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AUTOMORPHISMS AND DILATION THEORY OF

TRIANGULAR UHF ALGEBRAS

CHRISTOPHER RAMSEY

Abstract. We study the triangular subalgebras of UHF algebras which pro-
vide new examples of algebras with the Dirichlet property and the Ando prop-
erty. This in turn allows us to describe the semicrossed product by an isometric
automorphism. We also study the isometric automorphism group of these al-
gebras and prove that it decomposes into the semidirect product of an abelian
group by a torsion free group. Various other structure results are proven as
well.

1. Introduction

A unital non-selfadjoint operator algebra is a triangular UHF algebra if it is
the closed union of a chain of unital subalgebras each isomorphic to a full upper
triangular matrix algebra. That is, such an algebra can be thought of as the upper
triangular part of a UHF algebra. These were extensively studied by Power [15]
and many others in the early 90’s.

In their recent paper [7], Davidson and Katsoulis refine various notions of di-
lation theory, commutant lifting and Ando’s theorem for non-selfadjoint operator
algebras and show that these notions become simpler when the algebras have the
semi-Dirichlet property. Moreover, if the operator algebra has this nice dilation
theory then one can describe the C∗-envelope of the semicrossed product of the
operator algebra by an isometric automorphism. However, almost all examples
of such algebras arose from tensor algebras of C∗-correspondences, the exception
being given recently by E. T. A. Kakariadis in [12], which leads to the question
whether other examples exist. While it is unknown (at least to the author) whether
a triangular UHF algebra is isomorphic to some tensor algebra it does provide a
new example of an operator algebra which has the Dirichlet property and the Ando
property.

This paper also addresses the isometric automorphism group of such triangular
UHF algebras. We prove in section 3 that this group can be decomposed into a
semidirect product of approximately inner automorphisms by outer automorphisms
and that the outer automorphism group is torsion free. Section 4 provides a differ-
ent proof to that of Power’s in [16] showing that the outer automorphism group of
the triangular UHF algebra with alternating embeddings is determined by a pair
of supernatural numbers associated to the algebra. Section 5 develops a method
of tensoring the embeddings of two triangular UHF algebras to create a new al-
gebra which combines the automorphic structure of both, giving a slightly richer
perspective on what groups one can obtain.
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2 CHRISTOPHER RAMSEY

2. Triangular UHF algebras

A C∗-algebra is called uniformly hyperfinite (UHF) (or a Glimm algebra) if it is
the closed union of a chain of unital subalgebras each isomorphic to a full matrix
algebra. In other words, suppose we have integers kn, n ∈ N such that kn|kn+1, for

all n, and unital C∗-algebra embeddings ϕn : Mkn → Mkn+1
then Aϕ =

⋃

nMkn

is a UHF algebra. Such a sequence of integers kn|kn+1 defines a formal product
δ(Aϕ) :=

∏

p prime p
δp , where δp ∈ N ∪ {∞}, called a supernatural number or gen-

eralized integer. A famous theorem of Glimm’s [9] states that two UHF algebras
are isomorphic if and only if they have the same generalized integers. In particular,
the choice of unital embeddings does not make a difference. See [6, 15] for more
on UHF algebras and approximately finite-dimensional (AF) C∗-algebras, where
such an algebra is defined to be a closed union of a chain of finite dimensional
subalgebras.

Let Tk be the upper triangular matrices of Mk then we have the following defi-
nition:

Definition 2.1. Consider a UHF algebra Aϕ =
⋃

nMkn where ϕn :Mkn →Mkn+1

are unital embeddings and assume that ϕn(Tkn) ⊂ Tkn+1
. Then Tϕ =

⋃

n Tkn is
called a triangular UHF (TUHF) algebra.

In contrast to Glimm’s theorem we must take note of the embeddings as different
embeddings lead to non-isomorphic algebras [15]. Hence, in the above definition
ϕ = {ϕ1, ϕ2, · · · } is the collection of embeddings. Two of the simplest embeddings
are:

Definition 2.2. The standard embedding of Tk into Tk′ when k|k′ is

A ∈ Tk 7→ Ik′/k ⊗A =











A
A

. . .

A











∈ Tk′

Definition 2.3. The nest or refinement embedding of Tk into Tk′ when k|k′ is

A ∈ Tk 7→ A⊗ Ik′/k ∈ T ′
k

or in other words












a11 · · · · · · a1k

0
. . .

...
...

. . .
. . .

...
0 · · · 0 akk













7→













a11 · Ik′/k · · · · · · a1k · Ik′/k

0 · Ik′/k
. . .

...
...

. . .
. . .

...
0 · Ik′/k · · · 0 · Ik′/k akk · Ik′/k













.

Central to the theory of non-selfadjoint operator algebras is the notion of a C∗-
envelope [2, 8, 10, 11], which can be thought of as the smallest C∗-algebra that
contains the operator algebra. It is immediate in this case that the C∗-envelope,
C∗
e (Tϕ), is equal to C

∗(Tϕ) = Aϕ because all UHF algebras are simple.
Distinct from the theory of UHF algebras is that there is a partial order on

Proj(Tϕ) which is not the subprojection partial order.

Definition 2.4. If p, q ∈ T are projections then we say p � q if there is a partial
isometry v ∈ T such that vv∗ = p and v*v = q.
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We will use ekni to denote ei,i ∈ Tkn , the minimal projections at each level, and

similarly ekni,j to denote ei,j ∈ Tkn . From the previous definition we have ekni � eknj
and eknj � ekni for i ≤ j.

A subalgebra T of a UHF algebra is triangular if T ∩ T ∗ is abelian. In the
terminology of [15] our TUHF algebras are strongly maximal triangular in that
there is no other triangular algebra sitting strictly between Tϕ and Aϕ. Observe
that ϕn(Tkn ∩T ∗

kn
) ⊂ Tkn+1

∩T ∗
kn+1

, that is the diagonal is mapped to the diagonal.

