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Goals of the Thesis

Understand the history of the Van der Pol Oscillator and relaxation
oscillations.

Derive the Liénard equation from an RLC series circuit.

Derive the Van der Pol equation from the Lieńard equation.

Analyse the Van der Pol oscillator using both an intuitive approach
and an analytical approach to the first order averaging method.

Discover and apply methods from perturbation theory to the Van der
Pol oscillator.

Note: This presentation will cover the material of the thesis up to the
intuitive approach of understanding Van der Pol oscillator
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Self-Sustaining Oscillating Systems

Systems with time periodicity about an equilibrium point.[2]

Examples include a mass on a spring or an LC circuit.
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LC circuit

Circuit containing an inductor and a capacitor.

Describes a simple harmonic oscillator.
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Relaxation Oscillators

Oscillating systems emerging from nonlinear restoring forces.[1]

Examples include circuits with triodes and RLC series circuits.

Term coined by Van der Pol.[1]
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Balthasar Van der Pol

Dutch electrical engineer, physicist, and mathematician.

Derived the Van der Pol equation while studying triode circuits. [1]
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Van der Pol Equation

ẍ − µ(1− x2)ẋ + x = 0 (1.1)
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RLC Series Circuit

Circuit containing:

a resistor

an inductor

a capacitor

Figure: Example of an RLC series circuit
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RLC Series Circuit

We will supply the RLC circuit
with a voltage of v(t) volts (V).

The resistor has resistance R
ohms (Ω)

The inductor has inductance L
henrys (H)

The capacitor has capacitance C
farads (F)

The intensity over electrical
current I = I (t) is defined as

I =
dQ

dt
. (2.1)

Figure: RLC Series circuit supplied with
v(t) volts and current travelling
clockwise.
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Kirchhoff’s Law

Kirchhoff’s voltage law

The sum of all voltage drops around a closed loop equals to zero.
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Kirchhoff’s Law

Applying Kirchhoff’s voltage law to our circuit, we find

VR + VL + VC = V (t). (2.2)
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Voltage Drops

From physics, we know the following formulas for voltage drops:

The voltage drop on the resistor is:

VR = VR(t) = R · I (Ohm’s law) (2.3)

The voltage drop on the inductor is:

VL = VL(t) = L
dI

dt
(2.4)

The voltage drop on the capacitor is:

VC = VC (t) =
1

C
Q (2.5)
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ODE describing the charge over the capacitor

Combining (2.2 - 2.5), we arrive at

RI + L
dI

dt
+

1

C
Q = v(t). (2.6)

From (2.1) and (2.6) we get

R
dQ

dt
+ L

d(dQdt )

dt
+

1

C
Q = v(t) (2.7)

or equivalently

L
d2Q

dt2
+ R

dQ

dt
+

1

C
Q = v(t). (2.8)

(2.8) is the ODE describing the charge over the capacitor.
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ODE for Intensity of Electrical Current

Next, we find the ODE for the intensity of the electric current. We start
with (2.6) and we take the derivative of both sides of the equation with
respect to time, to get

R
dI

dt
+ L

d2I

dt2
+

1

C

dQ

dt
=

dv(t)

dt
(2.9)

Once more we use (2.1) in the latter equation to obtain:

L
d2I

dt2
+ R

dI

dt
+

1

C
I =

dv(t)

dt
(2.10)

which is the ODE describing the intensity of the electric current in the
circuit.
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Deriving the Lieńard System

We will make the following modifications to the previous RLC circuit:

Replace the resistor with a semiconductor.

