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Chapter 1

Introduction

Aperiodic order is the mathematical study of non-periodically ordered struc-
tures. It is a combination of several, seemingly disparate, areas of mathematics;
primarily consisting of algebra, analysis, geometry, and number theory. This
field was born out of the 1980’s discovery of physical quasicrystals by Daniel
Schectman [31], for which he was later awarded the 2011 Nobel Prize in Chem-
istry. The most fundamental model of aperiodic structures with high coherence
are model sets [23], which are a natural object arising from so-called cut-and-
project schemes (CPS).

We are interested in a special subclass of model sets known as fully Euclidean
model sets. A fully Euclidean model set Λ Ď Rd is obtained by starting with a
lattice L in some higher dimensional space Rd`m, which sits at an irrational an-
gle with respect to Rd, cutting a sufficiently nice strip within a bounded distance
of Rd, and projecting the lattice points inside this strip onto Rd; see Definition
3.1.1 below for a formal definition. As these model sets form the basis of our
project, a brief review of their history is warranted.

Model sets were initially introduced by Meyer [24] and independently re-
discovered by de Brujin [6] when studying the Penrose tilings, by Kramer [13],
Kramer–Neri [14], by Kalugin, Kitaev and Levitov [12], and by Duneau–Katz
[8]. Their use in aperiodic order was popularised by both Moody [23, 24] and La-
garias [15]. For a general review on the subject we refer the reader to [3, 23, 24].

Studies regarding the behaviour of model sets were initially restricted to
the fully Euclidean case; the setting where everything lives in some real space.
Today the theory has advanced to the more abstract case of locally compact
Abelian groups, see [2, 5, 26, 27, 35, 36] for some examples. It is for simplicity
that we restrict ourselves to the fully Euclidean case.

The diffraction formula for fully Euclidean model sets was first proven for
some particular cases by Hof [9, 10] and later proven in full generality by
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Schlotman [30]. Alternative proofs via almost periodicity were also provided
by [4, 22, 32] and more recently in [17, 18]. Moreover, a proof via the Poisson
summation formula (PSF) was given in [15], generalising the earlier results in
this direction [9, 10, 19, 20].

The goal of this project is to provide an elementary proof, using only tem-
pered distributions and the PSF for lattices in Euclidean space, that fully Eu-
clidean regular model sets produce a pure-point diffraction measure. Our ap-
proach is based off of the work of [26]. This result is well known in greater
generality and more elegant proofs exist, see [4, 9, 17, 26].

The project is structured as follows. We first provide a simple overview of
basic properties of functions and distributions, define pure point tempered mea-
sures, and prove the classic PSF for lattices (Theorem 2.3.10). In Chapter 3 we
introduce cut-and-project schemes and extend the PSF for both fully Euclidean
CPS and PKpRdq, the class of compactly supported continuous functions with
a positive Fourier transform (Theorem 3.3.2). We also prove the density for-
mula for regular model sets (Theorem 3.4.7) and use it to show the existence
of the autocorrelation measure for fully Euclidean model sets and derive its for-
mula (Theorem 3.5.4). Combining the results of this chapter, we prove that the
diffraction measure of a regular model set exists and is a positive pure point
tempered measure and we derive the formula for the intensity of each Bragg
peak (Theorem 3.6.4). We conclude by providing in Chapter 4 a simple worked
example of the diffraction measure for the well-known silver mean substitution.
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Chapter 2

Functions and Distributions

2.1 Functions

In this chapter we review basic definitions and properties of functions on Rd.
We will denote the standard Euclidean vector norm by } ¨ }. For a bounded
function f : Rd Ñ C we denote by } ¨ }8 the sup-norm. We say a function
f has compact support in Rd if there exists some R ą 0 such that fpxq “ 0
whenever }x} ě R. Let CupRdq, CcpRdq, C8, and C8c pRdq respectively denote
the space of uniformly continuous and bounded functions, continuous functions
with compact support, infinitely differentiable functions, and those functions
which are compactly supported and infinitely differentiable.

As is standard, we define L1pRdq to be the set of complex valued Lebesgue
integrable functions, that is |fpxq| is integrable and

ż

Rd

|fpxq|dx ă 8 .

We also take the norm on L1pRdq to be

}f}1 “

ż

Rd

|fpxq|dx .

