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We dedicate this work to Daniel Lenz on the occasion of his 50th birthday.

Abstract. Given a weak model set in a locally compact Abelian, group we

construct a relatively dense set of common Bragg peaks for all its subsets

that have non-trivial Bragg spectrum. Next, we construct a relatively dense
set of common norm almost periods for the diffraction, pure point, absolutely

continuous and singular continuous spectrum, respectively, of all its subsets.

We use the Fibonacci model set to illustrate these phenomena. We extend all
these results to arbitrary translation bounded weighted Dirac combs supported

within some Meyer set. We complete the paper by discussing extensions of the

existence of the generalized Eberlein decomposition for measures supported
within some Meyer set.

1. Introduction

Physical quasicrystals were discovered in the 1980’s by Dan Shechtman [46].
Shechtman’s discovery forced the International Union of Crystallography to redefine
a crystal to be “any solid having an essentially discrete diffraction diagram” [20].
While the word “essentially” is vague in this context, it is usually understood to
mean a relatively dense set of Bragg peaks.

The largest class of mathematical models which is easy to classify, and has a
relatively dense set of Bragg peaks, is the class of Meyer sets [48]. Meyer sets
were introduced by Y. Meyer [35] in the 1970’s as approximate solutions to an
infinite system of linear equations in R{Z. They are produced via a cut-and-project
scheme as relatively dense subsets of (regular) model sets, and can be characterised
via harmonic, discrete geometry and algebraic properties [28, 35, 37, 38, 51]. Their
connection to aperiodic order was observed in the 1990 by Lagarias [28, 29] and
Moody [37, 38]. In recent years, many properties about their diffraction have been
proven [48, 49, 50, 51, 52]. All these results can be traced back to the long-range
order of the lattice L in the cut-and-project scheme, and to the compactness of
a covering window. Physicists have also shown interest in these results about the
spectra of Meyer sets (see [13, 17] for example).

It was shown by Hof [18, 19] that Euclidean model sets with nice windows have a
clear diffraction pattern (pure point). The result was generalized to regular model
sets in second countable LCAG by Schlottmann [45], via the usage of dynamical
systems and the Dworkin argument (see [9, 14, 34] for background). Baake and
Moody gave an alternate proof of this result via almost periodicity [11] (compare
[31]) and emphasized the deep connection between almost periodicity and long range
order. In [42, 43], we showed that the diffraction formula for regular model sets
is just the Poisson Summation Formula (PSF) for the underlying lattice, applied
twice. This result shows explicitly how the clear diffraction diagram of a regular

1

ar
X

iv
:2

10
1.

10
51

3v
2 

 [
m

at
h.

FA
] 

 2
6 

O
ct

 2
02

3



2 NICOLAE STRUNGARU

model set is just a residue of the strong order of the lattice in the CPS. Recently,
the pure point diffraction of model sets was shown via the almost periodicity of the
Dirac comb of the model set [32, 33, 36] (compare [29]).

As subsets of highly ordered sets, Meyer sets should show some signs of long
range order, and they indeed do. They show a relatively dense Bragg spectrum
[48, 49, 51], which is highly ordered [49, 51]. The continuous diffraction spectrum
is either empty or has a relatively dense support [48, 50, 52]. Moreover, each of
the absolutely continuous and singular continuous spectra is a norm almost periodic
measure [52]. Some of these results are important in the study of Pisot substitutions
(see for example [3, 6]).

All these results have been proved by two different techniques:

‚ by using harmonic properties of a covering model set;
‚ by using the relative denseness of the sets Λε of ε-dual characters.

In fact, it turns out that these approaches are not that different. Indeed, if we know
a covering model set, we can explicitly write out a relatively dense set of ε-dual
characters, which only depends on the covering model set.

The main goal of this paper is to reanalyze the diffraction spectra of a Meyer set
via a study of harmonic properties of a covering model set ⋏pW q. This allows us
prove diffraction results for Meyer sets, that are stronger than the earlier work in
this direction [48, 49, 50, 51, 52]. Moreover, the results are uniform in the following
sense:

‚ We can find a relatively dense set of common Bragg peaks for all the Meyer
sets with non-trivial Bragg spectrum, which are subsets of the same model
set.

‚ For each ε ą 0, we can find a relatively dense set Pε Ď G, which depends on
the covering model set only, such that, for every Meyer subset Λ Ď ⋏pW q,
the elements of Pε are norm almost periods for the diffraction spectrum,
pure point diffraction spectrum, continuous diffraction spectrum, and the
absolutely continuous diffraction spectrum of Λ.

The relatively dense set of common Bragg peaks can be calculated explicitly in
terms of ⋏pW q. Furthermore, the sets Pε can be calculated explicitly in terms of
⋏pW q and ε ą 0. To emphasize this phenomena, we calculate these sets explicitly
for the Fibonacci model set.

It is worth mentioning that the proofs in this paper are simpler than the original
proofs of [48, 49, 50, 51, 52], and do not rely on the relatively denseness of Meyer
sets. Therefore, while relative denseness plays a crucial role in the classification of
Meyer sets [10, 28, 35, 38, 51], it is not important in the current paper. This allows
us generalize the previous results to the larger class of subsets of model sets with
non-trivial Bragg peak at the origin. For this reason, in this paper we study weak
Meyer sets, meaning arbitrary subsets of (weak) model sets.

The paper is organized as follows. We start by using the Fibonacci model set,
and its subsets, as motivational example in Section 2. Next, given a weak model

set ⋏pW q, we construct in Theorem 3.3 a relatively dense set B Ď pG, such that all
subsets of ⋏pW q with non-trivial Bragg spectrum have Bragg peaks at all points
in B. We furthermore give a lower bound for the intensity of the Bragg peak at
any χ P B, in terms of the Bragg peak at 0; a lower bound which only depends
on the covering model set ⋏pW q. This lower bound can be then used to construct
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an explicit set of high intensity Bragg peaks, simultaneously for all the subsets
Λ Ď ⋏pW q with non-trivial Bragg spectrum.

Next, we review and briefly improve the ping-pong lemma for Meyer sets (The-
orem 4.3). This result is the key to the study of the continuous component of the
diffraction spectrum of weak Meyer sets. The ping-pong lemma can also be used
to study the Bragg, absolutely continuous and singular continuous component of
weighted complex combs with weak Meyer set support. By using the ping-pong

lemma, we show that for every weak model set ⋏pW q, each compact K Ď pG,
and each ε, there exists a relatively dense set Pεp⋏pW q,Kq of points which are ε -
} ¨}K norm almost periods for the diffraction, pure point, absolutely continuous and
singular continuous diffraction component for every weak Meyer set Λ Ď ⋏pW q.

We complete the paper by generalizing the existence of the generalized Eberlein
decomposition for measures with weak Meyer set support to a much larger class of
decompositions. We introduce the notion of FCDM functions (see Definition 7.1),
and show that for every Fourier transformable measure γ supported inside a weak

model set ⋏pW q and every FCDM function P : M8p pGq Ñ M8p pGq, there exists a
Fourier transformable measure γP supported inside ⋏pW q such that xγP “ P ppγq.

Since the projections on the pure point, continuous, absolutely continuous, and
singular continuous component are FCDM functions, the existence of the general-
ized Eberlein decomposition is an immediate consequence of this result.

2. Fibonacci model set

We start by looking at a well known example, which we use as motivation for
the remaining of the paper. Let us start by briefly recalling the Fibonacci model
set, and refer the reader to [4, Chapter 7] for more details.