So there is a maximal abelian self-adjoint subalgebra (masa) Cϕ ⊂ Tϕ defined as

Cϕ = Tϕ ∩ T ∗
ϕ =

⋃

n

Tkn ∩ T ∗
kn

≃
⋃

n

Cn :=
⋃

n

Ckn .

Hence, Cϕ is an AF C∗-algebra and Cϕ ≃ C(X) where the Gelfand space is a
generalized Cantor set:

M(Cϕ) = X =
∏

n≥1

[

kn
kn−1

]

,

with k0 = 1 to make the formula work and where [k] = {0, 1, · · · , k − 1}. We will
often refer to Cϕ as the diagonal of Tϕ. For each point x ∈ X there is a unique
sequence of projections

ek1i1 ≥ ek2i2 ≥ ek3i3 ≥ · · ·

with x(eknin ) = 1 for all n ≥ 1. Define a partial order onX by letting the following be

equivalent for x = (xn)n≥1, y = (yn)n≥1 ∈
∏

n≥1

[

kn
kn−1

]

= X which have sequences

of projections eknin and eknjn respectively:

1) x ≤ y,
2) ∃ n such that (x1, · · · , xn) ≤ (y1, · · · , yn) in the lexicographic order and

xn′ = yn′ , ∀n′ > n,

3) ∃ n such that eknin � eknjn and e
kn′

in′
= ekni,je

kn′

jn′
(ekni,j)

∗ for all n′ > n.

Thus, this is a partial order on tail-equivalent sequences. Let Eknij be all such pairs

(x, y) ∈ X ×X that depend on i, j and n in the above definition.

Definition 2.5. The topological binary relation of Tϕ relative to Cϕ is

R(Tϕ) =
⋃

{Eknij : ekni,j ∈ Tϕ, n ≥ 1},

equipped with the topology defined by basic clopen sets

{x ∈ X : x(ekni ) = 1}, n ≥ 1, 1 ≤ i ≤ kn.

Lastly, we define the normalizer of Cn in Tkn as

NCn
(Tkn) = {v ∈ Tkn partial isometry : vCnv

∗ ⊂ Cn, v
∗Cnv ⊂ Cn}.

It is not hard to see that any element of NCn
(Tkn) is the multiplication of a diagonal

unitary by a partial permutation matrix, that is, where there is at most one 1 in
each row and column. We say that an embedding ϕ : Tkn → Tkn+1

is a regular
embedding if it takes partial permutation matrices to partial permutation matrices,
which in turn implies that ϕ(NCn

(Tkn)) ⊂ NCn+1
(Tkn+1

). Note that the standard
and nest embeddings are regular embeddings.

In the same way, define the normalizer of Cϕ in Tϕ:

NCϕ
(Tϕ) = {v ∈ Tϕ partial isometry : vCϕv

∗ ⊂ Cϕ, v
∗Cϕv ⊂ Cϕ}.



4 CHRISTOPHER RAMSEY

The following lemma by Power gives a decomposition of any element in the nor-
malizer into a product of a unitary and a partial permuation matrix. Note that
U(Cϕ) denotes the unitary group of Cϕ.

Lemma 2.6 ([15], Lemma 5.5). Let Tϕ have regular embeddings. Then v ∈
NCϕ

(Tϕ) if and only if v = dw where w ∈ NCn
(Tkn), for some n, and d ∈ U(Cϕ),

a diagonal unitary. Moreover, w can be chosen to be a partial permutation matrix
which makes the decomposition unique.

3. Isometric automorphisms

Let Tϕ be a TUHF algebra and Aut(Tϕ) denote the isometric automorphism
group. Such an automorphism will preserve the masa, the partial order on projec-
tions and the normalizer.

Theorem 3.1 ( [15], Theorem 7.5 ). Let Cϕ ⊂ Tϕ ⊂ Aϕ and Cψ ⊂ Tψ ⊂ Aψ be
the algebras defined for two sequences of embeddings ϕ and ψ. Then the following
are equivalent:

(1) There is an isometric isomorphism θ : Tϕ → Tψ with θ(Cϕ) = Cψ.
(2) The topological binary relations R(Tϕ) and R(Tψ) are isomorphic as topo-

logical relations.
(3) There is a ∗-isomorphism θ̃ : Aϕ → Aψ with θ̃(Tϕ) = Tψ and θ̃(Cϕ) = Cψ.

Furthermore, by [6, Corollary IV.5.8] all automorphisms of Aϕ are approximately
inner, i.e. the pointwise limit of inner automorphisms. Hence, by the previous
theorem the automorphisms in Aut(Tϕ) are just restrictions of approximately inner
automorphisms. Consider now, that the only unitaries in Tϕ live in the masa, that
is U(Tϕ) = U(Cϕ). Since we refer to Cϕ as the diagonal of Tϕ this leads us to the
following definition:

Definition 3.2. An approximately inner (or just inner) automorphism of Tϕ is

called a approximately diagonal automorphism. We denote this group by Inn(Tϕ).
More specifically, γ ∈ Inn(Tϕ) if there exists Un ∈ U(Cϕ) such that

lim
n→∞

UnAU
∗
n = γ(A), ∀A ∈ Tϕ.

Now because U(Cϕ) is commutative we immediately get that Inn(Tϕ) is commu-
tative as well.

Define as well the outer automorphism group:

Out(Tϕ) := Aut(Tϕ)/Inn(Tϕ).

Proposition 3.3. Tϕ is always isometrically isomorphic to a triangular UHF al-
gebra with regular embeddings.

Proof. For each n ≥ 1 define a new function ψn : Tkn → Tkn+1
by first defin-

ing ψn(e
kn
i ) = ϕn(e

kn
i ) and then defining ψn(e

kn
i,j) in the best possible way. In

particular, if ekni � eknj then

ψn(e
kn
i ) =

k′/k
∑

m=1

e
kn+1

im
� ψn(e

kn
j ) =

k′/k
∑

m=1

e
kn+1

jm
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with im ≤ im+1, jm ≤ jm+1 and im ≤ jm and so define ψn(e
kn
i,j) =

∑k′/k
m=1 e

kn+1

im,jm
.

