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CONTROLLING ALMOST-INVARIANT HALFSPACES
IN BOTH REAL AND COMPLEX SETTINGS

ADI TCACIUC AND BEN WALLIS

Abstract. If T is a bounded linear operator acting on an infinite-dimensional
Banach space X, we say that a closed subspace Y of X of both infinite dimension
and codimension is an almost-invariant halfspace (AIHS) under T whenever TY ⊆
Y + E for some finite-dimensional subspace E, or, equivalently, (T + F )Y ⊆ Y
for some finite-rank perturbation F : X → X. We discuss the existence of AIHS’s
for various restrictions on E and F when X is a complex Banach space. We also
extend some of these and other results in the literature to the setting where X is
a real Banach space instead of a complex one.

1. Introduction

Let X be an infinite-dimensional Banach space and T ∈ B(X) a bounded linear
operator. We say that a subspace Y of X is almost-invariant under T when-
ever TY ⊆ Y + E for some finite-dimensional subspace E of X. In this case, E
is called an error subspace, and its minimum possible dimension is called the de-
fect of Y under T . This is a natural weakening of the notion of an invariant
subspace, that is, an almost-invariant subspace with defect zero. Observe that ev-
ery operator admits almost-invariant subspaces, so to make things nontrivial we
say that Y is a halfspace whenever it is a norm-closed subspace of X satisfying
dim(Y ) = dim(X/Y ) =∞. It is straightforward to verify a subspace Y is an almost-
invariant halfspace (henceforth AIHS under T with defect ≤ d if and only if it is
an invariant halfspace (henceforth IHS) under T + F for some operator F ∈ B(X)
with rank ≤ d. We may therefore extend the notion of an AIHS as follows by con-
sidering compact perturbations instead of finite-rank ones. In this case, we say that
a subspace Y is essentially invariant when it is invariant under T + K for some
compact operator K, and an essentially invariant halfspace (hereafter, EIHS)
whenever, in addition, Y is a halfspace. The project of finding an almost-invariant
halfspace, henceforth AIHS, for every operator acting on an infinite-dimensional
Banach space is called the AIHS problem. Similarly, the project of finding an
EIHS is called the EIHS problem.

AIHS’s were first defined in [APTT09], and have been studied in numerous ad-
ditional papers since then, namely [Po10], [MPR13], [PT13], [SW14], [BR15], and
[SW16]. Although the AIHS problem remains open in its fullest generality, numerous
partial results have been obtained. For example, it was shown in [PT13, Theorem
2.7] that every operator acting on an infinite-dimensional complex reflexive space
admits an AIHS of defect ≤ 1. Then, in [SW14] it was shown that every operator T
acting on an infinite-dimensional complex Banach space and with at most countably
many eigenvalues admits an AIHS, again of defect ≤ 1, and this was extended in
[SW16, Remark 2.5] to the case where T merely commutes with an operator with at
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most countably many eigenvalues but which is not finite-rank or a multiple of the
identity.

In this paper we further study two kinds of AIHS constructions. First, in section
2, we discuss how to control the error susbpaces and finite-rank perturbations as-
sociated with an AIHS. In particular we show that for every operator T acting on
an infinite-dimensional complex reflexive space X and every ε > 0 there exists a
finite-rank operator F ∈ B(X) with norm < ε and such that T + F admits an IHS.
This represents an extension of an analogous result for complex infinite-dimensional
Hilbert spaces proved in [PT13, S3]. Also in section 2 we show that when X is an
infinite-dimensional complex Banach space and T ∈ B(X) with no eigenvalues and
countable spectrum, then for every nonzero x ∈ X there exists an AIHS under T
with error ⊆ span{x}.

Second, in section 3, we discuss the existence of AIHS’s when X is a real Banach
space instead of a complex one. Indeed, many of the most significant results for
AIHS’s have been obtained using spectral theory, and their proofs do not translate
easily to the case where X is real. However, in case σ(T ) = σ(T )∩R or else σ(T )∩R
is infinite, the operator T ∗ always admits an AIHS of defect ≤ 1, and if in addition
X is reflexive then so does T .

Most of the notation is standard, such as might be found in [AA02] or [Ai04];
however, we shall review a few basic definitions and notations which are essential for
our purposes. First, let us use the conventions N = {1, 2, 3, · · · } and N0 = N ∪ {0}.
If X and Y are Banach spaces then we denote by B(X) the algebra of bounded
linear operators on X. If A ⊆ X is a set then we denote by A the closure of A in X
and [A] the closure of its linear span. Denote by

N (T ) = {x ∈ X : Tx = 0}
the null space, or kernel, of T . If Y is a linear subspace of X then

Y ⊥ := {x∗ ∈ X∗ : x∗(y) = 0 for all y ∈ Y }
is called the annihilator of Y , and is a closed subspace of X∗ (even when Y is not
closed). Observe that we always have the relations

(1) N (T ∗) = (TX)⊥ = (TX)⊥ and T ∗X∗ ⊆ N (T )⊥.

If Y is a closed subspace of X then we also have

(2) Y ⊥ ≈ (X/Y )∗ and Y ∗ ≈ X∗/(Y ⊥),

where each “≈” means “is isomorphic to.” Note that in the special case where
X = H is a Hilbert space, for any closed subspace Y of H, the annihilator Y ⊥ can
be viewed as a closed subspace of H, and serves as the orthogonal complement of Y
in H.

If X is a complex Banach space and T ∈ B(X) then we denote by

σ(T ) := {λ ∈ C : λ− T is not invertible in the algebra B(X)}
the spectrum of T and ρ(T ) := C \σ(T ) its resolvent. It is well known that σ(T )
is a compact subset of the complex plane. Thus, ρ(T ) contains a unique unbounded
component called the full resolvent, and denoted ρ∞(T ). Then σ∞(T ) = C\ρ∞(T )
is called the full spectrum of T . We can also define the spectral radius

r(T ) := sup
λ∈σ(T )

|λ|.

We shall use other parts of the spectrum as well, including the following. Let

σp(T ) := {λ ∈ C : λ− T is not injective}
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as the point spectrum, and

σsu(T ) := {λ ∈ C : λ− T is not surjective}
the surjectivity spectrum of T . Observe that σp(T ) is precisely the set of eigen-
values under T , and that ∂σ(T ) ⊆ σsu(T ) (cf., e.g., [Ai04, Theorem 2.42]).

The sets σ(T ), σp(T ), and σsu(T ) have, so far, only been defined in the complex
setting. To extend these definitions to the case where X is real, we will need to
consider the complexification XC, defined as follows. Note that X ⊕ iX is a
vector space under the operations

(x1 ⊕ iy1) + (x2 ⊕ iy2) = (x1 + x2)⊕ i(y1 + y2) for all x1, x2, y1, y2 ∈ X, and

(a+ ib)(x⊕ iy) = (ax− by)⊕ i(bx+ ay) for all x, y ∈ X and a, b ∈ R.
We can then define a complete norm

‖x⊕ iy‖XC = sup
θ∈[0,2π]

‖x cos θ + iy sin θ‖ for all x, y ∈ X.