Consider

L :“

"„

m` nτ
m` nτ 1

ȷ

: m,n P Z
*

“ Z
„

1
1

ȷ

‘ Z
„

τ
τ 1

ȷ

Ď R2 ,

where τ “ 1`
?
5

2 and τ 1 “ 1´
?
5

2 . This is a lattice in R ˆ R, with dual lattice

(1) L0 “
1

?
5
Z

„

´τ 1

τ

ȷ

‘
1

?
5
Z

„

1
´1

ȷ

“

#«

n´mτ 1
?
5

mτ´n?
5

ff

: m,n P Z

+

.

Let ‹ denote the restriction to Zrτ s of the Galois conjugation of the field Qpτq, that
is

pm` nτq‹ “ m` nτ 1 .

We can now recall the following definition:

Definition 2.1. If I Ď R is any bounded interval we will denote

⋏pIq “ tx : x P Zrτ s, x‹ P Iu .

The set ⋏pr´1, τ ´ 1qq is called the Fibonacci model set and is simply denoted by
Fib.

Given an interval J Ď R we also denote

⋏‹
pJq “

"

n´mτ 1

?
5

: m,n P Z,
mτ ´ n

?
5

P J

*

.

Here, we use the ⋏‹ to emphasize that this model set uses the dual lattice L0.
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2.1. Bragg spectrum of subsets of the Fibonacci model set. The critical property
relating these models sets is the following.

Proposition 2.2. Let a, b P p0,8q. If x P ⋏pr´a, asq and y P ⋏‹
pr´b, bsq then

ˇ

ˇe´2πix¨y ´ 1
ˇ

ˇ ď 2πab .

Proof. Since px, x‹q P L and py, y‹q P L0 we have by (1) that

e´2πipx¨y`x‹
¨y‹

q “ 1 .

It follows that
ˇ

ˇe´2πix¨y ´ 1
ˇ

ˇ “

ˇ

ˇ

ˇ
e´2πix¨y ´ e´2πipx¨y`x‹

¨y‹
q
ˇ

ˇ

ˇ
“

ˇ

ˇ

ˇ
1 ´ e´2πipx‹

¨y‹
q
ˇ

ˇ

ˇ

“ 2 |sinpπpx‹ ¨ y‹qq| ď 2 |πpx‹ ¨ y‹q| ď 2πab .

□

Next we find some rough estimates for R “ Rpaq such that ⋏‹
pp´a, aqq is R-

relatively dense.

Lemma 2.3. Let 0 ă a ă τ?
5
. Then,

⋏‹
pp´a, aqq ` r0,

τ3

5a
s “ R .

Proof. It is easy to see that the rectangle r0, τ?
5

sˆr´ 1?
5
, τ?

5
s contains a fundamental

domain of L. This immediately implies that

⋏‹
pp´

τ
?
5
,
τ

?
5

qq ` r0,
τ

?
5

s “ R .

Next, since τ is a unit in Zrτ s, a trivial computation (compare [27, Fact 3.5]) shows
that for all α ą 0 we have

τ⋏‹
pp´α, αqq “ ⋏‹

pp´
α

τ
,
α

τ
qq .

Now, since a ă τ?
5
, picking the largest n P N so that aτn ă τ?

5
we get

⋏‹
pp´a, aqq ` r0,

τ3

5a
s Ě ⋏‹

pp´

τ?
5

τn`1
,

τ?
5

τn`1
qq ` r0,

τn`2

?
5

s

“ τn`1

ˆ

⋏‹
pp´

τ
?
5
,
τ

?
5

qq ` r0,
τ

?
5

s

˙

“ R .

This completes the proof. □

We are now ready to give results about the pure point component of the diffrac-
tion spectrum for a subset of Fib. We show that the structure of the pure point
component for subsets of Fibonacci is somewhat similar in nature to the structure
of the pure point component for subsets of lattices [2]. We will expand on this
similarity in Section 6.

Before looking at the diffraction, let us briefly recall that for a subset Λ of the
Fibonacci model set, any cluster point γΛ of

1

volpBRp0qq
δΛXBRp0q ˚ ČδΛXBRp0q

is called an autocorrelation measure of Λ. Such cluster points always exist (see for
example [4, Prop. 9.1]).
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Given any autocorrelation γΛ, there exists a unique positive measure xγΛ on R
such that, for all φ P CcpRq we have [12, Thm. 4.5]

ż

R
φ ˚ φ̃ptqd γΛptq “

ż

R
|φ̌psq|

2
d xγΛpsq .

The measure xγΛ is called a diffraction measure of Λ, and can also be seen as the
distributional Fourier transform of the tempered measure γΛ.

We can now prove the following result.

Proposition 2.4. Let Λ be an arbitrary subset of the Fibonacci model set, and let
a ą 0 be a real number. Assume that

(2) I :“ xγΛpt0uq ą 0 .

Then, for all k P ⋏‹
pr´a, asq we have

xγΛptkuq ⩾ p1 ´ 2πaτq I .

Proof. Note that by construction we have

supppγΛq Ď ⋏pr´τ, τ sq “: ∆ .

Next, by [39, Theorem 4.10.14] we have

I “ xγΛpt0uq “ lim
n

1

2n

¨

˝

ÿ

xP∆Xr´n,ns

γΛptxuq

˛

‚

xγΛptkuq “ lim
n

1

2n

¨

˝

ÿ

xP∆Xr´n,ns

e´2πix¨kγΛptxuq

˛

‚ .

Therefore, (compare [51, Proposition 5.9.8] and [49, Theorem 3.1]) we have

xγΛpt0uq ´ xγΛptkuq “ |xγΛpt0uq ´ xγΛptkuq|

⩽ lim sup
n

1

2n

¨

˝

ÿ

xP∆Xr´n,ns

ˇ

ˇ1 ´ e´2πix¨k
ˇ

ˇ γΛptxuq

˛

‚

⩽ p2πaτq lim sup
n

1

2n

¨

˝

ÿ

xP∆Xr´n,ns

γΛptxuq

˛

‚“ p2πaτqI ,

with the first inequality on the last line following from Prop. 2.2. □

Before looking at some consequences, let us briefly discuss the condition I ą 0
and its potential connection to positive density.

Remark 2.5. Let Λ Ď Fib and let γΛ be an autocorrelation of Λ. Let Rn Ñ 8 be
an increasing sequence, such that γΛ is a limit along Rn.

Then, the limit

γΛpt0uq “ lim
n

1

volpBRn
p0qq

cardpΛ XBRn
p0qq “: densRn

pΛq

exists. Moreover, (2) implies that densRnpΛq ą 0.
If Λ satisfies the consistent phase property (see [32] for details), then (2) is

equivalent to densRn
pΛq ą 0, but in general this does not seem to be the case.



6 NICOLAE STRUNGARU

Finally, if Λ is relatively dense, then a simple computation shows that

γΛpt0uq ⩾

ˆ

lim inf
n

inf
tPR

1

volpBRn
ptqq

cardpΛ XBRnptqq

˙2

ą 0 .

In particular, (2) trivially holds for Meyer subsets of Fib.

Prop. 2.4 has the following immediate consequence.

Theorem 2.6. Let Λ Ď Fib be any subset satisfying (2). Then, Λ has a Bragg peak
at every k P ⋏‹

pp´ 1
2πτ ,

1
2πτ qq, of intensity

xγΛptkuq ⩾ p1 ´ 2π|k‹|τq I ą 0 .