In this project, we will primarily be interested in those functions contained in
L1pRdq XCupRdq. As usual, for f P L1pRdq, we define its Fourier transform by

pfpyq :“

ż

Rd

e´2πix¨yfpxqdx

and its inverse Fourier transform by

qfpyq :“

ż

Rd

e2πix¨yfpxqdx .
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For a function f : Rd Ñ C we define f̃ : Rd Ñ C by f̃pxq :“ fp´xq.
Throughout we will also use the following notations.

Ttfpxq “ fpx´ tq fαpxq “ fpaxq }f}2 “

ˆ
ż

Rd

|fpxq|
2

dx

˙
1
2

The convolution of two functions f ˚ g is defined as

pf ˚ gqpxq “

ż

Rd

fpx´ tqgptqdt

if the integral makes sense for all x. Note that the convolution exists whenever
f P L1pRdq and g P CupRdq or f P CupRdq and g P L1pRdq. In particular, it
exists whenever one function is in CcpRdq and the other in CupRdq.

Next, for f : Rd Ñ C and g : Rm Ñ C we define the tensor product
f b g : Rd`m Ñ C as

pf b gqpx, yq “ fpxqgpyq .

We now provide an example of class of functions which will be used repeat-
edly.

Example 2.1.1. [7, Example 1.4] There exists some non-trivial f P C8c pRdq
such that fpxq ě 0 and supppfq Ď B1p0q.

Proof. Define f : Rd Ñ C and g : RÑ C by

fpxq :“

#

e
´1

1´}x}2 1 ą }x}

0 1 ď }x}

and

gpxq :“

#

e
´1
x x ą 0

0 x ď 0 .

Then g P C8pRq and fpxq “ gp1´}x}2q “ gp1´x2
1´¨ ¨ ¨´x

2
dq is the composition

of g with a polynomial, thus f P C8c pRdq.

This example motivates us to introduce the following definition.

Definition 2.1.2. A function fn P C
8
c pRdq is called an approximate identity if

it satisfies the following.

(a) supppfnq Ă B 1
n
p0q .

(b) fnpxq ě 0 for all n, x .

(c)
ş

Rd fnptqdt “ 1 for all n.
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Note that if f is the function from Example 2.1.1, taking Cn :“
ş

Rd fpnxqdx
gives

fnpxq :“
1

Cn
fpnxq

is an approximate identity.

Lemma 2.1.3. For f P CupRdq and fn an approximate identity, we have

lim
n
}f ˚ fn ´ f}8 “ 0 .

Proof. Let ε ą 0. By uniform continuity there exists N such that, whenever
x´ y P B 1

N
p0q, we have |fpxq ´ fpyq| ă ε. It follows, that for all n ě N and all

x P Rd we have,

|f ˚ fnpxq ´ fpxq| “

ˇ

ˇ

ˇ

ˇ

ż

Rd

fpx´ tqfnptqdt´ fpxq

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ż

Rd

fpx´ tqfnptq ´ fnptqfpxqdt

ˇ

ˇ

ˇ

ˇ

ď

ż

Rd

|fpx´ tq ´ fpxq|fnptqdt

“

ż

B 1
N
p0q

|fpx´ tq ´ fpxq|fnptqdt ă ε .

Taking the supremum over all x P Rd we get, for all n ě N

}f ˚ fn ´ f}8 ď ε ,

which proves the claim.

2.2 Distributions

In this section we briefly review the notions of distributions, tempered distri-
butions, and their associated Fourier transforms. For a general review of these
concepts, we refer the reader to [7]. Note that the author in [7] uses a different
convention for the Fourier transform, however the theory is unchanged up to a
constant multiple.

Definition 2.2.1. A distribution on Rd is a complex-valued linear functional
µ on C8c pRdq, such that for every r´A,Asd P Rd, there exists constants C and
k such that

|µpφq| ď C
ÿ

|α|ďk

}Dαφ}8,

for all φ P C8c pRdq with support in r´A,Asd. If the same smallest k can be used
for all r´A,Asd, we say µ has order k. In the case of a distribution of order 0,
we refer to it as a measure.
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We will denote the set of distributions on Rd by DpRdq. Next we recall the
space of smooth functions with rapidly decaying derivatives.

Definition 2.2.2. The Schwartz class of functions on Rd, denoted SpRdq, is
the set of infinitely differentiable functions that are rapidly decreasing. That is,
for all k, α,

sup
xPRd

p1` |x|2qk|Dαφpxq| ă 8 .

Moreover, we say fn Ñ 0 P SpRdq if, for all k and α

sup
xPRd

p1` |x|2qk|Dαfnpxq| Ñ 0 .

