negatively affect population
dynamics. Our study exemplifies how species subjected to
selective harvesting regimes may exhibit decreases in overall
population fitness [25,26] with demographic and evolution-
ary effects [28–30] extending beyond changes in the trait
targeted by trophy hunters [24,27].
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