Hence, ψn is a regular embedding since it takes the partial permutation matrices
of Tkn to partial permutations in Tkn+1

.
Thus, Cϕ = Cψ with the even stronger condition that R(Tϕ) = R(Tψ) since

this is all determined by the partial order “�” which is unchanged using the ψ
embeddings. Therefore, by Theorem 3.1 Tϕ ≃ Tψ .

Lemma 3.4. Let θ ∈ Aut(Tϕ). Then there exists γ ∈ Inn(Tϕ) such that

γ ◦ θ(∪n≥1Tkn) = ∪n≥1Tkn .

Proof. Assume without loss of generality that Tϕ has regular embeddings, since

Inn(Tϕ) is isomorphism invariant. Let n1 ≥ 1 be big enough such that θ(proj(Tk1 )) ⊂

proj(Tkn1
) and using Lemma 2.6, θ(ek1i,i+1) = diwi ∈ NCϕ

(Tϕ) with di ∈ U(Cϕ) and

wi ∈ NCn1
(Tkn1

), a partial permutation matrix, for 1 ≤ i < k1.

Set u1 = I ∈ Cϕ and u2 ∈ U(Cϕ) such that u2 = w∗
1d

∗
1w1. Now, recursively

define ui ∈ U(Cϕ) by

ui = w∗
i−1d

∗
i−1ui−1wi−1, for 2 < i ≤ k1.

Set U1 =
∑k1

i=1 θ(e
k1
i )ui ∈ U(Cϕ) and notice that

U∗
1 θ(e

k1
i,i+1)U1 = u∗i θ(e

k1
i,i+1)ui+1 = u∗i (diwi)ui+1 = wi ∈ Tkn1

.

Thus, U∗
1 θ(Tk1 )U1 ⊂ Tkn1

.

In the same way there exists n2 ≥ n1 and U2 ∈ U(Cϕ) such that U∗
2 θ(Tkn1

)U2 ⊂
Tkn2

. Since the following are both regular embeddings they must be equal:

U∗
2 θ(ϕkn1

−1 ◦ · · · ◦ ϕ1(Tk1))U2 = ϕkn2
−1 ◦ · · · ◦ ϕkn1

(U∗
1 θ(Tk1)U1).

Repeating this we recursively get nm+1 ≥ nm and Um+1 ∈ U(Cϕ) such that
U∗
m+1θ(Tknm

)Um+1 ⊂ Tkn+1
with Um+1U

∗
m|θ(Tkm ) = I.

Therefore, the sequence Um defines an approximately inner automorphism γ ∈
Inn(Tϕ) and γ ◦ θ(∪n≥1Tkn) = ∪n≥1Tkn . Furthermore, for every n ≥ 1, γ ◦ θ|Tkn

is
a regular embedding into some Tkn′

.

Proposition 3.5. Let θ ∈ Aut(Tϕ) and θ(p) = p, for all p ∈ Proj(Tϕ). Then θ is
an approximately diagonal automorphism.

Proof. Assume that Tϕ has regular embeddings. By the previous Lemma there

exists γ ∈ Inn(Tϕ) such that θ̃ := γ ◦ θ preserves the unclosed union and from the

end of the proof we may assume that θ̃|Tkn
is a regular embedding into Tkn′

.
Hence, for 1 ≤ i < j ≤ kn,

ϕn′−1 ◦ · · · ◦ ϕn(e
kn
i,j ) =

kn′/kn
∑

l=1

e
kn′

il,jl
.

and so
kn′/kn
∑

l=1

eil θ̃(e
kn′

il,jl
)ejl = θ̃(

kn′/kn
∑

l=1

e
kn′

il,jl
) = θ̃(ekni,j) ∈ Tkn′

because θ̃(p) = p for all projections p. However, θ̃|Tkn
is a regular embedding so

there is no other option than to have θ̃(e
kn′

il,jl
) = e

kn′

il,jl
and so θ̃(ekni,j) = ϕn′−1 ◦ · · · ◦

ϕn(e
kn
i,j).



6 CHRISTOPHER RAMSEY

Therefore, θ̃ = id and so θ = γ−1 ∈ Inn(Tϕ).

Theorem 3.6. Aut(Tϕ) ≃ Inn(Tϕ)⋊Out(Tϕ).

Proof. Let Tϕ have regular embeddings. Lemma 3.4 and Proposition 3.5 tell us
that there is a unique representative to each coset of Out(Tϕ), denote the collections
of these as O ⊂ Aut(Tϕ). Thus, if θ ∈ O then it acts as a regular embedding at
each finite level. Composition of regular embeddings gives a regular embedding so
it is immediate that if θ, θ̃ ∈ O then θ ◦ θ̃ ∈ O. Finally, θ−1 must send partial
permutation matrices to partial permutation matrices because θ ∈ O. But then
θ−1|Tkn

must be a regular embedding and so θ−1 ∈ O as well. Therefore, O is a
group and is isomorphic to Out(Tϕ).

Furthermore, for θ ∈ O and γ ∈ Inn(Tϕ) we have that for any p ∈ proj(Tϕ)

θ−1 ◦ γ ◦ θ(p) = θ−1(θ(p)) = p

because approximately diagonal automorphisms preserve projections. By Proposi-
tion 3.5 this implies that θ−1 ◦ γ ◦ θ ∈ Inn(Tϕ), which gives an action of Out(Tϕ)
on Inn(Tϕ). Therefore the result follows.

A set of totally ordered projections e1 � · · · � en ∈ Tn when embedded into Tm
becomes a partition A1∪̇ · · · ∪̇An where |Ai| = |Aj | = m/n and Ai ≤ Ai+1 in the
sense that the jth smallest element of Ai is smaller than the jth smallest element
of Ai+1. We will call A an ordered partition.