The complexification XC is defined as the Banach space X ⊕ iX, under the given
vector space operations, endowed with this norm. Note that in this case ‖ · ‖XC

satisfies

(3)
1

2
(‖x‖X + ‖y‖X) ≤ ‖x⊕ iy‖XC ≤ ‖x‖X + ‖y‖X

for all x, y ∈ X. Observe that for any continuous linear operator T : X → Y there
exists a continuous linear complexification operator TC : XC → YC defined by

TC(x1 ⊕ ix2) = (Tx1)⊕ i(Tx2) for all x1, x2 ∈ X.
Note in particular that RC = C so that if f ∈ X∗ then fC ∈ (XC)∗. Please see
[AA02, S1.1] for further details on the complexications of X and T .

Now we can extend the various parts of the spectrum by writing

σ(T ) := σ(TC), σp(T ) := σp(TC), σsu(T ) := σsu(TC),

and so on. Let us caution the reader that the definitions of σ(T ) and ρ(T ) in the real
Banach space setting do not coincide with the respective definitions in the complex
setting. In particular, if T ∈ B(X) and X is a real Banach space then λ − T does
not exist when λ /∈ R, and so of course it could not be is invertible in the algebra
B(X) in this case. Instead, we shall define the real spectrum of T ∈ B(X) for a
real Banach space X as the set

σR(T ) := {λ ∈ R : λ− T is not invertible in the algebra B(X)}
and ρR(T ) := R\σR(T ) its real resolvent. Observe that, unlike the spectrum σ(T ),
the real spectrum σR(T ) could be empty. It is well-known, and straightforward to
verify, that σR(T ) = σ(T ) ∩ R for any operator T acting on a real Banach space.

In section 2 we shall be interested in the behavior of the local resolvent mappings,
and so we shall also review a few basic facts from local spectral theory. If X is
a complex Banach space and T ∈ B(X), we say that T has the single-valued
extension property (hereafter, SVEP) whenever, for every open set U ⊆ C, the
only analytic function f : U → X that satisfies equation (T − λI)f(λ) = 0 for all
λ ∈ U is the trivial function f ≡ 0. It is not hard to see that if σp(T ) has empty
interior then T has SVEP. For any x ∈ X, the local resolvent set ρT (x) is defined
as the set of all complex numbers λ for which there exists an open neighbourhood
Uλ of λ and an analytic function f : Uλ → X such that for any µ ∈ Uλ we have
(µ − T )f(µ) = x. This local analytic solution is unique for all x ∈ X if and
only if T has SVEP; in this case there is an unique maximal analytic extension of
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(λ − T )−1x from ρ(T ) to ρT (x), called local resolvent function for T at x. The
local spectrum of T at x is defined as σT (x) = C \ ρT (x). Clearly, for any x ∈ X,
x 6= 0, σT (x) is a nonempty, compact subset of the plane contained in σ(T ). For
more details please see either of the excellent reference books [LN00] or [Ai04].

2. Controlling errors and finite-rank perturbations

There are two kinds of control for constructions of AIHS’s which we will con-
sider in this section. First, we could ask for a bound on the norm of the finite
rank perturbation. Brown and Pearcy discussed a similar control for the associ-
ated compact perturbations of EIHS’s under operators acting on a complex infinite-
dimensional Hilbert space H. In particular, they showed in [BP71, Theorem 3.1]
that any T ∈ B(H) admits, for any ε > 0 a decomposition H = Y ⊕ Y ⊥ such that

T =

[
λ+K ∗
L ∗

]
for some λ ∈ C and such that K and L are compact with norm < ε. In this case,

(T − L)Y = (λ+K)Y ⊆ Y

so that Y is an EIHS under T with associated compact perturbation of norm < ε.
Several nice extensions of this result were established in [PT13, §3], in particular
that, if ∂σ(T ) \ σp(T ) 6= 6© then the decomposition Y ⊕ Y ⊥ above can be chosen so
that K is compact, L is rank-1, and they both still have norm < ε.

These results suggest the following open question.

2.1. Problem. Suppose X is an infinite-dimensional Banach space and T ∈ B(X)
admits an AIHS. Does there exist, for every ε > 0, a finite-rank operator F ∈ B(X)
of norm < ε such that T + F admits an IHS?

Although this problem is not solved in general, it was shown in [PT13, §3] that it
is true when X = H is an infinite-dimensional complex Hilbert space. It turns out
that only minor changes are necessary to adapt their proof to the case where X
is an infinite-dimensional complex reflexive space. We will do this in several steps,
beginning with the following proposition.

2.2. Proposition. Let X be a (real or complex) infinite-dimensional Banach space,
and let T ∈ B(X) be such that 0 /∈ σp(T ). Suppose there is a sequence (λn)∞n=1 ⊂ C
of complex numbers satisfying λn → 0, and also a sequence (hn)∞n=1 ⊂ X of vectors
satisfying ‖hn‖ → ∞ and (λn − T )hn = e for all n ∈ N and some nonzero e ∈ X.
Then for every ε > 0 there exists a rank-1 operator F ∈ B(X) with FX ⊆ [e] and
‖F‖ < ε, and such that T +F admits an IHS, say Y , spanned by a basic subsequence
of (hn)∞n=1. In this case, TY ⊆ Y + [e].

Proof. It was shown in the proof of [PT13, Theorem 2.3] that, under the given
hypotheses, (hn)∞n=1 admits a basic subsequence. Thus, passing to a subsequence if
necessary, we may assume ( hn

‖hn‖)
∞
n=1 is basic with constant ≤ K for some K ∈ [1,∞),

and
∞∑
n=1

1

‖hn‖
≤ ε

2K
.

Define the functional f : span{hn}∞n=1 → C by the rule f(hn) = 1 for all n ∈ N.
Then for any (an)∞n=1 ∈ c00 we have

|f

(
∞∑
n=1

an
hn
‖hn‖

)
| ≤

∞∑
n=1

|an|
‖hn‖

≤ sup
n∈N
|an| ·

∞∑
n=1

1

‖hn‖
≤ 2K‖

∞∑
n=1

an
hn
‖hn‖

‖ · ε

2K
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so that ‖f‖ ≤ ε. By Hahn-Banach we extend f to a continuous linear functional
f ∈ X∗ with norm≤ ε, so that the rank-1 operator F = f⊗e (defined by Fx = f(x)e
for x ∈ X) also has norm ≤ ε (as long as ‖e‖ = 1, which we may from the beginning
assume without loss of generality). Now,

(T + F )hn = λhn − (λn − T )hn + f(hn)e = λnhn − e+ e = λnhn

so that Y = [h2n]∞n=1 is an IHS under T + F .

2.3. Remark. In the previous proposition, note that, by passing to further subse-
quences of (hn)∞n=1, we can obtain an infinite chain Y1 ⊃ Y2 ⊃ Y3 ⊃ . . . of distinct
half-spaces of X, such that all are almost-invariant with defect [x], whose associated
rank-1 perturbations have norms tending to zero.

2.4. Corollary. Let X be an infinite-dimensional complex Banach space and let
T ∈ B(X). If ∂σ(T ) \ σp(T ) 6= 6© then for every ε > 0 there exists an AIHS, say
Y , under T , such that (T + F )Y ⊆ Y for some rank-1 operator F ∈ B(X) with
‖F‖ < ε.

Proof. Shifting T by a scalar if necessary, we may assume 0 ∈ ∂σ(T ) \σp(T ). Select
any (λn)∞n=1 ⊂ ρ(T ) satisfying λn → 0. As in the proof of [PT13, Theorem 2.3], it
follows that ‖(λn − T )−1‖ → ∞ and hence, by the uniform boundedness principle,
that also ‖(λn − T )−1e‖ → ∞ for some nonzero e ∈ X. Now set hn = (λn − T )−1e
for n ∈ N and apply Proposition 2.2

To prove the main theorem we need two earlier results. The first of these was
implicitly (but not explicitly) given within the proof of [PT13, Theorem 2.7] (see
also Lemma 3.15 below).