Allows for a varying amount of resistance. (Resistance is inversely
proportional to temperature in the semiconductor)

Replace the capacitor with a capacitor with linear time-varying
capacitance.
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Deriving the Lieńard Equation

The change in components will cause a change in the ODE (2.10).
We can find a new equation for the intensity of the electrical current.
We have

I =
dQ

dt
(2.11)

and

Vc =
1

C (t)
Q (2.12)

thus

I =
d(VC · C )

dt
= (VC · C )′ (2.13)
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Deriving the Lieńard Equation

To derive the Lieńard equation, we will apply Kirchhoff’s Law of voltage in
a closed loop to our new circuit

VS + VL + VC = v(t) (2.14)

where
Vs = F (I ) (2.15)

is a nonlinear function of I , which we choose to be differentiable.
Combining (2.4), (2.14) and (2.15), we get

F (I ) + L
dI

dt
+ VC = v(t). (2.16)
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Deriving the Lieńard Equation

Multiplying both sides of the equation by C , in order to group VC and C ,
we get

CF (I ) + CLI ′ + C · VC = Cv(t).

Taking the derivative of both sides with respect to t gives us:

C ′F (I ) + CF ′(I )I ′ + C ′LI ′ + CLI ′′ + (C · VC )′ = (Cv(t))′

Applying (2.13), we get:

C ′F (I ) + CF ′(I )I ′ + C ′LI ′ + CLI ′′ + I = (Cv(t))′

CLI ′′ + (CF ′(I ) + C ′L)I ′ + (C ′F (I ) + I − (Cv(t ′′)) = 0

Putting the latter equation in standard form, we get:

I ′′ +
1

CL
(CF ′(I ) + C ′L)I ′ +

1

CL
(C ′F (I ) + I − (Cv(t))′) = 0 (2.17)

(2.17) known as the Lieńard equation.
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Modifying the Circuit

To derive the Van der Pol equation, we make the following changes to the
previous circuit:

Make the voltage source constant in time

Capacitor of fixed capacitance

Finding the Liénard equation, given these conditions, will lead to the Van
der Pol equation.

Adam Reeves Under Supervision of Dr. Ion Bica (MacEwan University)Van der Pol Oscillator – Analysis of a Non-conservative System May 2020 23 / 56



Modifying the Circuit

To derive the Van der Pol equation, we make the following changes to the
previous circuit:

Make the voltage source constant in time

Capacitor of fixed capacitance

Finding the Liénard equation, given these conditions, will lead to the Van
der Pol equation.

Adam Reeves Under Supervision of Dr. Ion Bica (MacEwan University)Van der Pol Oscillator – Analysis of a Non-conservative System May 2020 23 / 56



Modifying the Circuit

To derive the Van der Pol equation, we make the following changes to the
previous circuit:

Make the voltage source constant in time

Capacitor of fixed capacitance

Finding the Liénard equation, given these conditions, will lead to the Van
der Pol equation.

Adam Reeves Under Supervision of Dr. Ion Bica (MacEwan University)Van der Pol Oscillator – Analysis of a Non-conservative System May 2020 23 / 56



Modifying the Circuit

To derive the Van der Pol equation, we make the following changes to the
previous circuit:

Make the voltage source constant in time

Capacitor of fixed capacitance

Finding the Liénard equation, given these conditions, will lead to the Van
der Pol equation.

Adam Reeves Under Supervision of Dr. Ion Bica (MacEwan University)Van der Pol Oscillator – Analysis of a Non-conservative System May 2020 23 / 56



Setting up the ODE

We again apply Kirchhoff’s voltage law, apply voltage drop equations, and
apply the derivative w.r.t time to get

F ′(I )I ′ + LI ′′ +
1

C
Q ′ = 0 (3.1)

⇓

F ′(I )I ′ + LI ′′ +
1

C
I = 0 (3.2)

Now let us consider

F (I ) =
1

3
I 3 − aI , a > 0 positive constant. (3.3)

Thus, (3.2) becomes:

(I 2 − a)I ′ + LI ′′ +
1

C
I = 0 (3.4)
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Deriving the Van der Pol Equation

We will apply the injective transformation

(I , t)→ (αx , δs) (3.5)

α > 0 and δ > 0 such that LC = δ2 and a = α2

Under this transformation, the equation below

(I 2 − a)I ′ + LI ′′ +
1

C
I = 0 (3.6)

becomes

L(
d2αx

dt2
) + ((αx)2 − α2)

d(αx)

dt
+

1

C
(αx) = 0 (3.7)

⇓
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Deriving the Van der Pol Equation cont.