Note that C8c pRdq Ă SpRdq. Moreover, if f P SpRdq and g P SpRmq then
f b g P SpRd`mq. We also have the following properties for Schwartz functions,
whose proofs are standard and are thus omitted.

Proposition 2.2.3. For f, g P SpRdq we have the following.

(a)

xαf
Ź

“

ˆ

i

2π

˙α

Dα
pf .

(b)

pDαpfqq
Ź

pyq “ p2πiyqα pfpyq .

(c)
yTtfpyq “ e´2πit¨y

pfpyq .

(d)

e2πix¨tf
Ź

pyq “ Tt pfpyq “ pfpt´ yq .

(e) If a ‰ 0 then

pfapyq “
1

|a|d
pf
´y

a

¯

.

(f)
pf̄pyq “ pfp´yq .

(g)
ż

Rd

fpyqpgpyqdy “

ż

Rd

pfpyqgpyqdy .

(h)
zf ˚ g “ pfpg .

(i)
pf P SpRdq .
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(j)

} pf}8 ď }f}1 .

(k)
zf b g “ pf b pg .

Next we review Plancherel’s theorem, a fundamental result which says that
the Fourier transform is an isometry on pSpRdq, } ¨ }2q.

Theorem 2.2.4 (Plancherel). For f, g P SpRdq we have
ż

Rd

fptqgptqdt “

ż

Rd

pfptqpgptqdt .

In particular,
}f}2 “ } pf}2 .

Proof. Let h :“ qḡ “ pg. Then, by Proposition 2.2.3 we have
ż

Rd

fptqphptqdt “

ż

Rd

pfptqhptqdt .

Thus
ż

Rd

fptqgptqdt “

ż

Rd

pfptqpgptqdt .

The final claim is achieved by setting gptq :“ fptq.

We are now able to introduce a class of functions acting on SpRdq .

Definition 2.2.5. A tempered distribution is a linear functional µ on SpRdq
such that µpfnq Ñ 0 whenever fn Ñ 0. We denote the space of tempered
distributions by S 1pRdq.

Next, we show that each function h P CupRdq defines a tempered distribution
θh. Note that while it is common to also denote this tempered distribution by
h, to avoid confusion we will use θh to denote the corresponding distribution.

Lemma 2.2.6. Let h be continuous and bounded. For each f P SpRdq define

θhpfq :“

ż

Rd

hptqfptqdt .

Then θh is a tempered distribution.

Proof. Clearly θh is linear and well defined, so we show continuity. As h is
bounded we have |hpxq| ď C for some C ą 0. Thus, whenever fn Ñ 0 P SpRdq,
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ż

Rd

hpxqfnpxqdx

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

8

ď C

ˆ
ż

Rd

1

x2
1 ` 1

. . .
1

x2
d ` 1

dx

˙

}px2
1 ` 1q . . . px2

d ` 1qfn}8

ď CC1}px
2
1 ` 1q . . . px2

d ` 1qfn}8 Ñ 0 .

Where C1 :“
ş

Rd
1

x2
1`1

. . . 1
x2
d`1

dx ă 8 is a constant independent of n.
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The tempered distribution θh defined above is known as the regular dis-
tribution associated to h. Note that, in measure theory, this is known as the
absolutely continuous measure with density function h; however this is beyond
our interest for this project.

For approximate identities we have the following convergence.

Lemma 2.2.7. Let h : Rd Ñ C be continuous and bounded. Then, for fn an
approximate identity,

θhpfnq Ñ hp0q .

Proof. Let ε ą 0. By continuity of h, there exists N such that whenever }t} ď 1
N

we have |hptq ´ hp0q| ă ε. It follows, for n ě N

|θhpfnqptq ´ hp0q| “

ˇ

ˇ

ˇ

ˇ

ż

Rd

fnptqhptqdt´

ż

Rd

fnptqhp0qdt

ˇ

ˇ

ˇ

ˇ

ď

ż

B 1
n
p0q

fnptq |hptq ´ hp0q|dt ă ε .

We immediately get the following equivalence of tempered distributions.

Corollary 2.2.8. For g, h : Rd Ñ C, both continuous and bounded, we have
θg “ θh ðñ g “ h .

2.3 Pure Point Tempered Measures

The goal of this section is to prove a few basic results on the behaviour of pure
point tempered measures, such as the Poisson summation formula, which will
be used later.