Proof. Let k P Zrτ s. Set a :“ |k‹|. Then k P ⋏‹
pr´a, asq and hence by Proposi-

tion 2.4 we have

xγΛptkuq ⩾ p1 ´ 2πaτq I “ p1 ´ 2π|k‹|τq I ą 0 .

□

Corollary 2.7 (High intensity Bragg peaks). Let 0 ă ε ă 1, and let

Pε :“ ⋏‹
pr´

ε

2πτ
,
ε

2πτ
sq .

Then, every subset Λ Ď Fib satisfying (2) has a Bragg peak at every k P Pε, of
intensity at least

xγΛptkuq ⩾ p1 ´ εqI .

Proof. By Proposition 2.4 we have

xγΛptkuq ⩾ p1 ´ 2π|k‹|τq I ⩾ p1 ´ εqI .

□

2.2. Continuous spectrum of subsets of Fibonacci. We next look at the continuous
spectrum component of subsets of Fib. Since the details are long and technical, yet
simple, we skip most steps and refer the reader to the extended arXiv version of
this paper [53].

First, define

hpxq “
27

8
1r´τ´1,τ`1s ˚ 1r´ 1

3 ,
1
3 s ˚ 1r´ 1

3 ,
1
3 s ˚ 1r´ 1

3 ,
1
3 s

and define

(3) ω :“
ÿ

xPZrτs

hpx‹qδx .

Then, it is easy to check that ω is a ping-pong measure for the Fibonacci model
set (see Def. 4.1 for definition and Prop. 4.2 (b) below for proofs). Then, Prop. 4.2
and Thm. 4.3 below give:

Theorem 2.8. Let ω be as in (3). Let φ P CcpRq be such that supppφq Ď p´ 1
4 ,

1
4 q

and }φ}2 “ 1. Then,

(a) ω is Fourier transformable, and

pω “
3 `

?
5

?
5

ÿ

py,y‹qPL0

sincp2πpτ ` 1qy‹q sinc3p
2π

3
y‹qδy .
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Figure 1. All subsets of Fib satisfying (2), have Bragg peaks at
the depicted positions. The intensities are at least the height of
the vertical line, drawn as a percentage of the intensity of Bragg
peak at the origin. Picture created in Maple by Anna Klick.

(b) For each Λ Ď Fib, the measure ν :“ | qφ|
2

xγΛ is finite and

xγΛ “ pω ˚ ν .

□

As an immediate consequence we get:

Corollary 2.9. Under the assumptions of Theorem 2.8(b), we have

pxγΛqpp “ pω ˚ νpp ; pxγΛqac “ pω ˚ νac ; pxγΛqsc “ pω ˚ νsc .

□

Now, we proceed to get quantitative results about the norm almost periods of pω.
First, it is easy to see ([53, Lemma A.3]) that, in the Fibonacci dual CPS pR,R,L0q,
any translate of r´ 1

2 ,
3
2 s ˆ r0, 1

20 s meets L0 at most once. This, combined with the

fact that gpxq “ sincpaxq sinc3pbxq is a Lipshitz function, with Lipshitz constant
a`3b
2 ([53, Lemma A.4]), and a standard computation ([53, Theorem 2.14]) yields:

Theorem 2.10. Let ω be as in (3) and let 0 ă α ă 1
81 . Then, for all t P ⋏‹

pr´α, αsq,
we have

}Ttpω ´ pω}r´1,1s ă 2507pαq
3
4 .

□

Let us note here that, the statement in [53, Theorem 2.14] uses the norm } }r´ 1
2 ,

3
2 s.

Anyhow, it follows trivially from the definition that, a compact set and any of its
translates define equal norms, which allow us use } }r´1,1s instead.

We can now use Theorem 2.8 to relate the almost periods of the diffraction of
any subset of Fib to the almost periods of pω. Indeed, a simple computation yields
([53, Theorem 2.15]).
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Theorem 2.11. Let ω be as in (3) and let Λ Ď Fib be any set. Let γ be an autocor-
relation of Λ, calculated along some A “ tBRnp0qu.

Then, for all t P R we have

}Tt ppγq ´ ppγq }r0,1s ď d}Ttpω ´ pω}r´1,1s ,

where

d “ γpt0uq “ densApΛq .

In particular

}Tt ppγq ´ ppγq }r0,1s ď
τ

?
5

}Ttpω ´ pω}r´1,1s .

□
By combining Theorem 2.10 with Theorem 2.11 we get ([53, Theorem 2.15]):

Theorem 2.12. Let 0 ă ε ă 1 and t P ⋏‹
pr´ 4ε

4
3

105 ,
4ε

4
3

105 sq. Then, for all Λ Ď Fib and
all autocorrelations γ of Λ, we have

max
!

}Tt ppγq ´ ppγq }r0,1s; }Tt ppγqpp ´ ppγqpp }r0,1s;

}Tt ppγqac ´ ppγqac }r0,1s; }Tt ppγqsc ´ ppγqsc }r0,1s

(

ă ε

In particular, pγ, ppγqpp , ppγqac and ppγqsc are norm almost periodic measures. □

3. Pure point spectrum of weak Meyer sets

Throughout this paper, G denotes a second countable locally compact Abelian
group (LCAG). We should note here in passing that metrisability of G is only
used in an implicit way whenever we refer to the autocorrelation of a point set
(or measure). In the literature, the autocorrelation is defined as the limit along a
subsequence of our averaging sequence, and the existence of such subsequences relies
on the second countability of G. One can easily get around this issue by working
with a subnet of the averaging sequence, or even more generally by starting with
a van Hove net (in which case it is likely that we can also drop the σ-compactness
assumption). Anyhow, since the basic theory of diffraction using van Hove nets is
not setup yet, and there is no good reference in this direction, we prefer to restrict
to second countable LCAG’s for this project.

We will assume that the reader is familiar with cut-and-project schemes, Delone
sets and Meyer sets, Radon measures, total variation of a measure, convolution be-
tween functions and measures, van Hove sequences, autocorrelation and diffraction,
norm almost periodicity, and refer the unfamiliar reader to [4, 51, 52].

In this paper we are interested in translation bounded measures supported inside
model sets. Let us briefly recall that a measure µ is called translation bounded if,
for all compact sets K Ď G we have

}µ}K :“ sup
tPG

|µ| pt`Kq ă 8 .

Here, |µ| denotes the total variation measure of µ (see [40, Page 252] for the defini-
tion). As usual, we denote by M8pGq the space of translation bounded measures.

As we mentioned in the introduction, the goal of this paper is to describe proper-
ties of the spectrum of Meyer sets in terms of covering model sets, and that relative
denseness of Meyer sets can be replaced by weaker properties. Because of this, we
introduce the following definition.
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Definition 3.1. A set Λ in a LCAG G is called a weak Meyer set if it is a subset of
a model set.

It is easy to see that a set Λ is a weak Meyer set if and only if it is a subset of a
Meyer set. Moreover, any subset of a weak Meyer set is a weak Meyer set. Finally,
a weak Meyer set Λ Ď G is a Meyer set if and only if Λ is relatively dense.

The maximal density weak model sets studied in [8, 24, 25] as well as the weak
model sets with precompact Borel windows [26] are weak Meyer sets, which are not
necessarily Meyer sets. Any subset of a weak model set is a weak Meyer set. B-free
systems and their subsets [15, 22, 21, 23] also provide many interesting examples
of weak Meyer sets.