2.5. Proposition. Let X be an infinite-dimensional complex Banach space and T ∈
B(X). If σp(T ) and σp(T

∗) both have infinite cardinality then T admits an IHS.

2.6. Theorem ([APTT09, Proposition 1.7]). Let X be an infinite-dimensional (real
or complex) Banach space, and let T ∈ B(X). If T admits an AIHS of defect ≤ d,
d ∈ N, then so does T ∗.

The next result represents our main tool for attacking Problem 2.1. To prove it,
we need a pair of definitions. If X and Y are Banach spaces then a bounded linear
operator T : X → Y is called Fredholm just in case N (T ) and X/TX are both
finite-dimensional. If X is a complex Banach space and T ∈ B(X), we define the
essential spectrum as

σess(T ) := {λ ∈ C : λ− T is not Fredholm} .
Note that σess(T ) is a nonempty compact subset of σ(T ) (cf., e.g., [AA02, Lemma
7.40]).

2.7. Theorem. Let X be a complex infinite-dimensional Banach space and T ∈
B(X). Then there exists d ∈ N such that for every ε > 0 there is an operator
F ∈ B(X∗) of rank ≤ d satisfying ‖F‖ < ε, and such that T ∗ + F admits an IHS.

Proof. We follow the proof to [PT13, Proposition 3.4]. By Proposition 3.15 we may
assume that either T or T ∗ has finitely many eigenvalues. Observe that if d ∈ N and
T+F admits an IHS for some rank-d operator F ∈ B(X) then T ∗+F ∗ admits an IHS
by Theorem 2.6, where ‖F ∗‖ = ‖F‖. In this way, if the conclusion holds for T then it
holds for T ∗. We may therefore assume without loss of generality that σp(T ) is finite.
We may also assume, this time via Corollary 2.4, that (∂σ(T )) \ σp(T ) = 6©. As
σp(T ) is finite, this means σ(T ) is finite as well. By a standard spectral projections
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argument (see [MPR12, Remark 2.9]) we pass to a shifted restriction to a finite-
codimensional T -invariant subspace if necessary, so that σ(T ) is quasinilpotent.

Clearly, we may assume that m := dim(X/TX) and n := dim(N (T )) are both
finite, else T admits an IHS. Let us therefore decompose X = TX⊕E and X = W⊕
N (T ) for an m-dimensional subspace E and a closed, n-codimensional subspace W .
Observe that by (1), N (T ∗) = (TX)⊥ and T ∗X∗ ⊆ N (T )⊥, and by (2), (TX)⊥ ≈
(X/TX)∗ and N (T )∗ ≈ X∗/(N (T )⊥). Hence, if m ≤ n we have

n∗ := dim(N (T ∗)) = dim((TX)⊥) = dim(X/TX) = m ≤ n

= dim(N (T )) = dim(X∗/(N (T )⊥)) ≤ dim(X∗/T ∗X∗) =: m∗.

By passing to T ∗ if necessary, we may therefore assume that n ≤ m. However, note
that we cannot pass to T ∗ a second time, and that now we must find an AIHS for
T whose associated finite-rank perturbation has norm < ε.

Set d := m + 1, and pick any ε > 0. Let {e1, · · · , em} be a basis for E and
{g1, · · · , gn} a basis for N (T ). Since X = W ⊕ N (T ) we may define the operator
F ∈ B(X) by the rule Fgi = δei for i = 1, · · · , n and δ > 0, and Fw = 0 for all
w ∈ W . By making δ smaller if necessary we may assume ‖F‖ < ε/2. Notice that
0 /∈ σp(T + F ), as if w ∈ W , g ∈ N (T ), and 0 = (T + F )(w + g) = Tw + Fg then
the complementation of TX and E implies that Tw = 0 and Fg = 0, which is true
only if w = 0 and g = 0.

It is well-known that the essential spectrum is stable under compact perturbations
(cf., e.g., [AA02, Corollary 4.47]). In particular, σess(T +F ) = {0}. It is also known
that when the essential spectrum of an operator is {0}, its spectrum is at most
countable (cf., e.g., [AA02, Corollary 7.50]). So, 0 ∈ (∂σ(T + F )) \ σp(T + F ).
By Corollary 2.4 we now obtain G ∈ B(X) of rank 1 and norm < ε/2 such that
T + F +G admits an IHS.

2.8. Corollary. Let X be an infinite-dimensional reflexive space, and let T ∈ B(X).
Then there exists d ∈ N such that for every ε > 0 there is an operator F ∈ B(X) of
rank ≤ d satisfying ‖F‖ < ε, and such that T + F admits an IHS.

Problem 2.1 remains open in its fullest generality. However, we should mention
that a weaker result was obtained but not explicitly stated in [SW16, §4], wherein
it was shown that if X is an infinite-dimensional complex Banach space then for
every ε > 0 there exists a nuclear operator N ∈ B(X) of norm < ε such that T +N
admits an AIHS of defect ≤ 1. Consequently, the set

{T ∈ B(X) : T admits an AIHS of defect ≤ 1}

is norm-dense in B(X) ([SW16, Corollary 4.3]). Let us give an analogous result in
the reflexive case.

2.9. Corollary. Let X be a complex infinite-dimensional reflexive space. Then the
set

{T ∈ B(X) : T admits an IHS}
is norm-dense in B(X).

For the remainder of this section, let us consider a different kind of control on
AIHS’s, as follows.

2.10. Problem. Let X be an infinite-dimensional Banach space and suppose T ∈
B(X) admits an AIHS. Does there exists, for any finite-dimensional subspace E of
X, an AIHS Y with error ⊆ E?
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We give a counter-example to show that the above question has a negative answer
in the general case. Just consider a “Donoghue operator” D ∈ B(`2) defined by the
rules Den+1 = 2−nen for n ∈ N and De1 = 0, where (en)∞n=1 is the canonical basis
for `2. This is a compact, quasinilpotent operator which admits an AIHS of defect
≤ 1 (by [APTT09, Corollary 3.5] in the complex case and by Corollary 3.17 below
in the real case). On the other hand, for any N ∈ N we can find an N -dimensional
subspace EN = [e1, · · · , eN ] such that no AIHS under D admits an error ⊆ EN .
To see this, let us suppose towards a contradiction that Y is an AIHS under D
with error ⊆ EN . Write WN = [en]∞n=N+1 so that there exist natural projections
PEN

, PWN
∈ B(`2) such that PEN

`2 = EN , PWN
`2 = WN , and PEN

+ PWN
= 1 (the

identity on `2). Observe that PWN
Y is a halfspace in WN , and that

(PWN
D|WN

)(PWN
Y ) ⊆ (PWN

D)(Y + PEN
Y ) = (PWN

D)Y + PWN
DEN

= (PWN
D)Y ⊆ PWN

(Y + EN) = PWN
Y

so that PWN
Y is an IHS under the operator PWN

D|WN
∈ B(WN). However, PWN

D|WN

is itself a Donoghue operator, which contradicts the fact, proved in [RR03, Theo-
rem 4.12], that the only nontrivial invariant subspaces of Donoghue operators are
finite-dimensional.