Definition 2.3.1. By a pure point tempered measure we understand a sum of
the form

µ “
ÿ

xPΛ

cpxqδx

where Λ Ď Rd and c : Λ Ñ Czt0u with the property that, for all f P SpRdq, the
sum

ÿ

xPΛ

|cpxqfpxq| ă 8

and µpfq “
ř

xPΛ cpxqfpxq is a tempered measure. If cpxq ě 0 for all x P Λ then
we say µ is positive.

The set Λ is often called the the measurable support of µ. We start by
proving the following results, which show that any pure point tempered measure
is a so-called Radon measure. See [28] for definitions and properties.
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Lemma 2.3.2. If µ “
ř

xPΛ cpxqδx is a pure point tempered measure then, for
all n P N,

ÿ

xPΛXBnp0q

|cpxq| ă 8 .

Proof. Pick arbitrary non-zero n P N and f P C8c pRdq such that f ě 1Bnp0q. It
follows

ÿ

xPΛXBnp0q

|cpxq| ď
ÿ

xPΛXBnp0q

|cpxqfpxq| ď
ÿ

xPΛ

|cpxqfpxq| ă 8 .

An interesting consequence of this result is that the support of any pure
point tempered measure is at most countable.

Lemma 2.3.3. If µ “
ř

xPΛ cpaqδa is a pure point measure then Λ is at most
countable.

Proof. Define Λn,m :“ tx P ΛXBnp0q : |cpxq| ą 1{mu, which is finite by Lemma
2.3.2. Then

Λ “
ď

ně1

ď

mě1

Λn,m

is also countable.

Next we provide sufficient conditions on the coefficients cpxq for µ “
ř

xPΛ cpxqδx
to be a pure point tempered measure.

Lemma 2.3.4. If there exists some k ě 0 such that

ÿ

xPΛ

|cpxq|

1` }x}k
ă 8

then µ “
ř

xPΛ cpxqδx is a pure point tempered measure.

Proof. Let C “
ř

xPΛ
|cpxq|

1`}x}k
. It follows

ÿ

xPΛ

|cpxqfpxq| ď
ÿ

xPΛ

|cpxq|

1` }x}k
}1` }x}kf}8 “ C }1` }x}kf}8 ă 8 .

Moreover, when fn Ñ 0, we have |µpfnq| Ñ 0.

Note that by [11], the above is actually both a necessary and sufficient con-
dition. As the proof is technical and we do not use the full equivalence, we skip
it.

Now, as we are working with pure point measures, there is a natural exten-
sion to considering the measure of a set. For a given bounded set B and pure
point measure µ “

ř

xPΛ cpxqδx, define

µpBq “
ÿ

xPBXΛ

cpxq.
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Picking 1Λ ď f P C8c pRdq, necessary as 1Λ R CcpRdq, gives

|µpBq| ď |µpfq| ă 8,

and is indeed well defined. Note that this implies for a singleton set txu

µptxuq “

#

cpxq x P Λ

0 x R Λ .

The above definition turns out to be not very useful for computations. We will
use instead the following equivalent characterisation.

Lemma 2.3.5. Let µ be a pure point tempered measure. Let a P Rd be arbitrary,
and take fn P CcpRdq such that 0 ď fn ď 1, with supppfnq Ď B 1

n
p0q and

fnpaq “ 1. Then
lim
n
µpfnq “ µptauq .

Proof. Let ε ą 0. We first deal with the case of a P Λ. Let µ “
ř

xPΛ cpxqδx.
By Lemma 2.3.3, we have that Λ is countable. Let x1 “ a, x2, x3, . . . be an
enumeration of Λ X B1paq. Note that B1paq Ď Bnp0q for some n. By Lemma
2.3.2,

ÿ

xPΛXB1paq

|cpxq| ă 8

or equivalently
ř

n |cpxnq| ă 8. Thus, there exists some N such that, for all
n ą N ,

ÿ

nąN

|cpxnq| ă ε .

Take M ą 0 such that

1

M
ă mintdpxi, aq : 2 ď i ď Nu .