In fact, any weak Meyer set Λ is a subset of a model set, and the cut and project
scheme can be chosen such that the ‹-mapping is one to one. As G is σ-compact,
both Λ and the covering model set ⋏pW q are countable, and hence so are their
images under the ‹-mapping. By simply picking Λ‹ as the window, or by starting
with W and eliminating the extra points in ⋏pW qzΛ, one can construct a Borel
window W 1 which gives Λ “ ⋏pW 1q as a weak model set. This shows that the
notions of weak Meyer sets and weak model sets coincide.

Let us briefly remind the reader here the concept of a cut-and-project scheme. A
cut-and-project scheme (or simply CPS) is a triple pG,H,Lq consisting of our group
G, a LCAG H, and a lattice L Ď GˆH, with the following two extra properties:

‚ The restriction πG|L of the projection πG : GˆH Ñ G to L is one to one.
‚ πHpLq is dense in H.

Given a cut-and-project scheme pG,H,Lq, and a set W Ď H, we denote

⋏pW q :“ tπGplq : l P L, πHplq P W u .

Next, let us briefly recall that the dual group pG is defined as the group of
continuous homomorphisms χ : G Ñ Up1q :“ tz P C : |z| “ 1u. This becomes a
LCAG under a topology for which the sets

(4) NpK, εq :“ tχ P pG : |χpxq ´ 1| ă 1@x P Ku

with ε ą 0 and compact K Ď G, form a basis of open sets at 0 P pG (see [44,
Sect. 1.2] for details).

Given a cut-and-project scheme pG,H,Lq, the annihilator L0 in {GˆH “ pGˆ pH

of L is a lattice. Moreover, p pG, pH,L0q is a cut-and-project scheme [38]. We refer to
this as the dual cut-and-project scheme. To emphasize that we work in this dual

space, for W Ď pH, we will use the notation

⋏‹
pW q :“ tπ

pGpwq : w P L0, π
xH

pwq P W u .

To make things easier to follow, we will use the following setting.
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For this entire section, pG,H,Lq is a fixed CPS and W Ď H is a fixed
compact set. For ε ą 0, we set

Wε :“ NpW ´W, εq ,

Bε :“ ⋏‹
pWεq .

Moreover, for each pχ, χ‹q P L0 we set

spχq :“ sup t|χ‹ptq ´ 1| : t P W ´W u .

Note that since W is compact, so is W ´W . Therefore, the continuous function
|χ‹ptq ´ 1| attains its maximum on W ´W . In particular, for all χ P Bε, we have

(5) spχq ă ε .

Remark 3.2. (a) Since Wε is open, Bε is relatively dense [37].
(b) If 0 ă ε ă ε1, then Bε Ď Bε1 .

Similarly to subsets of Fib, we can prove that any weak Meyer subset Λ Ď ⋏pW q

with non-trivial Bragg spectrum, has a Bragg peak at each χ P B1. Moreover, for
all ε ą 0 small enough, Λ has a high intensity Bragg peak at each χ P Bε.

Theorem 3.3. Let Λ Ď ⋏pW q and let γΛ be an autocorrelation of Λ. If (2) holds,
then,

(a) Λ has a Bragg peak at each χ P B1 of intensity

xγΛptχuq ⩾ p1 ´ spχqqI ą 0 .

(b) For each 0 ă ε ă 1 and each χ P Bε, Λ has a Bragg peak at χ of intensity

xγΛptχuq ⩾ p1 ´ εqI .

Proof. The proof is similar to the one in Prop. 2.4. Let pχ, χ‹q P L0. Then, for all
t P L we have

1 “ pχ, χ‹qpt, t‹q “ χptqχ‹pt‹q .

Thus, for all t P ⋏pW ´W q, we have

|1 ´ χptq| “

ˇ

ˇ

ˇ
1 ´ χ‹pt‹q

ˇ

ˇ

ˇ
ď spχq .

Now, [39, Theorem 4.10.14] gives

xγΛptχuq “ lim
n

1

|An|

¨

˝

ÿ

zPpΛ´ΛqXAn

χpzqγptzuq

˛

‚

I “ xγΛpt0uq “ lim
n

1

|An|

¨

˝

ÿ

zPpΛ´ΛqXAn

γptzuq

˛

‚ .

Using supppγΛq Ď ⋏pW ´W q, we get

|xγΛpt0uq ´ xγΛptχuq| “ lim
n

1

|An|

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

¨

˝

ÿ

zPpΛ´ΛqXAn

p1 ´ χpzqq ¨ γptzuq

˛

‚

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď lim sup
n

1

|An|

ÿ

zPpΛ´ΛqXAn

spχq ¨ γptzuq “ spχqxγΛpt0uq .



WHY DO (WEAK) MEYER SETS DIFFRACT? 11

Therefore, by the triangle inequality and positivity of pγ we get

xγΛptχuq ⩾ xγΛpt0uq ´ spχqxγΛpt0uq “ p1 ´ spχqqI .

(a) and (b) follow immediately. □

Next, we show that for each weak model set ⋏pW q and each ε ą 0, we can

construct a relatively dense set in pG of common ε-sup almost periods for the pure
point component of diffraction spectra, for all subsets of ⋏pW q (see [49, 51] for sup
almost periodicity).

Theorem 3.4. Let ⋏pW q be any weak model set, and let η be an autocorrelation of
⋏pW q along some averaging sequence A. Set α “ pηpt0uq, let Λ Ď ⋏pW q, and let γ
be an autocorrelation of Λ along some subsequence of A. Then, for all χ P B ε

α`1
,

and all ψ P pG, we have

|pγptψ ` χuq ´ pγptψuq| ă ε .

Remark 3.5. The set B ε
α`1

is relatively dense and depends on ⋏pW q and ε, but it

is independent of the choice of Λ.

Proof. Note first that γ ď η. By [39, Theorem 4.10.14] we have

|pγptψ ` χuq ´ pγptψuq| “ lim
n

1

|An|

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

¨

˝

ÿ

zPpΛ´ΛqXAn

pψpzqχpzq ´ ψpzqq ¨ γptzuq

˛

‚

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď lim sup
n

1

|An|

ÿ

zPpΛ´ΛqXAn

ε

α ` 1
¨ ηptzuq

“
ε

α ` 1
pηpt0uq “

ε

α ` 1
α ă ε .

This proves the claim. □

Let us complete the section by observing that the proof of Theorem 3.3 extends
easily to positively weighted Dirac combs with weak Meyer set support. Indeed,
the proof of Theorem 3.3 only uses the fact that γ is a positive measure, and that
supppγq Ď ⋏pW ´W q. Therefore, in a similar way, we get:

Theorem 3.6. Let µ be any positive, translation bounded measure, with the property
that supppµq Ď ⋏pW q. Let γ be any autocorrelation of µ, and assume that (2)
holds. Then,

(a) The measure µ has a Bragg peak at each χ P B1 of intensity

pγptχuq ⩾ p1 ´ spχqqI ą 0 .

(b) For each 0 ă ε ă 1 and each χ P Bε, µ has a Bragg peak χ of intensity

pγptχuq ⩾ p1 ´ εqI .

□
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4. The ping-pong lemma for Model sets

In this section we review and slightly improve the ping-pong lemma of [52]. This
result can be seen as the result for subsets of weak model sets which is similar to the
periodicity of diffraction for subsets of lattices (see Theorem 6.1) . We will discuss
this further in Section 6.