Suppose we have two such ordered partitions A = ∪̇Ai and B = ∪̇Bi then we say
A � B if for some 1 ≤ j ≤ m, j′ ∈ Ai if and only if j′ ∈ Bi for all 1 ≤ j′ < j and
j ∈ Ai, j ∈ Bi′ with i < i′. In other words, the element where they differ occurs in
an earlier set. Hence, this is a total order on ordered partitions of the same set.

Lemma 3.7. Let A = ∪̇
n
i=1Ai and B = ∪̇

n
i=1Bi be ordered partitions of {1, · · · ,m}

and suppose that ϕ : Tm → Tm′ is a unital embedding. If A � B then ϕ(A) � ϕ(B).

Proof. Let j ∈ Ai, j ∈ Bi′ , i < i′ be the first element that differs in the two
partitions. Consider the first elementary projection of ϕ(ej) ∈ Tm′ , say ej1 ≤ ϕ(ej)
then j1 ∈ ϕ(Ai) and j1 ∈ ϕ(Bi′). Now let j′ < j1. Then ej′ � ej1 which implies
that ej′ ≤ ϕ(ej′′ ) with j′′ < j but then j′′ ∈ Ai if and only if j′′ ∈ Bi and so
j′ ∈ ϕ(Ai) if and only if j′ ∈ ϕ(Bi). Therefore, ϕ(A) � ϕ(B).

Consider two embeddings ϕ, ψ : Tk → Tk′ . We say that ϕ � ψ if and only if
ϕ({1}∪· · ·∪{k}) � ψ({1}∪· · ·∪{k}). By the previous proposition if ϕ′ : Tk′ → Tk′′
is another embedding then ϕ � ψ implies that ϕ′◦ϕ � ϕ′◦ψ. Note that if ϕ � ψ and
ψ � ϕ then they agree on projections and furthermore, that two such embeddings
are always comparable in this way.

Proposition 3.8. Out(Tϕ) is torsion free.

Proof. Let θ ∈ Aut(Tϕ) such that it preserves the unclosed union and θm = id for
some m ≥ 1. For any choice of n1 ≥ 1 there exist nm+1 ≥ · · · ≥ n2 ≥ n1 such that

θ(Tkni
) ⊂ Tkni+1

, for 1 ≤ i ≤ m.

For ease of notation let ki := kni
, ϕi := ϕni

and θi := θ|Tki
. This gives us the

following identities:

ϕm ◦ · · · ◦ ϕ1 = θm ◦ · · · ◦ θ1 and θi+1 ◦ ϕi = ϕi+1 ◦ θi.

If ϕ1 � θ1 then by the previous lemma
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ϕm ◦ · · · ◦ ϕ1 � ϕm ◦ · · · ◦ ϕ3 ◦ ϕ2 ◦ θ1
= ϕm ◦ · · · ◦ ϕ3 ◦ θ2 ◦ ϕ1

� ϕm ◦ · · · ◦ ϕ3 ◦ θ2 ◦ θ1
= ϕm ◦ · · · ◦ ϕ4 ◦ θ3 ◦ θ2 ◦ ϕ1

� · · ·
� ϕm ◦ · · · ◦ ϕi ◦ θi−1 ◦ · · · ◦ θ1
= ϕm ◦ · · · ◦ ϕi+1 ◦ θi · · · ◦ θ2 ◦ ϕ1

� · · ·
� ϕm ◦ θm−1 ◦ · · · ◦ θ1
= θm ◦ · · · ◦ θ2 ◦ ϕ1

� θm ◦ · · · ◦ θ1
= ϕm ◦ · · · ◦ ϕ1.

Hence, all of the inequalities are equalities which makes the first line give us that
ϕ1 = θ1 on proj(Tk1 ). The same holds true if we assume θ1 � ϕ1 and thus, θ(p) = p
for all projections p ∈ Tϕ and by Proposition 3.5 θ ∈ Inn(Tϕ). Therefore, Out(Tϕ)
is torsion free.

4. The alternating embedding

Definition 4.1. We say that ϕ is an alternating embedding if kn = sntn, n ≥ 1
with sn|sn+1 and tn|tn+1 and

ϕn(A) = Isn+1/sn ⊗A⊗ Itn+1/tn .

This is called alternating because ϕn is a standard embedding of size sn+1/sn
followed by a nest embedding of size tn+1/tn, though the order does not matter as
tensoring is associative. To each such embedding associate a pair of supernatural
numbers (sϕ, tϕ) where sϕ =

∏

n≥1
sn+1

sn
and tϕ =

∏

n≥1
tn+1

tn
, the supernatural

numbers of the standard and nest embeddings treated separately.
For these algebras there is a version of Glimm’s theorem, that an alternating

TUHF is characterized by a pair of supernatural numbers up to finite rearranging:

Proposition 4.2 ([15], Theorem 9.6). Let Tϕ and Tψ have alternating embeddings.
Then Tϕ is isometrically isomorphic to Tψ if and only if there exists r ∈ Q such
that sϕ = r · sψ and tϕ = r−1 · tψ.

Proposition 4.3. Let Tϕ have an alternating embedding. To every prime p that
infinitely divides both sϕ and tϕ there is a non-diagonal automorphism of Tϕ, called
a shift automorphism and denoted θp.

Proof. Without loss of generality, by dropping to a subsequence of the kn, we may
assume that p| sn+1

sn
and p| tn+1

tn
. Define a map θp :

⋃

n≥1 Tkn →
⋃

n≥1 Tkn by

A ∈ Tkn 7→ θp(A) = I psn+1

sn

⊗A⊗ I tn+1

ptn

∈ Tkn+1
.