It follows, for n ąM , fnpx2q “ ¨ ¨ ¨ “ fnpxN q “ 0 and

|µpfnq ´ cpaq| “

ˇ

ˇ

ˇ

ˇ

ˇ

˜

ÿ

xPΛ

cpxqfnpxq

¸

´ cpaq

ˇ

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

¨

˝

ÿ

xPΛXB1paq

cpxqfnpxq

˛

‚´ cpaq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ˇ

˜

ÿ

m

cpxmqfnpxmq

¸

´ cpaq

ˇ

ˇ

ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ

ˇ

ˇ

˜

N
ÿ

m“1

cpxmqfnpxmq

¸

´ cpaq

ˇ

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

ˇ

˜

ÿ

mąN

cpxmqfnpxmq

¸
ˇ

ˇ

ˇ

ˇ

ˇ

“|cpaq ´ cpaq| `

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

mąN

cpxmqfnpxmq

ˇ

ˇ

ˇ

ˇ

ˇ

ď
ÿ

mąN

|cpxmq| ă ε .
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Now if µptauq “ 0, define v :“ µ` δa. Then and vpfnq Ñ vptauq “ 1 by the
above. It follows

µpfnq “ vpfnq ´ δapfnq Ñ 0 “ µptauq

which proves the claim.

Let us next recall a special class of point sets defining tempered distributions.

Definition 2.3.6. A point set L Ď Rd is called a lattice in Rd if there exists an
R-basis tv1, . . . , vdu such that

L “ Zv1 ‘ ¨ ¨ ¨ ‘ Zvd .

Given a lattice L P Rd, we also define its dual L˝, given by

L˝ :“ ty P Rd|x ¨ y P Z for all x P Lu,

where ¨ denotes the standard scalar product. However, we can give a simpler
description of the dual lattice.

Lemma 2.3.7. Let L Ă Rd be a lattice with basis tv1, . . . , vdu and let A be
the matrix whose columns are precisely v1, . . . , vd. Denote the rows of A´1 by
w1, . . . , wd. Then with L˝ the dual lattice defined above,

L˝ “ Zw1 ‘ ¨ ¨ ¨ ‘ Zwd .

Proof. Note that, as w1, . . . , wd are the rows of an invertible matrix, they are
an R-basis for Rd. Now, for arbitrary w P L˝, as w ¨ vj P Z, we have

w ¨ vj “
d
ÿ

1

ciwi ¨ vj “ cj P Z

thus w P Zw1 ‘ ¨ ¨ ¨ ‘ Zwd. Conversely, for w “
řd

1 ciwi P Zw1 ‘ ¨ ¨ ¨ ‘ Zwd and

arbitrary v “
řd

1 bivi P L we have

w ¨ v “
d
ÿ

1

ciwi ¨
d
ÿ

1

bivi “
d
ÿ

i

cibi P Z

thus w P L˝, which proves the statement.

Proposition 2.3.8. Let L Ă Rd be a lattice. Then δLpfq “
ř

xPL δxpfq is a
pure point tempered measure.

Proof. We first prove the claim for L “ Zd, from which the general claim will
follow. As δZd “

ř

xPZd δx we have

ÿ

xPZd

1

1` }x}2d
ă 8 ,
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thus δZd is indeed a pure point tempered measure. Let L “ Zv1‘¨ ¨ ¨‘Zvd and
let A be the matrix consisting of the lattice basis vectors. Now for all f P SpRdq
we have

ÿ

xPL
|fpxq| “

ÿ

yPZd

|fpAyq| ă 8

as f ˝ A P SpRdq. Moreover, as f Ñ f ˝ A is continuous with respect to the
topology of SpRdq we have,

δLpfq “ δZdpf ˝Aq

is a tempered distribution.

Now we briefly recall an important theorem whose proof is standard, we
follow that of [2, Section 9.2.1].

Theorem 2.3.9 (Poisson Summation Formula). For all f P SpRdq we have,

ÿ

mPZd

fpmq “
ÿ

kPZd

pfpkq .

Proof. Consider F pxq “
ř

nPZd fpx`nq. Then the sum is uniformly convergent
by Proposition 2.3.8 and F is a Zd-periodic function, so we may write its Fourier
coefficients

ck “

ż 1

0

F pxqe´2πikxdx “

ż 1

0

ÿ

nPZd

fpx` nqe´2πikxdx

“
ÿ

nPZd

ż 1

0

fpx` nqe´2πikxdx “
ÿ

nPZd

ż n`1

n

fpxqe´2πikxdx

“

ż

Rd

fpxqe´2πikxdx “ pfpkq .

By definition of Fourier series, F pxq “
ř

kPZd cke
´2πikx, and picking x “ 0 gives

ÿ

nPZd

fpnq “
ÿ

kPZd

pfpkq .

We conclude the section by extending the PSF to arbitrary lattices in Rd.