d2x

ds2
+

Cα2

δ
((x)2 − 1)

dx

ds
+ x = 0 (3.8)

Letting µ = Cα2

δ and dx
ds = ẋ in (3.8) we get

ẍ − µ(1− x2)ẋ + x = 0 (3.9)

which is the Van der Pol equation.
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What is the First Order Averaging Method

Using the average value of a system over a period to deduce
information about the original system

First order refers to the first derivative

Adam Reeves Under Supervision of Dr. Ion Bica (MacEwan University)Van der Pol Oscillator – Analysis of a Non-conservative System May 2020 28 / 56



Introduction to First Order Averaging Method

To begin, we will discuss energy conservation in the simple harmonic
oscillator as a primer:

ẍ + x = 0 (4.1)

x(0) =
x0
2

(4.2)

ẋ(0) =
x0
2

(4.3)

In order to approach the first order averaging method, we will discuss the
energy and average energy of the system.
The total mechanical energy is given by

E = Ek + Ep (4.4)

where Ek = 1
2 ẋ

2 and Ep = 1
2x

2.
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Energy Conservation in the Simple Harmonic Oscillator

Let’s see how the total energy changes in time:

E = Ek + Ep =
1

2
ẋ2 +

1

2
x2 (4.5)

⇓
dE

dt
= ẋ ẍ + xẋ = ẋ(ẍ + x) (4.6)

Since we are working with the simple harmonic oscillator, ẍ + x = 0. Thus,

dE

dt
= 0 (4.7)
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Modifying the Simple Harmonic Oscillator

We introduce a friction coefficient dependent on x to our ODE (4.1):

ẍ − φẋ + x = 0 (4.8)

where φ = µ(1− x2), µ ∈ R, is called the control parameter.
We want to see if the changed system (4.8) is still conservative.
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Checking for Conservation of Energy

We start with
ẍ − φẋ + x = 0 (4.9)

and multiply both sides by ẋ :

ẍ ẋ − φẋ2 + xẋ = 0 (4.10)

ẍ ẋ + xẋ = φẋ2 (4.11)

d(12 ẋ
2 + 1

2x
2)

dt
= φẋ2 (4.12)

where dE
dt =

d( 1
2
ẋ2+ 1

2
x2)

dt . Hence, dE
dt = φẋ2, therefore the energy is no

longer conserved.
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Energy of the Van der Pol Oscillator

Note that the system

ẍ − µ(1− x2)ẋ + x = 0 (4.13)

is the Van der Pol equation derived in the previous section. Thus the rate
of change of the energy of the Van der Pol equation is

dE

dt
= µ(1− x2)ẋ2 (4.14)

We have two distinct cases for energy in (4.14)

Case 1: −1 < x < 1, then dE
dt > 0

Case 2: x < −1 or x > 1, then dE
dt < 0
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Energy of the Van der Pol Oscillator cont.

In case 1, where dE
dt > 0, we can see that the amplitudes of the

displacement are increasing in time.

In case 2, where dE
dt < 0, we can see that the amplitudes of the

displacement are decreasing in time.

As well, intuitively we can note that as x → ±1, there will be a limit
cycle separating the two cases.

We expect that energy gain and loss over the limit cycle will balance

out over one period, thus dE
dt = 0.
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Showing the Average Energy is Zero

To show that the average energy is zero, we start with the Van der Pol
equation:

ẍ − µ(1− x2)ẋ + x = 0

Next, we multiply both sides by ẋ to get:

ẍ ẋ − µ(1− x2)ẋ2 + xẋ = 0

Rearranging, we get:

µ(1− x2)ẋ2 = ẍ ẋ + xẋ
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Adam Reeves Under Supervision of Dr. Ion Bica (MacEwan University)Van der Pol Oscillator – Analysis of a Non-conservative System May 2020 35 / 56



Showing the Average Energy is Zero cont.