Nevertheless, we can still establish some partial affirmative results regarding Prob-
lem 2.10.

2.11. Theorem. Let X be an infinite-dimensional complex Banach space and T ∈
B(X) a bounded operator such that σ(T ) is countable and σp(T ) = 6©. Then for any
nonzero x ∈ X and any ε > 0 there exists F ∈ B(X) with ‖F‖ < ε and Range(F ) =
[x], and such that T − F admits an IHS, say Y . In this case, TY ⊆ Y + [x].

Proof. Note first that since σp(T ) = 6©, T has SVEP. Fix e ∈ X, x 6= 0, and consider
the f : ρT (x) → C the local resolvent function for T at x. The local spectrum
σT (x) = C \ ρT (x) is non-empty, compact, and, from the hypotheses, countable,
therefore it contains at least one isolated point, which by shifting if necessary is
zero. Since f is the unique maximal extension of λ ∈ ρ(T ) 7→ (T − λ)−1x, it follows
that any isolated point of σT (x) is a non-removable singularity of f . Hence, f is
unbounded near the isolated points of the local spectrum, so that we can find a
sequence (λn)∞n=1 ⊂ ρT (x) satisfying λn → 0 and ‖f(λn)‖ → ∞. Using hn = f(λn)
and e = x, we may now apply Proposition 2.2.

In the case when X is reflexive, we also have the dual statement of the previous
result, in the sense that we can control for the kernel of the perturbation.

2.12. Theorem. Let X be a reflexive Banach space and T ∈ B(X) a bounded opera-
tor such that σ(T ∗) is countable and σp(T

∗) = 6©. Then for any hyperplane H ⊆ X,
and for any ε > 0, there exists F ∈ B(X) with ‖F‖ < ε and N (F ) = H, such that
T − F admits an IHS.

Proof. Fix H ⊆ X a hyperplane, and ε > 0. Let x∗ ∈ X∗ such that N (x∗) = H.
From Theorem 2.11 we can find G ∈ B(X∗) with Range(G) = [x∗] and ‖G‖ < ε,
such that T ∗ −G has an IHS. Then it follows from Theorem 2.6 that T ∗∗ −G∗ has
an IHS as well. Since X is reflexive, we can find F ∈ B(X) such that F ∗ = G and
T − F has an IHS. Clearly, N (F ) = N (x∗) = H and ‖F‖ = ‖G‖ < ε.

The next theorem shows that any rank one perturbation either has an invariant
subspace, or we can find arbitrarily close perturbations that have invariant half-
spaces.
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2.13. Theorem. Let X be a Banach space and T ∈ B(X) a bounded operator such
that σ(T ) is countable. Then for any rank-1 operator F , either T+F has eigenvalues,
or else for any ε > 0 there exists a rank-1 operator G with ‖F − G‖ < ε and such
that T +G admits an IHS.

Proof. Note first that if σ(T ) is countable, then for any compact K we have that
σ(T + K) is countable as well. Indeed, we have σess(T + K) = σess(T ) ⊆ σ(T ), so
σess(T +K) is countable. Now consider A := C \ σess(T +K). Since σess(T +K) is
countable it follows that A is connected. In [Mu07, Theorem III.19.4] it was shown
that, whenever A is a connected and unbounded component of C \ σess(T +K), the
set A ∩ σ(T + K) consists of at most countably many isolated points. In our case,
A ∩ σ(T +K) = σ(T +K) \ σess(T +K), and therefore

σ(T +K) = (σ(T +K) \ σess(T +K)) ∪ σess(T +K)

is also countable as claimed.
Fix F ∈ B(X) a rank one operator and assume σp(T+F ) = 6©. Let ε > 0 arbitrary.

Since σ(T ) is countable it follows from the previous paragraph that σ(T + F ) is
countable as well, and we can apply Theorem 2.11. Therefore we can find a rank
one bounded operator Gε with Range(Gε) = Range(F ) and ‖Gε‖ < ε, such that
T + F −Gε has an IHS. Set G := F −Gε. Then G has rank-1 since F and Gε have
the same 1-dimensional range, and ‖F −G‖ = ‖Gε‖ < ε.

3. AIHS’s in the real setting

In this section we extend some of the results in [APTT09], [MPR13], [PT13],
[SW14], and [SW16] to the real Banach space setting. Indeed, most research into
the AIHS problem has relied heavily on spectral theory, and consequently many
results have only been established for complex Banach spaces. For instance, almost
all the proofs in [PT13] and [SW14] assume that the underlying Banach space is
complex.

We remark that most of the AIHS’s are constructed similarly to the following. Let
e ∈ X be a nonzero vector and let (λn)∞n=1 ⊆ ρ(T ) be a sequence of complex numbers
so that hn := (λn − T )−1e are well-defined. Then any subsequence of (hn)∞n=1 spans
an almost-invariant subspace Y under T with error ⊆ [e]. To get an AIHS in the
complex setting, then, it remains only to show that the hn’s span a halfspace.

In principle, the above construction might sometimes work even in the real setting.
Namely, if the λn’s are all real, then each λn − T is invertible as a real operator,
and hence hn = (λn − T )−1e forms a sequence of vectors in the real Banach space
X which span an almost-invariant subspace under the real operator T .

Let us therefore begin this section with the following theorem. It has a proof
almost identical to Corollary 2.4, and hence we omit it.

3.1. Theorem. Let X be an infinite-dimensional real Banach space and T ∈ B(X).
If (∂σR(T )) \ σp(T ) 6= 6© then T admits an AIHS Y of defect ≤ 1. Furthermore, for
any ε > 0 we can choose Y to be invariant under T + F for some rank-1 operator
F ∈ B(X) with ‖F‖ < ε.

3.2. Remark. We regard σR(T ) as a subspace of R so that ∂σR(T ) may not always
coincide with ∂σ(T ) ∩ R. For example, if σ(T ) = [0, 1] = {λ ∈ R : 0 ≤ λ ≤ 1} then
∂σ(T ) ∩ R = ∂σ(T ) = [0, 1] whereas ∂σR(T ) = {0, 1}.

Next, we recall that a sequence (xn)∞n=1 is in a Banach space X is called a minimal
system whenever there exists a sequence (x∗n)∞n=1 of bounded linear functionals
in X∗ which serve as respective coordinate functionals for the space span(xn)∞n=1.
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Equivalently, (xn)∞n=1 is minimal whenever xN /∈ [xn]∞n=N+1 for every N ∈ N (cf.,
e.g., [PT13, Lemma 2.6]). In [APTT09, Theorem 3.2] and [MPR13, Remark 1.3]
it was shown that in the complex setting, if there exists e ∈ X such that (T ne)∞n=0

forms a minimal system, and ρ∞(T ) (the unique unbounded component of ρ(T ))
contains a punctured neighborhood of zero, then T admits an AIHS of defect ≤ 1.
To prove it, the authors constructed a nonconstant entire function F : C → C
and used Picard’s Great Theorem to find a sequence of distinct complex numbers
(λn)∞n=1 with F (λn) = 0 for every n ∈ N. By the Identity Theorem |λn| → ∞ so
that, passing to a subsequence if necessary, it may be assumed that λ−1n ∈ ρ∞(T )
for every n ∈ N. That (T ne)∞n=0 is minimal ensures that yn := (λ−1n − T )−1e forms a
linearly independent sequence, and the fact that F (λn) = 0 for all n ∈ N was then
used to construct a linearly independent sequence (fk)

∞
k=0 ⊆ X∗ of continuous linear

functionals annihilating (yn)∞n=1. It follows that Y := [yn]∞n=1 is an AIHS with error
⊆ [e].