Theorem 2.3.10 (PSF for lattices). Let L Ă Rd be a lattice and f P SpRdq.
Then, with detpLq :“ detpAq where A consists of the lattice basis vectors,

ÿ

xPL
fpxq “

1

|detpLq|
ÿ

yPL˝

pfpxq .

12



Proof. By Theorem 2.3.9,

ÿ

xPL
fpxq “

ÿ

lPZ
pf ˝Aqplq “

ÿ

lPZ

{pf ˝Aqplq “ |detpLq|´1
ÿ

lPZ

pfppA´1qT qplq

“ |detpLq|´1
ÿ

yPL˝

pfpyq .

Note that a more general result, for a closed topological subgroup of an
arbitrary locally compact Abelian group, is well known; see [1, Prop 6.2]. Our
result is simply a particular instance by taking the closed subgroup to be a
lattice in Rd.
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Chapter 3

Model Sets

3.1 Cut-and-Project Schemes

First we review some basic definitions and preliminary lemmas, following the
notations used in the monograph [2]. We also recommend [21, 23, 24] for further
reading.

Definition 3.1.1. Let Λ Ď Rd. We say Λ is

• relatively dense if there exists some R ą 0 such that for all x P Rd, the
intersection ΛXBRpxq is nonempty.

• uniformly discrete if there exists some r ą 0 such that for all x P Rd, the
intersection ΛXBrpxq contains at most a single point.

• Delone if it is both relatively dense and uniformly discrete.

Now we review the notion of cut-and-project schemes and model sets.

Definition 3.1.2. By a fully Euclidean cut-and-project scheme (CPS), we un-
derstand a triple pRd,Rm,Lq with lattice L Ă Rd ˆ Rm with the following
properties:

• The restriction π1|L of the first canonical projection π1 onto Rd is injective.

• The image of L under the second canonical projection π2 onto Rm is dense.

Note that this definition can be generalised beyond Euclidean space to locally
compact Abelian groups, see [2, 23] for a thorough treatment of the topic. For a
given CPS, we define L :“ π1pLq. As the canonical projection π1 is a bijection
between L and L, we can define the ‹-mapping as ‹ : LÑ Rm by

‹ “ π2 ˝ pπ1|Lq
´1 .

Note that for any x P L, x‹ is the unique y P Rd such that px, yq P L. We
summarize a CPS in the following diagram.

14



Rd Rd ˆ Rm Rm

π1pLq L Rm

L L‹

π1 π2

1´1

dense

‹

Ą Ą “

“ Ą
Equipped with the dual lattice L˝ we have that pRd,Rm,L˝q is also a CPS,

referred to as the dual cut-and-project scheme [29, 34]. With the ‹-mapping we
can now construct the following set.

Definition 3.1.3. Given a CPS pRd,Rm,Lq and some bounded set W Ă Rm
with non-empty interior, denote by NpW q its pre-image under the ‹-mapping

NpW q :“ tx P L : x‹ PW u .

Then NpW q is referred to as a model set with window of W . Moreover, W is
called a regular window if, for all ε ą 0, there exists non-negative f, g P C8c pRdq
such that

f ď 1W ď g and

ż

Rd

gpxq ´ fpxqdx ă ε .

In this case, NpW q is then called a regular model set.

Note that by regularity of Lebesgue measure and Urysohn’s lemma, this is
equivalent to the boundary of W having Haar measure zero, i.e λpBpW qq “ 0.

Next we show that the translate of a regular window and the intersection of
two regular windows is regular.

Lemma 3.1.4. If W,W 1 are regular then, for all t P Rd,

(a) t`W is regular.

(b) W XW 1 is regular.

Proof. The first statement is trivial as the integral is invariant under translation.
Let ε ą 0 be given. As W,W 1 are regular, there exists f, g, f1, g1 P C

8
c pRdq

such that f ď 1W ď g and f1 ď 1W 1 ď g1. In particular, we may take

ż

Rd

gpxq ´ fpxqdx ă
ε

2p}f1}8 ` 1q

and
ż

Rd

g1pxq ´ f1pxqdx ă
ε

2p}g}8 ` 1q
.

15



Then clearly ff1 ď 1WXW 1 ď gg1 and
ż

Rd

gpxqg1pxq ´ fpxqf1pxqdx

“

ż

Rd

gpxqg1pxq ´ gpxqf1pxq ` gpxqf1pxq ´ fpxqf1pxqdx

ď }g}8

ż

Rd

g1pxq ´ f1pxqdx` }f1}8

ż

Rd

gpxq ´ fpxqdx

ă }g}8
ε

2p}g}8 ` 1q
` }f1}8

ε

2p}f1}8 ` 1q
ă ε.