To make the presentation easier to follow we introduce the following definition.

Definition 4.1. Let Λ Ď G be uniformly discrete. We say that ω P MpGq is a
ping-pong measure for Λ if it satisfies the following properties:

‚ supppωq is uniformly discrete.
‚ ωptxuq “ 1 for all x P Λ.
‚ ω is twice Fourier transformable.
‚ pω is pure point.

Since every twice Fourier transformable measure is translation bounded (see for
example [39, Thm. 4.9.23]), any ping-pong measure is automatically translation
bounded.

Let us now recall the following result, which shows that every weak Meyer set
admits a ping-pong measure. We should emphasize here that the existence of a
ping-pong measure for each choice of y R W is used in the proof of Thm. 4.5, and
will be important to establish Theorem 7.5 (c), and its consequences.

Proposition 4.2. [52]Let pG,H,Lq be a CPS, let W Ď H be a compact set and let
y P HzW . Then,

(a) There exists some h P K2pHq “ spantf ˚ g : f, g P CcpHqu such that h ” 1
on W and hpyq “ 0.

(b) For any h as in (a), the measure

ω “ ωh :“
ÿ

px,x‹qPL

hpx‹qδx

is a ping-pong measure for ⋏pW q. Moreover,

pω “ denspLqω‹

ȟ
:“ denspLq

ÿ

pχ,χ‹qPL0

hpχ‹qδχ .

Proof. This follows from [52, Lemma 3.1 and Proposition 3.2] and their proofs.
Note here that ω is twice Fourier transformable by [42, Theorem 4.12]. □

Let us note here in passing that most results in this section are based on the fact
that each weak Meyer set Λ admits a ping-pong measure ω. It follows that many
of these results can be generalized to Fourier transformable measures γ, such that
supppγq admits a ping-pong measure.

We can now prove the following slight improvement of the ping-pong lemma [52,
Lemma 3.3]. Note that in [52, Lemma 3.3 (ii)] we have the extra assumption that
γ is Fourier transformable, which is actually unnecessary.

First, to make the proof easier to follow, we introduce the following definition. If
ω is a ping-pong measure for ⋏pW q we say that φ P CcpGq is an auxiliary function
for ω if φ ˚ φ̃p0q “ 1 and supppωq is supppφ ˚ φ̃q-uniformly discrete. It is easy to
see that any ping-pong measure admits auxiliary functions.
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Theorem 4.3 (Ping-pong lemma for cut-and-project sets). Let pG,H,Lq be a CPS,
let W Ď H be a compact set, let ω be a ping-pong measure for ⋏pW q and let φ be
an auxiliary function. Then,

(Ping) If γ is any Fourier transformable measure with supppγq Ď ⋏pW q, then

ν :“ | qφ|
2

pγ is a finite measure and

pγ “ pω ˚ ν .

(Pong) If ν is a finite measure on pG, then γ :“ pqνqω satisfies supppγq Ď supppωq,
γ is Fourier transformable, and

pγ “ pω ˚ ν .

Proof. (Ping) Follows from [52, Lemma 3.3 (i)].
(Pong) The only thing which was not proved in [52, Lemma 3.3 (ii)] is the Fourier

transformability of γ. We prove it here.
First, as we noted after Def. 4.1, since ω is twice Fourier transformable, it is

translation bounded. By [52, Theorem 8.5] the ping-pong measure ω is a linear
combination of positive definite measures. The finite measure ν is a linear combi-
nation of finite positive measures, and hence pν is a linear combination of continuous
positive definite functions. Since the product of a continuous positive definite func-
tion, and a positive definite measure, is a positive definite measure [1, Corollary 4.3],
it follows that the measure

γ “ pqνqω

is a linear combination of positive definite measures. Therefore, γ is Fourier trans-
formable. Moreover, qν P CupGq and ω P M8pGq imply γ P M8pGq. As γ is
supported inside a Meyer set, by [42, Theorem 5.7] (or [39, Theorem 4.9.32]), γ is
twice Fourier transformable.

Next, by [39, Theorem 4.9.28] or [16, Theorem 3.4] we have

pγ̂ “ γ: .

Finally, ω is twice Fourier transformable by definition. Thus, by [39, Lemma 4.9.26],
the measure pω ˚ ν is Fourier transformable, and

pω ˚ ν
Ź

“ p

pωpν “ ω:
pν “ ω:ν̌: “ γ: .

This shows that

pω ˚ ν
Ź

“ pγ̂ .

The injectivity of the Fourier transform [39, Theorem 4.9.13] then gives pγ “ pω ˚ ν.
This completes the proof. □

Next, let us recall the Fourier–Stieltjes algebra BpGq of G,

BpGq :“ tpµ : µ is a finite measure on pGu .

The following is an immediate consequence of the ping-pong lemma:

Theorem 4.4. Let pG,H,Lq be a CPS, W Ď H be a compact set, and let ω be a
ping-pong measure for ⋏pW q. Then, for any measure γ with supppγq Ď ⋏pW q, the
following are equivalent:

(i) γ is Fourier transformable.
(ii) γ is a linear combination of positive definite measures.
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(iii) There exists some f P BpGq such that

(6) γ “ fω .

Proof. (i) ùñ (ii) follows from [52, Theorem 8.5].
(ii) ùñ (i) is obvious.
(i) ùñ (iii) By the ping-pong lemma pγ “ ω ˚ ν for some finite measure ν, and

γ “ ν̌ω .

Then f “ ν̌ P BpGq satisfies (6).
(iii) ùñ (i) Let f P BpGq be so that (6) holds. Let ν be the finite measure such
that f “ ν̌. Then, by the Pong implication in the ping-pong lemma, the measure
γ “ fω is Fourier transformable and

pγ “ pω ˚ ν .

□

For subsets of lattices, a similar result is proved in [2, Thm. 1].

Combining Theorem 4.4 with [52, Theorem 4.1] we get:

Theorem 4.5 (Existence of the generalized Eberlein decomposition). [52, Theo-
rem 4.1] Let pG,H,Lq be a CPS, and let W Ď H be any compact set.

Let γ be any Fourier transformable measure with supppγq Ď ⋏pW q. Then, there
exist unique Fourier transformable measures γs, γ0s, γ0a, supported inside ⋏pW q,
such that

γ “ γs ` γ0s ` γ0a

γs
Ź

“ ppγqpp ; γ0s
Ź

“ ppγqsc ; γ0a
Ź

“ ppγqac .

Moreover, given some ping-pong measures ω for ⋏pW q, there exist some functions
fs, f0s, f0a P BpGq, which are Fourier transforms of finite pure point, singular con-
tinuous, and absolutely continuous measures, respectively, such that

γs “ fsω ; γ0s “ f0sω ; γ0a “ f0aω .

□

We will show that a similar decomposition holds, under much more general
settings, in Section 7.