This result can be adapted without compromise to the real setting. Most of the
proof follows that of the complex setting, only taking care to distinguish when values
are real, complex, when vectors lie in X versus XC, and when functionals lie in X∗

versus (XC)∗. The only significant difficulty is that we cannot use Picard’s Great
Theorem, because the sequence (λn)∞n=1 needs to consist of real values when X is
a real Banach space. Instead, we will use the following lemma. Note that this
allows us to extend the result for the complex setting by substituting the condition
that (−ε, 0) ⊆ ρ∞(T ) for some ε > 0 in place of ρ∞(T ) containing a punctured
neighborhood of zero.

3.3. Lemma. Fix a sequence (an)∞n=0 of positive real numbers. Then there exist a
sequence (bn)∞n=0 of positive real numbers and a sequence (cn)∞n=0 of negative real
numbers satisfying the following.

(i) limn→∞
n
√
bn = 0;

(ii) 0 < bn ≤ an for all n ∈ N0;
(iii) F (cn) = 0 for all n ∈ N0, where F : C→ C is an entire function defined by

the rule F (z) =
∑∞

n=0 bnz
n; and

(iv) lim
n→∞

cn = −∞.

Proof. We thank Robert Israel for suggesting this proof.
Without loss of generality we may assume limn→∞ n

√
an = 0 so that (i) will follow

immediately from (ii). For notation we write pn(z) =
∑2n+1

j=0 bjz
j, so that pn : C→ C

and pn|R : R→ R are polynomials for each n ∈ N
Let us define the sequences (bn)∞n=0, (rn)∞n=0 ⊆ (−∞, 0), and (εn)∞n=1 ⊆ (0,∞)

inductively so that the following conditions are satisfied for each N ∈ N:

(∗) pN(rj − εj) < 0 < pN(rj + εj) for all j ≤ N ; and
(∗∗) rN+1 + εN+1 < rN − εN .

For the base case, set b0 := a0 and b1 := a1. Observe that p0(x) = b0 + b1x has
exactly one negative real root r0 := − b0

b1
∈ (−∞, 0), and that there is ε0 > 0 with

p0(r0 − ε0) < 0 < p0(r0 + ε0).
For the inductive step, suppose b0, · · · , b2n+1 are defined for some n ∈ N, such

that (∗) holds for that n. Select 0 < b2n+2 ≤ a2n+2 so that

b2n+2 <
−pn(rj − εj)
(rj − εj)2n+2

∀j ≤ n.



10 ADI TCACIUC AND BEN WALLIS

This is possible since all the (finitely many) quantities on the right of the above
inequality are positive. Then

pn(rj − εj) + b2n+2(rj − εj)2n+2 < 0 < pn(rj + εj) + b2n+2(rj + εj)
2n+2

for all j ≤ n. Note that

lim
x→−∞

(
pn|R(x) + b2n+2x

2n+2
)

=∞

so that we can select tn < rn − εn with pn(tn) + b2n+2t
2n+2
n > 0. Similar to before,

we select 0 < b2n+3 ≤ an so that

pn+1(rj − εj) < 0 < pn+1(rj + εj)

for all j ≤ n, and also so that pn+1(tn) > 0. This immediately satisfies (∗) for
N = n + 1. Let rn+1 denote the most negative real root of pn+1. As rn+1 < tn <
rn − εn and limx→−∞ pn+1|R(x) = −∞, we can find εn+1 > 0 small enough so that
rn+1 + εn+1 < rn − εn and

pn+1(rn+1 − εn+1) < 0 < pn+1(rn+1 + εn+1).

This satisfies (∗∗) for N = n, and the inductive step is complete.
So far, we have only proved (i) and (ii). To prove (iii), observe that, due to (i),

F (z) =
∑∞

n=0 bnz
n is entire. Also, as

F (z) = lim
n→∞

pn(z) ∀ z ∈ C

we get
F (rn − εn) ≤ 0 ≤ F (rn + εn)

for all n ∈ N0. By the Intermediate Value Theorem applied to the real analytic
function F |R : R→ R, for each n ∈ N0 there is cn ∈ [rn ± εn] with F (cn) = 0. This
proves (iii).

Finally, let us prove (iv). Due to (∗∗), it follows that

−∞ < · · · < c3 < c2 < c1 < c0 < 0.

As F is entire and nonconstant, by the Identity Theorem we must have |ci| → ∞.

Before proving our next main theorem, we need a basic result about complexifi-
cations of real Banach spaces. We include a short proof in lieu of a reference.

3.4. Proposition. Let X be an infinite-dimensional real Banach space, and let
(xn)∞n=1 be a minimal system in X. Then (xn⊕i0)∞n=1 is a minimal system in XC, and
if (x∗n)∞n=1 ⊆ (XC)∗ are their respective coordinate functionals then (Re x∗n ◦ JR)∞n=1

are the respective coordinate functionals in X∗ for (xn)∞n=1, where JR : X → XR is
the natural isometric injection defined by JRx = x⊕ i0 for x ∈ X.

Proof. If (xN ⊕ i0) ∈ [xn ⊕ i0]∞n=N+1 for any N ∈ N then due to the estimate

‖(xN ⊕ i0)−
∞∑

n=N+1

(an + ibn)(xn ⊕ i0)‖XC

= ‖(xN ⊕ i0)−
∞∑

n=N+1

(anxn ⊕ ibnxn)‖XC ≥
1

2
‖xN −

∞∑
n=N+1

anxn‖X

for all (an)∞n=1, (bn)∞n=1 ∈ c00(R) (where the last inequality follows by (3)), we would
then have xN ∈ [xn]∞n=N+1, which cannot be true given that (xn)∞n=1 is a minimal
system. This shows that (xn ⊕ i0)∞n=1 is a minimal system in XC.
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Next, it is clear that (Re x∗n ◦ JR)∞n=1 is a sequence in X∗. To see that they are in
fact the coordinate functionals for (xn)∞n=1, notice that

(Re x∗n ◦ JR)(xm) = Re x∗n(xm ⊕ i0) = Re δm,n = δm,n,

for all m,n ∈ N, where δm,n is the Kronecker delta.

Now we give one of the main results of the present section.

3.5. Theorem. Let X be an infinite-dimensional real or complex Banach space, and
let T ∈ B(X). Suppose that some orbit (T ne)∞n=0, e ∈ X, forms a minimal system,
and that

(−ε, 0) ⊆ ρ∞(T )

for some ε > 0. Then T admits an AIHS with error ⊆ [e].

Proof. We will prove the real case, as the complex case is proved via a simplified
argument.

Let JR : X → XC denote the natural isometric injection defined by JRx = x⊕ i0
for x ∈ X. By Proposition 3.4, ((T ne) ⊕ i0)∞n=0 is a minimal system in XC with
coordinate functionals (x∗n)∞n=0 ⊆ (XC)∗, and (Re x∗n◦JR)∞n=0 ⊆ X∗ are the coordinate
functionals for (T ne)∞n=0. Set

rk := ‖Re x∗i ◦ JR‖X∗ for each k ∈ N0.