Which proves the statement.

The following result, which is needed to prove the regularity of a bounded
interval, is standard; we omit the proof.

Lemma 3.1.5. [7] If c ă a ă b ă d P R, there exists f P C8c pRq such that

1ra,bs ď f ď 1rc,ds.

Note that in Euclidean space, any bounded interval is indeed regular.

Lemma 3.1.6. If I Ă R is a bounded interval, then I is regular.

Proof. As I is bounded, there exists a ă b such that

pa, bq ď I ď ra, bs .

Thus for arbitrarily fixed n, there exists f, g P C8c pRq such that

1pa` 1
n ,b´

1
n q
ď f ď 1pa,bq ď 1I ď 1ra,bs ď g ď 1ra´ 1

n ,b`
1
n s
.

It follows, for sufficiently large n,
ż

Rd

gpxq ´ fpxqdx ď

ż

Rd

1ra´ 1
n ,b`

1
n s
pxq ´ 1pa` 1

n ,b´
1
n q
pxqdx ď

4

n
ă ε .

We will now outline the silver mean model set as a motivating example; it
will be revisited in Chapter 4.

Example 3.1.7 (Silver mean model set). Consider the following CPS:

R Rˆ R R

L L :“ Zp1, 1q ‘ Zp
?

2,´
?

2q L‹

Zr
?

2s Zr
?

2s

π1 π2

1´1

π2

dense

‹
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With the ‹-mapping given by the Galois conjugation

pm` n
?

2q‹ “ m´ n
?

2, @m,n P Z .

Then, with window W :“ r´
?

2
2 ,

?
2

2 s, we obtain the silver mean model set,

NpW q :“ tx P L : x‹ PW u

Essentially, after picking a lattice and cutting the strip corresponding to
the sought for window, the model set then consists of the projections of lattice
points laying in the strip. This is illustrated later in Figure 4.1.

3.2 PSF for CPS

Throughout this section we will fix a CPS pRd,Rm,Lq with dual pRd,Rm,L˝q.
Recall that for two functions f P SpRdq and g P SpRmq we define the tensor
pf b gqpx, yq P SpRd ˆ Rmq as

pf b gqpx, yq :“ fpxqgpyq .

Definition 3.2.1. For some g : Rm Ñ C define the weighted comb of L as

ωg :“
ÿ

px,x‹qPL

gpx‹qδx

with the weighted comb of the dual lattice

ω‹g :“
ÿ

py,y‹qPL˝
gpy‹qδy .

If f : Rd Ñ C is such that
ř

px,x‹qPL |gpx
‹qfpxq| is convergent, then we define

ωgpfq :“
ÿ

px,x‹qPL

gpx‹qfpxq

with w‹gpfq defined similarly.

Note that the above definition is regarded only as a formal sum. We are
interested in cases where ωg is a positive measure or tempered distribution, in
which case it is referred to as a weighted Dirac comb.

Lemma 3.2.2. If g P SpRmq, then ωg is a tempered distribution and for all
f P SpRdq,

ωgpfq “ δLpf b gq .

Proof. Follows immediately from Proposition 2.3.8, as f b g P SpRd ˆ Rmq,

δLpf b gq “
ÿ

px,x‹qPL

fpxqgpx‹q “ ωgpfq

is indeed a tempered distribution.
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The above lemma holds for any g that is bounded and with compact sup-
port, the proof being identical after picking h P SpRmq such that |g| ď h. Note
that, if g “ 1W with W a given window, then ωg “ δNpW q is the Dirac comb of
the model set NpW q.

We conclude this section by showing that the PSF also holds for a CPS,
compare [26] for more details.

Theorem 3.2.3 (PSF for CPS). For all g P SpRmq we have

pωg “
1

detpLq
ω‹
qg .

Proof. Let f P SpRdq. Then by definition,

xωgpfq “ ωgp pfq “ δLp pf b gq .

Now Theorem 2.3.10 implies, for all f P SpRdq,

δLp pf b gq “ |detpLq|´1δL˝p pf b gq

Ź

“ |detpLq|´1δL˝pf b g

Ź

q

“ |detpLq|´1ω‹g

Źpfq .

3.3 PSF for PK

Let us recall [27] the set of compactly supported continuous functions with
positive Fourier transform, that is

PKpRdq “ tf P CcpRdq : pf ě 0u .