5. Norm estimates for the diffraction of measures supported inside
model sets

If ω is a ping-pong measure for some weak model set ⋏pW q, then pω is a strong
almost periodic measure, but it is not norm almost periodic in general (see [39, 51]
for definition and properties of strong and norm almost periodic measures). If
we can find a single ping-pong measure ω for ⋏pW q, such that pω is norm almost
periodic, then it follows easily that, for each transformable measure γ supported
within ⋏pW q, the measure pγ is norm almost periodic. The existence of such a
measure is shown in the proof of [52, Theorem 7.1]:

Proposition 5.1. [52, Theorem 7.1] Let pG,H,Lq be a CPS, and let W Ď H be any
compact set. Then, there exists a ping-pong measure ω for ⋏pW q such that pω is
norm almost periodic. □
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Remark 5.2. In Prop. 5.1, a norm almost periodic ping-pong measure can be con-
structed explicitly as follows:

Pick any compact set W 1 Ě W with non-empty interior, and define H 1 :“ xH 1y

to be the subgroup of H generated by W 1. Then, H 1 is compactly generated, and
an open and closed subgroup of H. It follows that H{H 1 is discrete.

Then, pG,H 1,L1q is a CPS, where

L1 :“ tpx, x‹q : x P L, x‹ P H 1u .

Next, the structure theorem of compactly generated LCAG [41], implies that there
exists some d, n ⩾ 0 and a compact group K such that H 1 » Rd ˆ Zm ˆ K. Denote
by ψ : H 1 Ñ Rd ˆ Zm ˆ K such an isomorphism. Then, by compactness, there
exists some R ą 0, N ą 0 such that

ψpW q Ď r´R,Rsd ˆ r´N,N sm ˆ K .

Next, pick some φ P C8
c pRdq X K2pRdq, such that φpxq “ 1 , @x P r´R,Rsd, and

define:
ω :“

ÿ

px,x‹qPL1

pφb 1r´N,Nsm b 1Kqpψpx‹qqδx .

Then, ω is a ping-pong measure for ⋏pW q, and pω is norm almost periodic [52].

Let us now give the following estimate for the norm almost periods of the diffrac-
tion, for any measure supported inside ⋏pW q.

Proposition 5.3. Let ⋏pQq be any weak model set, and let ω be any ping-pong
measure for ⋏pW q. Let η be any positive definite measure supported inside ⋏pW q.

Let K Ď IntpK1q be any two compact sets in pG. Then, for all χ P pG, we have

}Tχpγ ´ pγ}K ď }Tχpω ´ pω}K1γpt0uq .

Proof. Let φ be an auxiliary function, and as usual, set

ν “ | qφ|
2

pγ .

Then, by the ping-pong lemma, we have

}Tχpγ ´ pγ}K “ } pTχpω ´ pωq ˚ ν}K ď } pTχpω ´ pωq }K1
|ν|p pGq .

Now, since γ is positive definite, the measure ν is positive, and therefore we have

|ν|p pGq “ νp pGq “ pγp| qφ|
2
q “ γpφ ˚ φ̃q “ γpt0uq ,

with the last equality following from the fact that φ is an auxiliary function. This
proves the claim. □

For the remainder of this section, pG,H,Lq is a fixed CPS, W Ď H and

K Ď pG are fixed compact sets, and ω is a fixed ping-pong measure, such
that, pω is norm almost periodic.

We fix another compact set K1 Ď pG, such that K Ď IntpK1q. For each ε ą 0
we set

Pε :“
!

χ P pG : }Tχpω ´ pω}K1
ă ε

)

.

Note that Pε is relatively dense for all ε ą 0, and only depends on the ping-pong
measure ω and the choice of K1.
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Combining all the results of this section, we get:

Theorem 5.4. Let
µ “

ÿ

xP⋏pW q

cxδx

be translation bounded, with autocorrelation γ, and set c :“ supt|cx| : x P ⋏pW qu.
Then, for all χ P Pε and all α P tpp, ac, scu we have

}Tχpγ ´ pγ}K , }Tχppγqα ´ ppγqα}K ď ε pγpt0uqq ď c2εdenspL0qθHpW q ,

where θH denotes the Haar measure on H.

Proof. Since supppγq Ď ⋏pW ´W q, by Theorem 4.5 we have

suppppγqsq , suppppγq0aq , suppppγq0sq Ď ⋏pW ´W q .

Therefore, by Proposition 5.3 we get

}Tχpγ ´ pγ}K , }Tχppγqα ´ ppγqα}K ď εγpt0uq .

Now, positive definiteness gives

0 ď γspt0uq, γ0apt0uq, γ0spt0uq ď γspt0uq ` γ0apt0uq ` γ0spt0uq “ γpt0uq .

To complete the proof, we observe that

γpt0uq “ lim
n

ř

xPpΛXAnq cxcx

|An|
“ lim

n

ř

xPpΛXAnq |cx|2

|An|

ď c2 densAp⋏pW qq ď c2 denspL0qθHpW q .

□

As an immediate consequence, we get a common relatively dense set of ε-almost
periods for the diffraction of all subsets Λ Ď ⋏pW q:

Theorem 5.5. Let Λ Ď ⋏pW q, let ε ą 0, and let γ be an autocorrelation of Λ. Set
ε1 :“ ε

denspL0qθHpW q`1
. Then, for all χ P Pε1 we have

maxt}Tχpγ´pγ}K , }Tχppγqpp ´ppγqpp}K , }Tχppγqac ´ppγqac}K , }Tχppγqsc ´ppγqsc}Ku ď ε .

□

Similarly, given any gamily of equi-translation bounded measures supported in-
side ⋏pW q, we can construct a common relatively dense set of ε-almost periods for
the diffraction of all the measures in the family.

Theorem 5.6. For each ε ą 0 and each α ą 0, there exists a relatively dense set

Q “ Qpε, α,⋏pW qq Ď pG with the following property :
Let µ “

ř

xP⋏pW q
cxδx be a measure with supt|cx|u ď α, and let γ be an autocorre-

lation of µ. Then, for all χ P Q we have

maxt}Tχpγ´pγ}K , }Tχppγqpp ´ppγqpp}K , }Tχppγqac ´ppγqac}K , }Tχppγqsc ´ppγqsc}Ku ď ε .

Proof. Let ε1 :“ ε

α2 denspL0qθHpW q`1
, and set Q :“ Pε1 . The claim follows from

Theorem 5.4. □

As an immediate consequence, we get:

Corollary 5.7. [52, Theorem 7.1 and Corollary 7.2] Let µ be any measure with weak
Meyer set support and let γ be an autocorrelation of µ. Then pγ, ppγqpp, ppγqac and
ppγqsc are norm almost periodic. □
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6. Diffraction of weak Meyer sets and subsets of lattices

Let us briefly compare the diffraction properties of subsets of model sets, to those
for subsets of lattices. Let us recall first the following result, which is a particular
case of [2, Theorem 1].

Theorem 6.1. [2] Let L be a lattice in Rd and let S Ď L be arbitrary. Let γ be any
autocorrelation of S. Then, there exists a finite positive measure ν such that

pγ “ δL0 ˚ ν .

□

As mentioned above, the (Ping) part of ping-pong lemma is the result for subsets
of model sets similar to Theorem 6.1.

Let us note here that Theorem 6.1 implies that the set of Bragg peaks of S of the
highest intensity I “ pγpt0uq contains the dual lattice L0. Similarly, Theorem 3.3
shows that, for subsets Λ of model sets, the set of Bragg peaks of Λ of the intensity
almost equal to I “ pγpt0uq contains the dual model set Bε “ ⋏‹

pWεq.
Furthermore, Theorem 6.1 gives that the absolutely continuous, and singular

continuous components of diffraction spectrum of S, are L0-periodic. Theorem 5.6
gives that the absolutely continuous and singular continuous components of diffrac-
tion spectrum of weak Meyer sets are almost periodic, and that the set of almost
periods contain model sets in the dual CPS, with small neighbourhoods of zero as
windows.