By [APTT09, Lemma 3.1] there exists a sequence (ai)
∞
i=0 of positive real numbers

such that
∑∞

i=0 airi+k <∞ for every k ∈ N0.
Observe that by Lemma 3.3 we can find an entire nonconstant function

F : z ∈ C 7→
∞∑
n=0

ciz
i ∈ C

such that βk :=
∑∞

i=0 ciri+k < ∞ for all k ∈ N0 and F (λi) = 0 for some sequence
(λn)∞n=1 of distinct negative real numbers satisfying λ−1n → 0. Pass to a subsequence
if necessary so that (λ−1n )∞n=1 ⊆ ρ∞(T ).

For each n ∈ N we set yn := (λ−1n −T )−1e. Then the space Y := [yn]∞n=1 is almost-
invariant with error ⊆ [e]. Note that due to (T ne)∞n=0 being minimal, the sequence
(yn)∞n=1 is linearly independent by [MPR13, Remark 1.3], and so dim(Y ) = ∞. To
complete the proof it remains only to show that dim(X/Y ) = ∞. To do this, it is
enough to construct a linearly independent sequence (fn)∞n=1 ⊆ X∗ such that each
fn vanishes on Y .

Fix k ∈ N0. Since (T ie)∞i=0 is minimal, it is linearly independent. We may therefore
define a real-valued linear functional fk on spanR{T ie}∞i=0 by the rule

fk(T
ie) =

{
0 if i < k, and
ci−k if i ≥ k.

For any x ∈ spanR{T ie}∞i=0 we have x =
∑n

i=0 Re x∗i (JRx)T ie for some n ∈ N0.
Assume without loss of generality that n ≥ k so that we now get

|fk(x)| = |fk

(
n∑
i=0

Re x∗i (JRx)T ie

)
|

= |
n∑
i=0

Re x∗i (JRx)fk(T
ie)| = |

n∑
i=k

Re x∗i (JRx)ci−k|

≤
n∑
i=k

‖Re x∗i ◦ JR‖X∗‖x‖Xci−k =

(
n∑
i=k

rici−k

)
‖x‖X = βk‖x‖X .
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Thus fk is bounded, which means it can be extended to fk ∈ X∗ by Hahn-Banach.
Let us now show that the real linear functional fk ∈ X∗ annihilates each yn, and

hence all of Y . Indeed, for any µ ∈ R satisfying |µ| > r(T ), the Neumann series
gives us the two identites

(4) (fk)C
[
(µ− TC)−1(e⊕ i0)

]
= (fk)C

[
∞∑
i=0

µ−i−1(TC)i(e⊕ i0)

]

=
∞∑
i=0

µ−i−1(fk)C((T ie)⊕ i0) =
∞∑
i=0

µ−i−1fk(T
ie)

and

(5)
∞∑
i=0

µ−i−1fk(T
ie) =

∞∑
i=k

µ−i−1ci−k =
∞∑
i=k

(µ−1)i+1ci−k

=
∞∑
i=0

(µ−1)k+1+ici = (µ−1)k+1

∞∑
i=0

(µ−1)ici = µ−k−1F (µ−1).

Note that the map µ ∈ C 7→ (µ−TC)−1e ∈ XC is analytic on ρ∞(T ) (cf., e.g., [AA02,
Corollary 6.7]), and hence the so is the map Gk : C→ C defined by the rule

Gk(µ) = (fk)C
[
(µ− TC)−1e

]
.

As the real values of modulus > r(T ) have an accumulation point in ρ∞(T ), by the
Identity Theorem it follows from (4) and (5) that

Gk(µ) = µ−1−kF (µ−1)

for all µ ∈ ρ∞(T ). In particular, from (4) and the Neumann series for real inverses
we now have

fk(yn) = fk
[
(λ−1n − T )−1e

]
= fk

[
∞∑
i=0

(λ−1n )−i−1T ie

]
=
∞∑
i=0

(λ−1n )−i−1fk(T
ie)

= (fk)C
[
(λ−1n − TC)−1(e⊕ i0)

]
= Gk(λ

−1
n ) = λ1+kn F (λn) = 0

for all n ∈ N0.

3.6. Theorem. Let X be an infinite-dimensional (real or complex) Banach space
and T ∈ B(X). Suppose there exists an infinite chain

V1 ) V2 ) V3 ) · · ·
of closed subspaces of X satisfing TVn ⊆ Vn+1 for all n ∈ N. Then T admits an
AIHS of defect ≤ 1.

Proof. We will follow the proof of [SW14, Proposition 3.3], which gives the complex
case. So, we need only consider the case where X is real.

Without loss of generality assume V1 = X. As V∞ :=
⋂∞
n=1 Vn is an infinite-

codimensional closed T -invariant subspace, we may assume it is finite-dimensional,
and decompose X = V∞⊕W for some finite-codimensional closed subspace W of X.
Write PW ∈ B(X) for the bounded linear projection onto W along V∞, and define
S := PWT |W ∈ B(W ).

By [SW14, Lemma 3.2], Wn := PWVn = W ∩ Vn for each n ∈ N. Furthermore,
these spaces have the following obvious properties.

(a) Wn+1 ⊆ Wn for each n ∈ N;
(b)

⋂∞
n=1Wn = W ∩ (

⋂∞
n=1 Vn) = {0}; and
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(c) SWn = PWT (W ∩ Vn) ⊆ W ∩ Vn+1 = Wn+1 for each n ∈ N.

From this we can deduce that σp(S) ∩ R ⊆ {0}, as if λ were a nonzero real eigen-
value of S with corresponding eigenvalue w ∈ W = W1, we would then have
w = λ−nSnw ∈ Wn for every n ∈ N, contradicting (b) above. Also, by the T -
invariance of V∞, every AIHS Y under S induces an AIHS Y +V∞ under T , with no
larger defect. Notice also that 0 ∈ σ(S) and thus, by Theorem 3.1, we may assume
that σR(S) = {0}.

We claim that there exists a minimal orbit under S, which is sufficient by The-
orem 3.5. Indeed, by [SW14, Lemma 2.11] we may assume that N (Sn) is finite-
dimensional for each n ∈ N. As any proper closed subspace of a normed lin-
ear space is nowhere dense, the Baire Category Theorem ensures that the set
A := W \

⋃∞
n=1N (Sn) is nonempty. Select any e ∈ A and fix some n ∈ N. By

property (b) we can find minimal kn ∈ N such that Sne /∈ Wkn . By minimality,
Sne ∈ Wkn−1, and properties (a) and (c) therefore force Sj(Sne) ∈ Wkn for each
j ∈ N. As Wkn is closed, this means Sne /∈ [Sje]∞j=n+1, and we are done.

3.7. Lemma. Let X be a real Banach space and T ∈ B(X). Then

σp(T
∗) ∩ R =

{
λ ∈ R : (λ− T )X 6= X

}
.

Proof. Note that

SCXC = SX ⊕ iSX = SX ⊕ iSX
for any operator S ∈ B(X), and (λ − T )C = λ − TC for any λ ∈ R. Hence, we can
apply the well-known identity

σp(T
∗) = σp((TC)∗) =

{
λ ∈ C : (λ− TC)XC 6= XC

}
(cf., e.g., [AA02, Theorem 6.19]).

3.8. Proposition. Let X be a (real or complex) Banach space, and suppose W is
a T -invariant finite-codimensional subspace of X for some T ∈ B(X). Decompose
X = W⊕E for some finite-dimensional subspace E of X, and let PE ∈ B(X) denote
the bounded linear projection onto E along with N (PE) = W . Then the following
assertions all hold.