First off, θp is well-defined:

θp(ϕn(A)) = I psn+2

sn+1

⊗

(

I sn+1

sn

⊗A⊗ I tn+1

tn

)

⊗ I tn+2

ptn+1

= I sn+2

sn+1

⊗

(

I psn+1

sn

⊗A⊗ I tn+1

ptn

)

⊗ I tn+2

tn+1

= ϕn+1(θp(A)).
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Note that θp(e
(kn)
1 ) 6= ϕn(e

(kn)
1 ) and so if this extends to an automorphism it will

not be approximately diagonal. Second, θ−1
p is defined in the most obvious way:

θ−1
p (θp(A)) = I sn+2

psn+1

⊗

(

I psn+1

sn

⊗A⊗ I tn+1

ptn

)

⊗ I ptn+2

tn+1

= I sn+2

sn

⊗A⊗ I tn+2

tn

= ϕn+1(ϕn(A)).

Similarly, θp(θ
−1
p (A)) = ϕn+1(ϕn(A)) as well. Hence, θp is an isometric automor-

phism on the unclosed union and so extends to be an isometric automorphism of
Tϕ.

Let p1, · · · , pm be distinct primes that infinitely divide sϕ and tϕ and δ1, · · · , δm ∈

N. For u =
∏m
i=1 p

δi
i define θu ∈ Aut(Tϕ) to be

θu = θδ1p1 ◦ · · · ◦ θ
δm
pm .

Note that the order of the pi does not matter as all of these automorphisms com-
mute.

We shift focus now back to ordered partitions. Before proving the main theorem
of the section we first need two definitions and two technical lemmas.

Recall that P = ∪̇
n
i=1Pi is an ordered partition if |P1| = · · · = |Pn| = m and

P1 ≤ P2 ≤ · · · ≤ Pn. This ordering can also be given by letting Pi = {p1,i, · · · , pm,i}
with p1,i < p2,i < · · · < pm,i and then Pi ≤ Pj gives pk,i < pk,j for every 1 ≤ k ≤ m.

We will call P = ∪̇
n
i=1Pi an ordered subpartition if |P1| ≥ |P2| ≥ · · · |Pn| and

Pi ≤ Pj for 1 ≤ i < j ≤ n, meaning that pl,i < pl,j for all 1 ≤ l ≤ |Pj |.

Lemma 4.4. Let P = ∪̇
n
i=1Pi = {1, · · · ,m} be an ordered partition. Then for

1 ≤ m′ ≤ m we have that

P ∩ {1, · · · ,m′} = ∪̇
n
i=1(Pi ∩ {1, · · · ,m′})

is an ordered subpartition.

Proof. If Pi ≤ Pj then the kth smallest element of Pi precedes the kth smallest
element of Pj . Hence, if the latter is in {1, · · · ,m′} then the former will be as well,
and so, Pi ∩ {1, · · · ,m′} ≤ Pj ∩ {1, · · · ,m′}.

A subset R is called a run if whenever i < j < k and i, k ∈ R then j ∈ R. If R
and S are runs we say that R < S if r < s for all r ∈ R and s ∈ S.

Lemma 4.5. Let R1 < R2 < · · · < Rn be runs in {1, · · · , r} and S1 < · · · < Sn <
Sn+1 be runs in {1, · · · , s} with |S1| = · · · = |Sn| ≥ 1. If θ is a unital embedding of
Tr into Ts such that θ(R) = S as sets and θ(Ri) ⊃ Si then |R1| ≤ · · · ≤ |Rn|.

Proof. Let Ri = {ri1, · · · , r
i
mi

} for 1 ≤ i ≤ n. Because θ is a unital embedding we
know that it takes the indices

r11 < r12 < · · · < r1m1
< r21 < r22 < · · · < rnmn

to the ordered partition

θ(r11) ≤ θ(r12) ≤ · · · ≤ θ(r1m1
) ≤ θ(r21) ≤ · · · ≤ θ(rnmn

).

In particular, they all have the same size, |θ(rij)| = s/r. By the previous lemma
this order is maintained when considering only the first part of S, leading to the
ordered subpartition

θ(r11) ∩ (S1 ∪ · · · ∪ Sn) ≤ · · · ≤ θ(rnmn
) ∩ (S1 ∪ · · · ∪ Sn).
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Since θ(Ri) ⊃ Si the ordered subpartition becomes

θ(r11) ∩ S1 ≤ · · · ≤ θ(r1n1
) ∩ S1 ≤ θ(r21) ∩ S2 ≤ · · · ≤ θ(rnmn

) ∩ Sn.

This implies that

|θ(r11) ∩ S1| ≥ · · · ≥ |θ(r1n1
) ∩ S1| ≥ |θ(r21) ∩ S2| ≥ · · · ≥ |θ(rnmn

) ∩ Sn|.

However, if i < i′

mi
∑

k=1

|θ(rik) ∩ Si| = |Si| = |Si′ | =

mi′
∑

k=1

|θ(ri
′

k ) ∩ Si′ |

with every summand on the left being greater than every summand on the right,
and so we must have mi ≤ mi′ . In other words,

|R1| ≤ |R2| ≤ · · · ≤ |Rn|.

Theorem 4.6. Let Tϕ have an alternating embedding for kn = sntn and θ ∈
Aut(Tϕ). Then there exists a approximately diagonal automorphism ψ and u, v ∈ N
such that θ = θu ◦ θ−1

v ◦ ψ. Moreover, this factorization is unique if gcd(u, v) = 1.

Proof. Let m ≥ 1 then there exist m′ ≥ n ≥ m such that

θ−1(proj(Tkm)) ⊂ proj(Tkn), and θ(proj(Tkn)) ⊂ proj(Tkm′
).

We will use the language of ordered partitions. In particular, let

P =
˙⋃km

i=1
Pi = ϕm′−1 ◦ · · · ◦ ϕm({1} ∪ · · · ∪ {km}),

that is the image in km′ of the elementary projections in km. Writing these as the
disjoint union of runs we get

Pi =
˙⋃sm′/sm

j=1
Pj,i and P1,1 < P1,2 < · · · < P1,km < P2,1 · · · < Psm′/sm,km

with |Pj,i| = tm′/tm, which is obvious from the alternating embedding. Similarly,
let

Q =
˙⋃km

i=1
Qi = θ−1({1} ∪ · · · ∪ {km}), that is θ−1(ekmi ) =

∑

j∈Qi

eknj .