The similarity, and relationship, between the diffraction of subsets of lattices and
subsets of model sets becomes more clear in the case of CPS with compact internal
space H. Indeed, in this case, L “ ⋏pHq is a lattice containing our weak Meyer
set Λ, and ⋏‹

pWεq contains the model set ⋏‹
pt0uq “ L0.

7. FCDM functions

In this section, we look at potential decompositions of the diffraction of Meyer
sets, which are similar to the existence of the (generalized) Eberlein decomposition.
Reading carefully the proof of Thm. 4.5, one can see that it only relies on the fact
that the Lebesgue decomposition satisfies two simple properties, which we list in
the following definition.

Definition 7.1. A function P : M8pGq Ñ M8pGq is said to be a function which
factors through convolution with discrete measures, or simply a FCDM function,
if it satisfies the following two conditions:

‚ If ν is finite, then P pνq is finite.
‚ For all pure point measures ω P M8pGq, and all finite measures ν, we have

P pω ˚ νq “ ω ˚ P pνq .

Note here that, when ω is translation bounded, and ν is finite, both convolutions
ω ˚ ν and ω ˚ P pνq are well defined, and translation bounded [1, 39].

Example 7.2. The projections Ppp, Pac, Psc on the pure point, absolutely continuous
and singular continuous components, respectively, are FCDM functions.

The following lemma is obvious.
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Lemma 7.3. (a) The identity map Id : M8pGq Ñ M8pGq is a FCDM func-
tion.

(b) If P,Q : M8pGq Ñ M8pGq are FCDM function, and C1, C2 P C, then
C1P ` C2Q is a FCDM function.

□

This means that every FCDM function P , gives a “canonical” decomposition for
each µ P M8pGq, as

µ “ P pµq `Qpµq ,

where Q “ Id ´ P is also a FCDM function.

Remark 7.4. Let P : M8pGq Ñ M8pGq be any FCDM function. Then,

(a) For each finite measure µ and C P C, we have

P pCµq “ P ppCδ0q ˚ µq “ pCδ0q ˚ P pµq “ CP pµq .

(b) For each finite measure µ and t P G, we have

P pTtµq “ P pδt ˚ µq “ δt ˚ P pµq “ TtP pµq .

In particular, if τ is a topology on M8pGq, with the property that the set
of finite measures is dense in M8pGq, and P is continuous with respect to
τ , then P commutes with the translation operators Tt.

(c) If P : M8pGq Ñ M8pGq is linear, and commutes with the translate
operators Tt, then, for all finite pure point measure ω, and for all finite
measures µ, we have P pω ˚ µq “ ω ˚ P pµq.

In particular, if τ is any topology on M8pGq with the property that, for
all pure point measures ω, and all finite measures µ, we have

ω ˚ µ “ lim
FĎG

F is finite

p
ÿ

xPF

ωptxuqδxq ˚ µ ,

and P : pM8pGq, τq Ñ pM8pGq, τq is a continuous linear function, then
P is a FCDM function if and only if P commutes with the translation
operators.

We can now prove the following result, which is a generalisation of the existence
of the general Eberlein decomposition for measures with Meyer set support.

Theorem 7.5. Let pG,H,Lq be a CPS, let W Ď H be any compact set, and let ω be a

ping-pong measure for ⋏pW q. Let P : M8p pGq Ñ M8p pGq be any FCDM function.
Then, for each Fourier transformable measure γ with supppγq Ď ⋏pW q, there

exists a (unique) Fourier transformable measure γP , and some function fP P BpGq,
such that

(a) xγP “ P ppγq.
(b) γP “ pfP qω.
(c) supppγP q Ď ⋏pW q.

Proof. By the ping-pong lemma (Theorem 4.3), there exists a finite measure ν such
that

pγ “ pω ˚ ν .
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Since ν is a finite measure, it follows from the definition of FCDM function that
P pνq is finite. Since pω is translation bounded [39], the measures pω and P pνq are
convolvable, and, by the definition of FCDM we have

pω ˚ P pνq “ P ppω ˚ νq “ P ppγq .

Finally, as P pνq is a finite measure, by Theorem 4.3, the measure

γP :“ ~P pνqω

is supported inside supppωq, Fourier transformable, and

xγP “ pω ˚ P pνq “ P ppγq .

Setting fP :“ ~P pνq we get (a) and (b).
To show (c), pick z P πGpLqz⋏pW q. By Proposition 5.3 (a), there exists some

h1 P K2pGq such that ω1 “ ωh1
is a ping-pong measure for ⋏1pW q and ωptzuq “ 0.

Repeating the proof above, with ω replaced by ω1, we get that γP ptzuq “ 0. This
proves (c). □

Remark 7.6. Let pG,H,Lq be a CPS, and W Ď H be any compact set. Denote by

FTW pGq :“ tγ : γ is Fourier transformable, and supppγq Ď ⋏pW qu .

Then, Theorem 7.5 says that every FCDM function P : M8p pGq Ñ M8p pGq induces
a unique function

R : FTW pGq Ñ FTW pGq

such that, for all γ P FTW pGq we have

zRpγq “ P ppγq .

Combining these results with [52, Theorem 7.1] we get:

Corollary 7.7. Let γ be a Fourier transformable measure supported inside a Meyer

set, and let P : M8p pGq Ñ M8p pGq FCDM function. Then, P ppγq is norm almost
periodic. In particular, either P ppγq “ 0, or P ppγq has relatively dense support.

7.1. An application: Hausdorff dimension decomposition. In this section we will
denote by dimH the Hausdorff dimension on R. We will often employ the well
known formula

(7) dimHp
ď

nPN
Snq “ sup

nPN
dimHpSnq ,

for any countable family tSnu of subsets of R.
Let us recall and extend the following definitions of [30].

Definition 7.8. Let µ be a positive measure on R.
(a) µ is called zero-dimensional if it is supported on a Borel set S of Hausdorff

dimension dimHpSq “ 0.
(b) µ is called positive-dimensional if µpSq “ 0 for all Borel sets S with

dimHpSq “ 0.

A measure ν on R is called zero-dimensional, or positive-dimensional, respectively,
if its total variation measure |µ| is zero-dimensional, or positive-dimensional, re-
spectively.

The following result follows immediately from the definitions.
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Lemma 7.9. Let µ be a measure, and consider the canonical decomposition

µ “ Repµq ` iImpµq “ rpRepµqq` ´ pRepµqq´s ` irpImpµqq` ´ pImpµqq´s ,

given by the Hahn decomposition of Repµq and Impµq. Then, µ is zero-dimensional
or positive-dimensional, respectively, if and only if each of the four components is
zero-dimensional, or positive-dimensional, respectively.

Proof. The proof is an immediate consequence of the fact that supppµq is the union
of the supports of the four components, and that and

pRepµqq`; pRepµqq´; pImpµqq`; ppImpµqq´q ď |µ|

ď Repµqq` ` pRepµqq´ ` pImpµqq` ` pImpµqq´ .

□

By combining the definition with (7), we immediately get:

Fact 7.10. Let µ be a positive measure on R. Then, µ is zero-dimensional, or
positive-dimensional, respectively, if and only if, for all n, the restriction µ|rn,n`1q,
is zero-dimensional, or positive-dimensional, respectively.