Next, to represent averaging over one period (T ), we take the integral
over [t0, t0 + T ]∫ t0+T

t0

µ(1− x2)ẋ2dt =

∫ t0+T

t0

ẍ ẋ + xẋdt∫ t0+T

t0

dE

dt
dt =

∫ t0+T

t0

d(ẋ2 + x2)

dt
dt (4.15)

We can evaluate the right hand side of the equation:∫ t0+T

t0

d(ẋ2 + x2)

dt
dt =

∫ t0+T

t0

d(ẋ2 + x2) = ẋ2 + x2
∣∣∣∣t0+T

t0

(4.16)

Since we are working on the limit cycle,

ẋ2 + x2
∣∣∣∣t0+T

t0

= 0 (4.17)
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Showing the Average Energy is Zero cont.

We arrive at ∫ t0+T

t0

dE

dt
dt = 0

1

T

∫ t0+T

t0

dE

dt
dt = 0

1

T
(E (t0 + T )− E (t0)) = 0 (4.18)

The left hand side of (4.18) is the average value of dE
dt over one period.

Thus,
dE

dt
= 0 (4.19)
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Viewing the Van der Pol Equation as perturbations from
the Simple Harmonic Oscillator

Our next step in intuitively understanding the averaging method is to view
the Van der Pol equation as perturbations from the simple harmonic
oscillator.

For 0 < µ << 1, we can view the Van der Pol oscillator as perturbations
by µ from the simple harmonic oscillator, i.e.

x = xh + µu(t, xh) (4.20)

where u ∈ C 2[t0, t0 + T ]× D, D ⊂ R
We want to see what happens to the average energy under this new view
of x.
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Average Energy of the VDPE as perturbations of the SHO

We start with dE
dt = 0 and sub in x = xh + µu(t, xh)

dE

dt
= 0

1

T

∫ t0+T

t0

dE

dt
dt = 0∫ t0+T

t0

µ(1− x2)ẋ2dt = 0∫ t0+T

t0

µ(1− (xh + µu(t, xh))2)
(d(xh + µu(t, xh)))

dt

2

dt = 0

µ

∫ t0+T

t0

ẋ2(1− x2h )dt − µ2
∫ t0+T

t0

ẋ2[2xhu(t, xh)− µ(u(t, xh))2)·

(1 + 2µu(t, xh) + (µu̇(t, xh))2)]dt = 0
(4.21)
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ẋ2(1− x2h )dt − µ2
∫ t0+T

t0
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Average Energy of the VDPE as perturbations of the SHO
cont.

We get

µ

∫ t0+T

t0

ẋ2(1− x2h )dt + O(µ2) = 0 (4.22)

We will use this equation later on to derive the radius of the limit cycle.
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Van der Pol equation as an Autonomous System

The Van der Pol equation can be written as an autonomous system of
ordinary differential equations as follows:{

ẋ = y

ẏ = −x + µ(1− x2)y
(4.23)

The only equilibrium point of (4.23) is the origin. To show this, let’s solve
the system {

0 = y

0 = −x + µ(1− x2)y .
(4.24)

combining both equations, we get

0 = −x + µ(1− x2)0 (4.25)

0 = −x (4.26)

Thus, (0, 0) is the only equilibrium point.
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Linearizing the Van der Pol Equation

Next, we need to linearize the system about the origin. To do this, we
start by finding the Jacobian matrix.

Let f1(x , y) = y and f2(x , y) = −x + µ(1− x2)y

Thus the Jacobian matrix of our system is

Jf1,f2(x , y) =

[
0 1

−1− 2µxy µ(1− x2)

]
. (4.27)
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Linearizing the Van der Pol Equation cont.

Next, we need to find the eigenvalues of Jf1,f2(0, 0)

Let A = Jf1,f2(0, 0) =

[
0 1
−1 µ

]
Now we find the eigenvalues of A

λI − A =

[
λ −1
1 λ− µ

]
⇓ (4.28)

|λI − A| = λ(λ− µ) + 1

= λ2 − λµ+ 1

Thus, the eigenvalues of A are

λ1,2 =
µ

2
±
√(µ

2

)2
− 1 (4.29)
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Checking Stability of the Origin

We have λ1,2 = µ
2 ±

√(µ
2

)2 − 1
To check the stability of the origin, we have to consider 3 different cases:

Case 1: 0 < µ < 2, then
(µ
2

)2
< 1. This shows that A has imaginary

eigenvalues with positive real parts. The origin will be an unstable
focus.