Also decompose this into runs

Qi =
˙⋃s

j=1
Qj,i and Q1,1 < Q1,2 < · · · < Qs,km

where many of the Qj,i may be empty, but there are never km− 1 empty Qj,i all in
a row because if this was not so then we could represent the partition as a shorter
sequence. Note that Q1,1 and Qs,km are nonempty.

Claim: |Q1,1| = |Q1,2| = · · · = |Q1,km |.

Proof of Claim:
First, we know that

P1,i = Pi ∩ P1,i = θ(θ−1(ekmi )) ∩ P1,i = θ(Qi) ∩ P1,i =

kn/km
⋃

j=1

θ(Qj,i) ∩ P1,i.
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By Lemma 4.4 we get an ordered subpartition by intersecting with P1,1,

(θ(Q1,1) ≤ θ(Q1,2) · · · ≤ θ(Qs,km))
⋂

P1,1

= θ(Q1,1) ∩ P1,1 ≤ ∅ ≤ · · · ≤ ∅ ≤ θ(Q2,1) ∩ P1,1 ≤ ∅ ≤ · · ·

· · · ≤ ∅ ≤ θ(Q3,1) ∩ P1,1 ≤ ∅ ≤ · · · ≤ ∅ ≤ θ(Qs,1) ∩ P1,1 ≤ ∅ ≤ · · · ≤ ∅

which implies that if any θ(Qj,1) ∩ P1,1 is nonempty then all the intermediate
Q1,1 < Qj′,i′ < Qj,1 must be empty to remain an ordered subpartition under the
above restriction, but this contradicts the requirement that there cannot be km− 1
empty Qj′,i′ in a row. Therefore, θ(Q1,1) ∩ P1,1 = P1,1.

Again

(θ(Q1,1) ≤ θ(Q1,2) ≤ · · · ≤ θ(Qs,km))
⋂

(P1,1 ∪ P1,2)

= θ(Q1,1) ∩ P1,1 ≤ θ(Q1,2) ∩ P1,2 ≤ ∅ ≤ · · · ≤ ∅ ≤ θ(Q2,2) ∩ P1,2 ≤ ∅ ≤ · · ·

to get that θ(Q1,2)∩P1,2 = P1,2. Repeat this recursively to get that θ(Q1,i)∩P1,i =
P1,i. Noting that all |P1,i| = |P1,i′ | we have satisfied the hypotheses of Lemma
4.5. Hence, |Q1,1| ≤ · · · ≤ |Q1,km |. The reverse direction is given by the fact
that Q1,1 < · · · < Q1,km is the first part of an ordered partition. Therefore,
|Q1,1| = · · · = |Q1,km | and the claim has been verified.

This tells us that any isometric automorphism of an alternating embedding
TUHF sends the elementary projections from a finite level to a partition with a
specific starting pattern, that is, one iteration of equal runs. We apply this to the
elementary projections of Tkn to get that there exist runs

R1 ≤ R2 ≤ R3 ≤ · · · ≤ Rkn

such that |Ri| = |Rj | = r ≥ 1, ∪Ri = {1, · · · , k}, k ≤ km′ and θ(ekni ) ⊃ Ri.

Let Q′
j,i = ∪l∈Qj,i

Rl giving us runs with |Q′
j,i| = |Qj,i| · r and θ(Qj,i) ⊃ Q′

j,i.
Then the following partitions

P ∩ {1, · · · , k} = θ(θ−1({1, · · · , km})) ∩ {1, · · · , k} = θ(Q) ∩ {1, · · · , k}

must be equal. Which implies that

∪Pj,i ∩ {1, · · · , k} = Q′
1,1 < Q′

1,2 < Q′
1,3 < · · · < Q′

j,i < · · · < Q′
s,km ,

where both are decompositions into runs. Hence, Pj,i = Q′
j,i which implies that

t = |Qj,i| = |Q′
j,i|/r = |Pj,i|/r = tm′

tmr
, they are all the same size. Therefore, for

A ∈ proj(Tkm )
θ−1|Tkm

(A) = Is ⊗A⊗ It.

We have then, that t · s · km = kn. Let s
sn/sm

= u
v where u =

∏l
i=1 p

δi
i and v =

∏k
j=1 q

ǫj
j with p1, · · · , pl, q1, · · · , qk distinct primes and δ1, · · · , δl, ǫ1, · · · , ǫk ∈ N.

Because st = kn
km

= sn
sm

tn
tm

then t
tn/tm

= v
u . This gives us that v| snsm and u| tntm .

Hence, for A ∈ proj(Tkm)

θ−1|Tkm
(A) = Is ⊗A⊗ It = I sn

sm

u
v
⊗A⊗ I tn

tm

v
u
.

= θδ1p1 ◦ · · · ◦ θ
δl
pl
◦ θ−ǫ1q1 ◦ · · · ◦ θ−ǫkqk

(A).

Repeat this argument for any θ−1(proj(Tkm′
)) ⊂ proj(Tkn′

), getting a similar result,

θ−1|Tk
m′

(A) = θ
δ′1
p′
1

◦ · · · ◦ θ
δ′
l′

p′
l′
◦ θ

−ǫ′1
q′
1

◦ · · · ◦ θ
−ǫ′

k′

q′
k′

(A).
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However, these two descriptions must agree on Tkm →֒ Tkm′
and so u = u′, v = v′

and note that v| sn′

sm′

and u| tn′

tm′

. In this way we see that θ−1 = θu ◦ θ−1
v on the

projections of Tϕ and that v∞|sϕ, u∞|tϕ. Finally then, by Proposition 3.5 there
exists a approximately diagonal automorphism ψ such that θ = θ−1

u ◦ θv ◦ ψ which
also gives that u∞|sϕ, v

∞|tϕ. Uniqueness of the factorization when gcd(u, v) = 1 is
obvious since we have seen that shift automorphisms and their inverses commute
with other such automorphisms. Therefore, the result is established.