This fact, combined with [30, Cor. 4.1.4(a)] gives:

Proposition 7.11. Any measure µ on R has a unique decomposition

µ “ µzd ` µpd ,

where µzd is zero-dimensional, and µpd is positive-dimensional. Moreover, the map-
pings Ppdpµq :“ µpd, and Pzdpµq :“ µzd are positive.

Proof. [30, Cor. 4.1.4(a)] gives the results for finite positive measures. Fact 7.10
then extends the result to positive measures, while Lemma 7.9 proves the general
version. □

We now have the following simple result.

Lemma 7.12. Ppd and Pzd are FCDM functions.

Proof. It is obvious that these functions take finite measures to finite measures.
Next, let ω “

ř8

n“1 cnδtn be a pure point measure, and let ν be a finite measure.
If ν is zero-dimensional, then ω ˚ ν is supported inside

Ť

nptn ` supppνqq, which
is zero-dimensional by (7).

Similarly, if ν is positive-dimensional, then for all Borel sets S with dimHpSq “ 0,
we have

|ω ˚ ν| ď

8
ÿ

n“1

|cn||ν|p´tn ` Sq “ 0 ,

and hence ω ˚ ν is positive-dimensional. Therefore,

Ppdpω ˚ νq ` Pzdpω ˚ νq “ ω ˚ ν “ ω ˚ pPpdνq ` ω ˚ pPzdνq

give two decompositions of ω˚ν, into a positive-dimensional and a zero-dimensional
measure, respectively. The uniqueness of the decomposition proves the claim. □

Now, Theorem 7.5 gives:
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Corollary 7.13. Let pG,H,Lq be a CPS, let W Ď H be any compact set, and let ω be
a ping-pong measure for ⋏pW q. Then, for each Fourier transformable measure γ,
with supppγq Ď ⋏pW q, there exists (unique) Fourier transformable measures γ1, γ2,
and some function f1, f2 P BpGq, such that:

(a) pγ1 “ Ppdppγq and pγ2 “ Pzdppγq .
(b) γ1 “ f1ω and γ2 “ f2ω.
(c) supppγ1q, supppγ2q Ď ⋏pW q. □

It is likely that similar results can be proved for most decompositions of [30,
Section 4].

8. Outlook

The study of Meyer sets via covering model sets is not a new idea in the field
of aperiodic order. This idea already plays a central role in the characterisation
of Meyer sets (see [35, 37, 51] for example) and comes up in a natural way in the
Pisot conjecture. Any 1-dimensional primitive Pisot substitution gives raise to a
cut-and-project scheme and to an iterated function system (IFS) on the internal
space. Using the attractors of the IFS as windows, we get covering model sets
for the left-end points of each tile type in the fixed point of the substitution (see
[4, Chapter 7] or [7] for some examples and [47] for a systematic exposition of 1-
dimensional Pisot substitutions). The covering model sets are regular and hence
have pure point diffraction spectra. If the inflation factor is an irrational Pisot
number, the Pisot conjecture is equivalent to the fact that the fixed point of the
substitution and the covering model set differ on a set of density zero. On another
hand, when the inflation factor is an integer it is possible for the fixed point to have
mixed spectrum, compare [7].

There are some limitations when studying the diffraction of a weak Meyer sets
via covering model sets. The results of the paper can be understood the following
equivalent way: starting with a (regular) model set ⋏pW q with compact window
W , we can describe common properties for all diffraction measures of all subsets of
⋏pW q. The set ⋏pW q contains many subsets, some which have pure point spec-
trum, some with mixed spectrum, but also many subsets Λ which have multiple
different diffraction measures of distinct spectral type. The last situation occurs
often in the case of maximal density weak model sets with windows of empty in-
terior,such as the square free integers and visible points of the lattice. It would
be interesting to classify all the subsets of a given model set and all the averaging
sequences which lead to a diffraction measure of a certain spectral type, but this
seems to be an extremely difficult question.
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[23] G. Keller, M. Lemańczyk, C. Richard, D. Sell, On the Garden of Eden theorem for B-free
subshifts, Isr. J. Math. 251, 567–594, 2022.

[24] G. Keller, C. Richard, Dynamics on the graph of the torus parametrisation, Ergod. Th. &
Dynam. Sys. 28, 1048–1085, 2018.

[25] G. Keller, C. Richard, Periods and factors of weak model sets, Isr. J. Math. 229, 85–132,

2019.

[26] G. Keller, C. Richard, N. Strungaru Spectrum of weak model sets with Borel windows,
preprint, to appear in Canad. Math. Bull., 2022. arXiv:2107.08951.

[27] A. Klick, N. Strungaru, A. Tcaciuc On arithmetic progressions in model sets, Discr. Comput.
Geom. 67, 930—946, 2022. arXiv:2003.13860.



WHY DO (WEAK) MEYER SETS DIFFRACT? 23

[28] J. Lagarias, Meyer’s concept of quasicrystal and quasiregular sets, Commun. Math. Phys.

179, 365–376, 1996.

[29] J. Lagarias, Mathematical quasicrystals and the problem of diffraction. In: Directions in
Mathematical Quasicrystals eds. M. Baake and R.V Moody, CRM Monograph Series, Vol 13,

AMS, Providence, RI, pp. 61–93, 2000.

[30] Y. Last, Quantum Dynamics and Decompositions ofSingular Continuous Spectra, J. Funct.
Anal. 142, 406–445, 1996.

[31] D. Lenz, C. Richard, Pure point diffraction and cut and project schemes for measures: the

smooth case, Math. Z. 256, 347–378, 2007. math.DS/0603453.
[32] D. Lenz, T. Spindeler, N. Strungaru, Pure point diffraction and mean, Besicovitch and Weyl

almost periodicity, preprint, 2020. arXiv:2006.10821.

[33] D. Lenz, T. Spindeler, N. Strungaru, Pure point spectrum for dynamical systems and mean
almost periodicity, preprint, 2020. arXiv:2006.10825.

[34] D. Lenz, N. Strungaru, Pure point spectrum for measurable dynamical systems on locally
compact Abelian groups, J. Math. Pures Appl. 92 , 323–341, 2009. arXiv:0704.2498.

[35] Y. Meyer, Algebraic Numbers and Harmonic Analysis, North-Holland, Amsterdam, 1972.

[36] Y. Meyer, Quasicrystals, almost periodic patterns, mean-periodic functions and irregular
sampling, Afr. Diaspora J. Math. 13, 7–45, 2012.

[37] R. V. Moody, Meyer sets and their duals. In: The Mathematics of Long-Range Aperiodic

Order, ed. R. V. Moody, NATO ASI Series , Vol C489, Kluwer, Dordrecht, pp. 403–441, 1997.
[38] R. V. Moody, Model sets: A survey. In: From Quasicrystals to More Complex Systems,

eds. F. Axel, F. Dénoyer, J. P. Gazeau, EDP Sciences, Les Ulis, and Springer, Berlin, pp.

145–166, 2000. arXiv:math.MG/0002020.
[39] R.V. Moody, N. Strungaru, Almost periodic measures and their Fourier transforms. In: [5],

pp. 173–270, 2017.

[40] G. Pedersen, Analysis Now, Graduate Texts in Mathematics, Springer-Verlag,New York,
1989.

[41] H. Reiter, J.D. Stegeman, Classical Harmonic Analysis and Locally Compact Groups, Claren-
don Press, Oxford, 2000.

[42] C. Richard, N. Strungaru, Pure point diffraction and Poisson summation, Ann. H. Poincaré
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