(i) σ(T |W ) ⊆ σ(T ),
(ii) σ(T ) \ σ(T |W ) ⊆ σp(PET ), and

(iii) σ(T ) \ σ(T |W ) has finite cardinality.

Proof. Thanks go to Robert Israel for suggesting the following proof of (i).
Note that if X is a real Banach space then WC ⊆ XC is invariant under TC and

SC = TC|WC . Thus we can assume X is complex.
(i) Select λ ∈ ρ(T ) and notice that

X = (λ− T )X = (λ− T )W + (λ− T )E ⊆ W + (λ− T )E ⊆ X

so that

dim(X/W ) ≤ dim(X/(λ− T )W ) ≤ dim((λ− T )E) ≤ dim(E) = dim(X/W ).

In particular, (λ−T )W is a closed subspace of W with the same codimension as W
in X, whence it follows that (λ− T )W = W . Hence

(λ− T )−1W = (λ− T )−1(λ− T )W = W

so that W is invariant under (λ− T )−1. It follows that (λ− T )−1|W ∈ B(W ) is an
inverse for λ− T |W .
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(ii) Consider the case where λ−T is surjective, an recall (cf., e.g., [AA02, Theorem
6.20]) that whenever λ− T is surjective but not invertible, λ ∈ σp(T ). So, for some
w ∈ W and e ∈ E with w + e 6= 0 we have (λ − T )(w + e) = 0, and hence, by
T -invariance of W ,

0 = PE(λ− T )(w + e) = (λ− PET )e.

Since λ /∈ σ(T |W ) we must have e 6= 0. Hence, λ ∈ σp(PET ).
Thus we can assume λ− T is not surjective. In this case, we cannot have PE(λ−

T )X = E, since that would give us

(λ− T )X = (1− PE)(λ− T )X + E

⊇ (1− PE)(λ− T )W + E = (1− PE)W + E = W + E = X,

contradicting the fact that λ − T is not surjective. Thus, PE(λ − T )|E has rank
< dim(E). By the rank-nullity theorem this means λ ∈ σp(PET ).

(iii) Since PET is finite-rank, σp(PET ) has finite cardinality. Now apply (ii).

Observe the following corollary to [SW14, Lemma 3.4].

3.9. Lemma. Let X be an infinite-dimensional real Banach space and T ∈ B(X).
For µ ∈ R we define

V = (µ− T )X and S = T |V ∈ B(V ).

Then

σp(S
∗) ⊆ σp(T

∗).

Proof. Observe that

(µ− TC)XC = (µ− T )X ⊕ i(µ− T )X

and hence

(µ− TC)XC = (µ− T )X ⊕ i(µ− T )X.

Now we apply [SW14, Lemma 3.4] to get our result.

3.10. Remark. By successively applying Lemma 3.9, we have the same conclusion
σp(S

∗) ⊆ σp(T
∗) whenever V = p(T )X and S = T |V ∈ B(V ) for some polynomial

p(t) ∈ R[t] with real coefficients.

3.11. Theorem. Let X be an infinite-dimensional real Banach space, and suppose
T ∈ B(X) satisfies either

(6) σ(T ) ⊆ R or

(7) σR(T ) has infinite cardinality.

Then at least one of the following conditions holds.

(i) T admits an AIHS of defect ≤ 1; or
(ii) for any finite subset A of R there exists a finite-codimensional closed T -

invariant subspace W of X such that the operator S = T |W ∈ B(W ) satisfies

σp(S
∗) ⊆ σp(T

∗) \ A and σ(S) ⊆ σ(T ).

Furthermore, the set σ(T ) \ σ(S) has finite cardinality, and whichever con-
ditions (6) and (7) hold for T also hold for S.
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Proof. We follow the proof of [SW14, Proposition 3.5].

Fix λ ∈ σp(T ∗)∩A. If any of the T -invariant subspaces Vn := (λ− T )nX, n ∈ N,
have finite dimension then we get (i) by [SW14, Lemma 2.11]. Thus we may assume
(Vn)∞n=1 all have finite codimension in X, as otherwise we have (i) anyway. By
Remark 3.10, the operators Sn := T |Vn ∈ B(X) all satisfy σp(S

∗
n) ⊆ σp(T

∗), n ∈ N.
Consider the case where λ ∈

⋂∞
n=1 σp(S

∗
n). Then by Lemma 3.7, (Vn)∞n=1 is strictly

decreasing (under the ) relation). Now apply Theorem 3.6 to get (i).
Thus we may assume σp(S

∗
n) ⊆ σp(T

∗) \ {λ} for some n ∈ N. Note that if either
condition (6) or (7) holds for T then the same condition holds for Sn by Proposition
3.8. Thus, if σp(S

∗
n) ∩ A = 6© then we have (ii). Otherwise, we can repeat the

process in the previous paragraph to eliminate another element of A. As A is finite,
we cannot keep losing elements of A indefinitely, eventually giving us (i) or (ii).

3.12. Remark. In Theorem 3.11 above, we can replace the condition that T satisfies
either (6) or (7) with the condition that T is strictly singular. This is because the
restriction of a strictly singular operator to an invariant subspace is again strictly
singular, and hence contains zero in its spectrum.

It was observed in [SW16] that every strictly singular operator acting on an
infinite-dimensional complex Banach space admits an AIHS of defect ≤ 1. We
can now extend this result to the real reflexive setting.

3.13. Corollary. Let X be an infinite-dimensional real Banach space, and let T ∈
B(X). If T is strictly singular then T ∗ admits an AIHS of defect ≤ 1. If furthermore
X is reflexive then so does T .

Proof. By the spectral theorem for strictly singular operators (cf., e.g., [AA02, Theo-
rem 7.11]), T has countable spectrum so that 0 ∈ ∂σR(T ). Without loss of generality,
let us pass if necessary to the restriction of T to a finite-codimensional T -invariant
closed subspace in order to remove zero from the point spectrum of T ∗, which we
do via Theorem 3.11 and Remark 3.12. Of course, T is still strictly singular so that
zero still lies in ∂σR(T ) and hence also ∂σR(T ∗). Theorem 3.1 now gives us an AIHS
of defect ≤ 1 for T ∗. In case X is reflexive, Theorem 2.6 gives us an AIHS of defect
≤ 1 for T .

3.14. Lemma. Let X be an infinite-dimensional (real or complex) Banach space and
T ∈ B(X). Suppose W is a T -invariant finite-codimensional closed subspace of X,
and write S = T |W ∈ B(W ). If S∗ admits an AIHS of defect ≤ d, d ∈ N0, then so
does T ∗.

Proof. Let us decompose X = W ⊕ E for some finite-dimensional subspace E of
X. Denote by PW ∈ B(X) the bounded linear projection onto W along E, and by
E⊥ ⊆ X∗ the annihilator of E. Define the bounded linear map j : E⊥ → W ∗ by the
rule

jx∗ = x∗|W for all x∗ ∈ E⊥,

which admits a bounded linear inverse j−1 : W ∗ → E⊥ given by the rule

j−1w∗ = w∗ ◦ PW for all w∗ ∈ W ∗.