Corollary 4.7 (cf. [16], Theorem 1). Let Tϕ have an alternating embedding. Then
Out(Tϕ) ≃ Zd where d is the number of common prime factors that infinitely divide
both sϕ and tϕ.

5. Tensoring TUHF algebras

The following section provides a technique to create new automorphism groups
from old. To this end, suppose that Tϕ = ∪∞

n=1Tkn and Tψ = ∪∞
n=1Tjn are TUHF

algebras.
We can create a new TUHF algebra

Tϕ⊗ψ = ∪∞
n=1Tknjn

with unital embeddings ϕn ⊗ ψn : Tknjn → Tkn+1jn+1
defined by tensoring the old

embeddings

ϕn ⊗ ψn(A) = ϕn ⊗ ψn([Ai,i′ ]
kn
i,i′=1) = (ϕn ⊗ Ijn+1

)([ψn(Ai,i′ )]
kn
i,i′=1).

Note that the ψn are ∗-extendable to all of Mjn , meaning that ψn is the restriction
of a unital C∗-embedding from Mjn into Mjn+1

, which is used when i < i′ in the
block matrix. Therefore,

Tϕ⊗ψ = ∪∞
n=1Tknjn ) ∪∞

n=1Tkn ⊗ Tjn = Tϕ ⊗ Tψ .

The new TUHF algebra is thus strictly bigger than the tensor product of the two
previous algebras, but it inherits the automorphic structure of the two. It should
be noted that this tensor operation is not commutative. That is, Tϕ⊗ψ and Tψ⊗ϕ
need not be isomorphic.

This new embedding gives that M(Tϕ⊗ψ) = M(Tϕ) × M(Tψ) with the order
((x1, x2), (y1, y2)) ∈ R(Tϕ⊗ψ) if and only if (x1, y1) ∈ R(Tϕ) and (x2, y2) ∈ R(Tψ)
if x1 = y1.

In the following, G⊕∞ refers to the infinite direct sum of a group G, a subgroup
of the infinite direct product where elements are infinite tuples with all but a finite
number of entries equal to the identity.

Theorem 5.1. Let Tϕ and Tψ be TUHF algebras then

Aut(Tψ)
⊕∞ ⋊Aut(Tϕ) ⊆ Aut(Tϕ⊗ψ).

Proof. Clearly Aut(Tϕ) →֒ Aut(Tϕ⊗ψ) since if θ is an order preserving homeomor-
phism of M(Tϕ) then θ× id is an order preserving homeomorphism of M(Tϕ⊗ψ) =
M(Tϕ)×M(Tψ); and so by Theorem 3.1 we get an induced automorphism on Tϕ⊗ψ.
The same argument works for the embedding Aut(Tψ) →֒ Aut(Tϕ⊗ψ) as well.

Moreover, we see that if X ⊂ M(Tϕ) is a clopen subset and θ is an order
preserving homeomorphism of M(Tψ) then

idX ×θ + idXC × id
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is an also order preserving homeomorphism of M(Tϕ⊗ψ). Since clopen subsets of
M(Tϕ) are in bijective correspondence with the projections of Tϕ then for each
n ≥ 1 we see that

idX1
×θ1 + · · ·+ idXkn

×θkn

is an order preserving homeomorphism where Xj is the clopen subset associated

with e
(kn)
j ∈ Tkn and θj is an order preserving homeomorphism on M(Tψ). Thus,

Aut(Tψ)kn →֒ Aut(Tϕ⊗ψ).
Therefore, we have that lim−→Aut(Tψ)⊕kn ⊂ Aut(Tϕ⊗ψ) where the direct limit has

the following injective homomorphisms: ϕ̃n : Aut(Tψ)⊕kn → Aut(Tψ)⊕kn+1 where

ϕ̃n(γ1, · · · , γkn) = (γi1 , γi2 , · · · , γikn+1
),

with e
(kn+1)
j ≤ ϕn(e

(kn)
ij

), for 1 ≤ j ≤ kn+1. Note that the direct limit lim−→Aut(Tψ)⊕kn

is equal to the infinite direct sum Aut(Tψ)⊕∞.
Finally, we need to describe the action of Aut(Tϕ) on the direct limit. Taking θ

and γ as order preserving homeomorphisms in M(Tψ) and M(Tϕ) respectively, and
X clopen in M(Tϕ) we get that

(γ × id) ◦ (idX ×θ + idXC × id) ◦ (γ−1 × id) = idγ(X)×θ + idγ(X)C × id .

Therefore, Aut(Tψ)⊕∞ ⋊Aut(Tϕ) ⊆ Aut(Tϕ⊗ψ).

Corollary 5.2. Out(Tψ)
⊕∞ ⋊Out(Tϕ) ⊆ Out(Tϕ⊗ψ)

Proof. By Theorem 3.6 the outer automorphisms of both Tϕ and Tψ are well
defined subgroups given by those automorphisms which are regular embeddings
when restricted to a finite level. This property is clearly preserved in the proof of
the last theorem and so the result follows.

This implies that there are non-abelian outer automorphism groups. However,
these groups may not be equal as in the following example:

Example 5.3. Let Tϕ be the standard embedding algebra for 2∞ and Tψ be the
nest embedding algebra for 2∞. Then Tϕ⊗ψ is the alternating algebra for 2∞.
Hence, Out(Tϕ⊗ψ) = Z 6= {0} = Out(Tψ)⊕∞ ⋊Out(Tϕ).

6. Dilation theory

All the definitions in this last section come from the paper of Davidson and
Katsoulis [7]. An operator algebra A is said to be semi-Dirichlet if A∗A ⊂ A+A∗

when A is considered as a subspace of its C∗-envelope. Moreover, a unital operator
algebra A is Dirichlet if A+A∗ is norm dense in its C∗-envelope, C∗

e (A).