Case 2: µ = 2, then
(µ
2

)2 − 1 = 0. This shows A has repeated
positive eigenvalues. Thus, in this case the origin is an unstable node.

Case 3: µ > 2, then
(µ
2

)2
> 1, therefore the eigenvalues of A are real.

To check stability, We need to check the signs of both eigenvalues.

Thus, we have to check if µ
2 >

√
(µ2 )2 − 1

µ

2
>

√
(
µ

2
)2 − 1⇔

(
µ

2

)2

>

(
µ

2

)2

− 1⇔ 0 > −1 (4.30)

Thus, both eigenvalues are positive, and the origin is an unstable
node.
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Checking Stability of the Origin cont.

In each of the three cases, the origin is unstable. We can conclude that
when µ > 0 , we have an unstable equilibrium point at the origin.
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Finding the Radius of the Limit Cycle

In the limit cycle we view the oscillatory process as energy conservative,
therefore we can claim the following:

x2h + ẋ2h = Eb (4.31)

For simplicity we can rewrite (4.31) as

x2h + ẋ2h = φ20, where φ0 =
√

Eb 6= 0 (4.32)

Returning to the equation µ
∫ t0+T
t0

(1− x2)ẋh
2dt + O(µ2) = 0, and noting

that 0 < µ << 1, so O(µ2) can be approximated to zero, we get∫ t0+T

t0

(1− x2h )ẋ2hdt = 0 (4.33)
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Finding the Radius of the Limit Cycle cont.

We want to find the radius of the circular orbit, φ0, such that the integral∫ t0+T
t0

(1− x2h )ẋ2hdt is zero, independently of the period T = 2π of the
limit cycle.

Since we are working with the equation x2h + ẋ2h = φ20, we can parameterize
this orbit as follows: {

xh = φ0 cos(θ)

ẋh = φ0 sin(θ)
(4.34)
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Finding the Radius of the Limit Cycle cont.

Using the parameterization, we can find dθ
dt

xh = φ0 cos(θ)

ẋh = −φ0 sin(θ)
dθ

dt
and

ẋh = φ0 sin(θ)

Therefore, we get
dθ

dt
= −1. (4.35)

and
θ(t) = −t + c , c ∈ R (4.36)
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Finding the Radius of the Limit Cycle cont.

We have enough information to solve the integral to find the radius.∫ t0+T

t0

(1− x2h )ẋ2hdt =

∫ t0+T

t0

(1− φ20 cos2(θ))φ20 sin2(θ)dt

= φ20

∫ t=t0+T

t=t0

(sin2(θ)− φ20 sin2(θ) cos2(θ))
dt

dθ
dθ

= φ20

(
4− φ20

8

)
T (4.37)

In order for (4.37) to equal zero, we need φ0 = 2. Hence, for 0 < µ << 1,
the limit cycle is a circle of radius 2.
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Plots of Van der Pol equation I

Figure: Energy dissipation for the Van der Pol oscillator with µ = 0.01 and initial
conditions x(0) = 3.5 and ẋ(0) = 1.5.
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Plots of Van der Pol equation II

Figure: Phase portrait for energy dissipation for the Van der Pol oscillator with
µ = 0.01 and initial conditions x(0) = 3.5 and ẋ(0) = 1.5.
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Plots of Van der Pol equation III

Figure: Energy generation for the Van der Pol oscillator with µ = 0.01 and initial
conditions x(0) = 0.5 and ẋ(0) = 0.5.
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Plots of Van der Pol equation IV

Figure: Phase portrait for energy generation for the Van der Pol oscillator with
µ = 0.01 and initial conditions x(0) = 0.5 and ẋ(0) = 0.
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Conclusion

Solved a classical dynamical systems/ODEs problem using an original
approach

Gained an appreciation for perturbation theory, which allowed us to
continue onto the analytical approach.
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Thanks!

Thank you for your time!
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