Set R := j−1 ◦ S∗ ◦ j : E⊥ → E⊥, and let H be an AIHS for S∗ with error M ,
dim(M) ≤ d. Put G := j−1H and N := j−1M , which are closed subspaces of E⊥
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and hence also of X∗. Then for any x∗ ∈ E⊥ and any x ∈ X we now have

((P ∗WT
∗)x∗)(x) = x∗(TPWx) (note PWx ∈ W )

= x∗(SPWx) = (jx∗)(SPWx) (note (jx∗) ∈ W ∗)

= (S∗(jx∗))(PWx) = ((j−1 ◦ S∗ ◦ j)(x∗))(x)

= (Rx∗)(x)

so that P ∗WT
∗ ≡ R on E⊥. Now we have

(P ∗WT
∗)G = RG = (j−1 ◦ S∗ ◦ j)(j−1H) = j−1(S∗H) ⊆ j−1(H +M) = G+N

and hence

(8) T ∗G = (P ∗WT
∗)G+ ((1− P ∗W )T ∗)G ⊆ G+N + ((1− P ∗W )T ∗)G.

Now, 1 − P ∗W is a projection onto W⊥, so that (1 − P ∗W )T ∗(G) ⊆ W⊥. Since
W is an finite-codimensional invariant subspace for T , we must have W⊥ a finite-
dimensional invariant subspace for T ∗. Put G0 := G + W⊥ which is a halfspace in
X∗ satisfying

T ∗G0 = T ∗(G+W⊥) ⊆ T ∗(G) + T ∗(W⊥)

⊆ G+N + ((1− P ∗W )T ∗)(G) +W⊥ ⊆ G+N +W⊥ = G0 +N.

As dim(N) = dim(M), the space G0 is an AIHS under T ∗ with defect ≤ d.

3.15. Lemma. Let X be an infinite-dimensional real Banach space, and let T ∈
B(X). If σp(T ) ∩ σp(T ∗) ∩ R is infinite then T admits an IHS.

Proof. We follow the proof of [PT13, Theorem 2.7]. Observe that for any λ, µ ∈
σp(T ) ∩ σp(T ∗) ∩ R we can find a λ-eigenvector x ∈ X and a µ-eigenvector f ∈ X∗,
and these must satisfy

λf(x) = f(λx) = f(Tx) = (T ∗f)(x) = µf(x).

Thus, we can find infinitely many linearly independent T ∗-eigenvectors annihilating
infinitely many linearly independent T -eigenvectors (xn)∞n=1. This gives us an IHS
[xn]∞n=1.

3.16. Theorem. Let X be an infinite-dimensional (real or complex) Banach space
and T ∈ B(X) a bounded linear operator satisfying either of the conditions (6) or
(7) from Theorem 3.11. Then T ∗ admits an AIHS of defect ≤ 1.

Proof. Let us define W0 = X and S0 = T , and select λ0 ∈ ∂σR(S0). As σR(S0) =
σR(S∗0), we may assume by Theorems 3.1 and 2.6 that λ0 ∈ σp(S0) ∩ σp(S∗0). By
Theorems 3.11 and 2.6 we may assume the existence of a finite-codimensional T -
invariant subspace W1 ⊆ W0 such that S1 := S0|W1 ∈ B(W1) satisfies σp(S

∗
1) ⊆

σp(T ) \ {λ0} and σ(S1) ⊆ σ(T ), and such that whichever conditions (6) or (7) hold
for T also hold for S1.

Now select λ1 ∈ ∂σR(S1), which we may again by Theorems 3.1 and 2.6, together
with Lemma 3.14, assume is an eigenvalue for both S1 and S∗1 . Again we apply
Theorems 3.11 and 2.6 so that we can assume W2 is a closed finite-codimensional
S1-invariant subspace with

σp(S
∗
2) ⊆ σp(S

∗
1) \ {λ2} ⊆ σp(T

∗) \ {λ1, λ2},
and again so that whichever conditions (6) or (7) hold for T also hold for S2.

We keep going until we have a sequence (λn)∞n=0 of distinct real eigenvalues under
each respective operator Sn. As Sn = T |Wn for each n ∈ N0 we get (λn)∞n=0 ⊆ σp(T ).
Since σp(S

∗
n) ⊆ σp(T

∗) for each n ∈ N0, we also have (λn)∞n=0 ⊆ σp(T
∗). Applying

Lemma 3.15 completes the proof.
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Thus we have the following immediate corollaries.

3.17. Corollary. Let X be an infinite-dimensional (real or complex) reflexive space,
and let T ∈ B(X). If T satisfies either of the conditions (6) or (7) from Theorem
3.11 then it admits an AIHS of defect ≤ 1.

Proof. Apply Theorems 2.6 and 3.16.

3.18. Corollary. Every selfadjoint operator acting on an infinite-dimensional (real
or complex) Hilbert space admits an AIHS of defect ≤ 1.

In [SW16, §4] it was shown that if X is an infinite-dimensional complex Banach
space then for every T ∈ B(X) there exists a rank-1 operator F ∈ B(X) such that
for each ε > 0 there there is a nuclear operator N ∈ B(X) of norm < ε, and such
that T + F + N admits an IHS. In particular, every operator acting on X admits
an EIHS. We extend this result to the real setting as follows.

3.19. Theorem. Let X be an infinite-dimensional real Banach space and T ∈ B(X).
If either condition (6) or (7) from Theorem 3.11 holds, then there exists a rank-1
operator F ∈ B(X) such that for every ε > 0 there there is a nuclear operator
N ∈ N (X) with ‖N‖ < ε and such that T + F + N admits an IHS. In particular,
T admits an EIHS.

Proof. Consider the case where ∂σR(T ) is infinite. Then we may assume by Theorem
3.1 that σp(T ) ∩ R is also infinite and hence, shifting if necessary, by Lemma 3.15
that 0 ∈ (∂σR(T ))\σp(T ∗). Next, consider the case where ∂σR(T ) is finite. If σR(T )
is finite then condition (6) must hold, which means we can apply Theorem 3.11 to
again to obtain 0 ∈ (∂σRσ(T )) \ σp(T ∗). Otherwise σR(T ) is infinite and ∂σR(T ) is
finite, which means we can pass to a shifted operator if necessary so that 0 ∈ ∂σR(T )
and is a limit point of σR(T ). By Theorem 3.11 we can find a T -invariant finite-
codimensional closed subspace W of X such that 0 /∈ σp(T |∗W ). By Proposition 3.8
we still have 0 ∈ ∂σR(T ) so that, again, by passing to T |W if necessary, we may
assume that 0 ∈ (∂σR(T )) \ σp(T ∗).

Thus, in all cases, the relations ∂σR(T ) ⊆ ∂σ(T ) ⊆ σsu(T ) (cf., e.g., [Ai04, The-
orem 2.42]) give us 0 ∈ σsu(T ) ∩ σp(T ). So, at this point we may follow the proof
of [SW16, Theorem 4.2]. We claim that T |U is not bounded below for any finite-
codimensional closed subspace U of X. Otherwise, towards a contradiction T |U
and hence also T have closed range by [AA02, Theorem 2.5]. Since 0 /∈ σp(T ∗), by
Lemma 3.7 we must have TX = X and hence TX = X. This contradicts the fact
that 0 ∈ σsu(T ), and so the claim is proved. Note that in the last paragraph if the
proof to [SW16, Theorem 4.2] it was shown that whenever this condition holds—that
is, whenever T |U fails to be bounded below for finite-codimensional closed subspaces
U of X—then T + N admits an IHS for some nuclear operator N ∈ B(X) of norm
< ε. This completes the proof.
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