Lemma 6.1. Triangular UHF algebras are Dirichlet.

Proof. For a TUHF algebra Tϕ we have the much stronger condition that Aϕ =
Tϕ + T ∗

ϕ . Therefore, because the UHF algebra is simple we immediately get the
desired result.

A unital operator algebra A is said to have the Fuglede property if for every
faithful unital ∗-representation π of C∗

e (A) we have π(A)′ = π(C∗
e (A))′.

Lemma 6.2. Triangular UHF algebras have the Fuglede property.
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Proof. Suppose π is a faithful unital ∗-representation of C∗
e (Tϕ) = ∪knMkn . Then

π(Tkn)
′ = π(Mkn)

′ and so π(Tϕ)′ = π(C∗
e (Tϕ))

′.

An operator algebraA has isometric commutant lifting (ICLT) if whenever there
is a completely contractive representation ρ : A → B(H) commuting with a con-
traction X , there is a coextension σ of ρ and an isometric coextension V of X on
a common Hilbert space K so that σ(A) and V commute.

Proposition 6.3. Triangular UHF algebras have isometric commutant lifting.

Proof. Let ρ be a contractive representation of Tϕ on H commuting with a con-
traction X . Without loss of generality assume that ρ is also unital. Now ρ is
completely contractive when restricted to any Tkn and thus on a dense set of Tϕ.
Hence, ρ is a completely contractive representation. By Arveson’s Extension The-
orem and Stinespring’s Dilation Theorem there is a ∗-homomorphism π and an
isometry V : H → K such that ρ(a) = V ∗π(a)V, ∀a ∈ Tϕ. This argument was given
by Paulsen and Power in [14] but can also be found in [5].

For each n ≥ 1 we know that X commutes with ρ(Tkn) and so by [5, Corollary
20.23] there is an operator Yn on K commuting with π|Mkn

such that ‖Yn‖ = ‖X‖
and

P (H)Y mn π(A)|H = Xmρ(A), ∀m ≥ 0, A ∈ Tkn .

Since all the Yn are bounded by ‖X‖ ≤ 1 there is a subsequence converging in the
weak operator topology to Y ∈ B(K) which clearly commutes with π. Now, dilate
Y to a lower triangular unitary V on K(∞) which commutes with π(∞) because
π commutes with Y ∗ as well. Thus, by restricting to the coextension part of the
dilation we see that we have a coextension of ρ which commutes with an isometric
coextension of X . Therefore, Tϕ has property ICLT.

Let ρ be a representation of a unital operator algebraA. Then a coextension σ of
ρ is called fully extremal if whenever π is a dilation of σ which is also a coextension
of ρ then π is just a direct sum, π = σ ⊕ σ′.

Definition 6.4. A unital operator algebra A has the Ando property if whenever ρ
is a representation of A and X is a contraction commuting with ρ(A), then there
is a fully extremal coextension σ of ρ commuting with an isometric coextension of
X .

Theorem 6.5. Triangular UHF algebras have the Ando property.

Proof. The following commutant lifting properties are all listed in [7] and will not
be defined as they only are used as stepping stones in the proof below.

[7, Corollary 7.4] gives that ICLT implies MCLT and [7, Corollary 5.18] gives
that being Dirichlet and having MCLT implies CLT and CLT∗. Lastly, by [7,
Corollary 9.12] having the Fuglede property, CLT and CLT∗ implies that triangular
UHF algebras have the Ando property.

If A is an operator algebra and θ is an automorphism, the semicrossed product
is the operator algebra

A×θ Z+

that encapsulates the dynamical system (A, θ). This first occurs in the work of
Arveson [1] with a more modern treatment given by [13]. In particular, this is the
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universal operator algebra generated by all covariant representations (ρ, T ) where
ρ is a completely contractive representation of A and a contraction T such that

ρ(a)T = Tρ(θ(a)), ∀a ∈ A.

The following corollary says that the C∗-envelope of a semicrossed product of a
TUHF algebra with an automorphism is in fact a full crossed product algebra.

Corollary 6.6. Let Tϕ be a TUHF algebra and θ ∈ Aut(Tϕ) then

C∗
e (Tϕ ×θ Z+) = C∗

e (Tϕ)×θ Z = Aϕ ×θ Z.

Proof. By [7, Theorem 12.3] if θ is an isometric automorphism of Tϕ then because
TUHF algebras have the Ando property C∗

e (Tϕ ×θ Z+) = C∗
e (Tϕ) ×θ Z. Lastly,

recall that Ce(Tϕ) ≃ Aϕ.

We end with the following example:

Example 6.7. Suppose Tϕ is a TUHF algebra with the 2∞ alternating embedding
and consider the shift automorphism θ2. Now Tϕ is a non-selfadjoint subalgebra
of the CAR algebra, M2∞ =

⊗∞

−∞M2. In this form θ2 extends to the so called

Bernoulli shift on the CAR algebra, taking a tensor in
⊗∞

−∞M2 and shifting it to
the right.

Bratteli, Kishimoto, Rørdam and Størmer show in [3] that

M2∞ ×θ2 Z ≃ lim−→M4n ⊗ C(T),

a limit circle algebra with embeddings being two copies of the twice-around embed-
ding. Moreover, this AT algebra is isomorphic to M2∞ ⊗B where B = lim−→M2n ⊗

C(T) is the Bunce-Deddens algebra [4], thanks to Mikael Rørdam for pointing this
last isomorphism out. Among other things, this implies that the crossed product
is a unital simple C∗-algebra which falls into Elliott’s classification.

Therefore, by the above Corollary:

C∗
e (Tϕ ×θ2 Z+) ≃M2∞ ⊗B.

This leads to the question of whether the semicrossed product is itself isomorphic
to a “nice” subalgebra of M2∞ ⊗ B, for instance a tensor of two non-selfadjoint
operator algebras sitting in the CAR algebra and the Bunce-Deddens algebra.
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