Note that for any f P PKpRdq, we have f̂ P L1pRdq [26, Lemma 3.6]. We first
prove a proposition needed for the PKpRdq version of the PSF.

Proposition 3.3.1. If φ P PKpRdq, then

ÿ

mPZd

zφpmq ă 8 .

Proof. Let φ P PKpRdq be given. Then F pxq :“ δZd ˚φ is uniformly continuous
and bounded so let µ be the regular distribution associated with it; that is

µpgq :“

ż

Rd

F pxqgptqdt .

Then
pµ “ δZd ˚ φpxq
Ź

“ pφxδZd “ pφδZd

18



is clearly a positive measure; we show that it is finite. Let fn be an approximate

identity, then by Lemma 2.2.7, pµp|fnq converges to F p0q.

Now for fixed m P N, pick n such that 1
n ď

1
4πm . It follows, for x P Bmp0q

ˇ

ˇ

ˇ

ˇ

ż

Rd

e2πixyfnpyqdy ´ 1

ˇ

ˇ

ˇ

ˇ

ď

ż

B 1
n

fnpyqdy|e
2πixy ´ 1| ď 2π|xy| ď 2πm

1

n
ď

1

2

as |e2πixy ´ 1| “ 2 |sinpπxyq| ď 2π|xy|. This gives

qfnpxq “

ż

Rd

e2πixyfnpyqdy ě
1

2
.

Now pµp qfnq is convergent, thus bounded by some C, which implies for fixed m

C ě pµp qfnq “

ż

Rd

δZd
pφptq qfnptqdt “

ÿ

jPZd

pφpjq qfnpjq ě
ÿ

jPZdXBmp0q

pφpjq
1

2
.

As C does not depend on m, letting mÑ8 gives
ÿ

jPZd

pφpjq ď 2C ă 8 .

We can prove an extended version of PSF for the class of PKpRdq. Note
that while the intersection of PKpRdq and SpRdq is non-empty, neither set sits
completely in the other.

Theorem 3.3.2 (Extended PSF). Let L Ă Rd be a lattice and φ P PKpRdq.
Then

ÿ

xPL
φpxq “

1

|detpLq|
ÿ

yPL˝

pφpyq .

Proof. Let µ be the regular distribution associated with δZd ˚ φ as in the above
proposition and define η :“ δZd

pφ, which is a finite measure by the above propo-
sition. Define gpyq :“

ř

xPZd e2πixy
pφpxq as a function in CupRdq.

As η “
ř

xPZd e2πixy
pφ is simply the regular distribution associated to g, and

p

qη “ η “ pµðñ qη “ µ

then Corollary 2.2.8 gives gpxq “ δZd ˚ φpxq as functions. Finally we have
ÿ

xPZd

pφpxq “ gp0q “ δZd ˚ φp0q “
ÿ

nPZd

φpnq .

Then, exactly as in Theorem 2.3.10, we get
ÿ

xPL
φpxq “ |detpLq|´1

ÿ

yPL˝

pφpyq .
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The next natural question is whether we can define weighted Dirac combs
for functions in PKpRdq. To do so, we need to bound the Schwartz functions.

Proposition 3.3.3. For all g P SpRdq, there exists f P PKpRdq such that

|qg| ď qf .

Proof. First we will construct our f P PKpRq. Define

fpxq :“
e´|x|

8
¨ 1r´1,1s ˚ r1r´1,1spxq .

Now fix a ą 0 such that | sincp2πxq ´ 1| ď 1
2 on r´a, as. This gives, on this

interval,

sinc2
p2πxq ě

1

2
.

By [2, Example 8.3] it follows, for y ě a,

pfpyq “
ze´|y|

8
˚ 1r´1,1s ˚ r1r´1,1s

Ź

pyq

“
1

4p4π2y2 ` 1q
˚ 4 sinc2

p2πyq “
1

4π2y2 ` 1
˚ sinc2

p2πyq

“

ż

Rd

1

4π2py ´ tq2 ` 1
sinc2

p2πtqdt ě

ż a

´a

1

4π2py ´ tq2 ` 1
sinc2

p2πtqdt

ě
1

4

ż a

´a

1

4π2py ´ tq2 ` 1
dt ě

1

4

ż a

´a

1

4π24y2 ` 1
dt “

a

2

1

16π2y2 ` 1
ą 0 .

As a can be made arbitrarily small, this shows pfpyq ą 0 when y ą 0, thus

f P PKpRq. In an identical calculation we get the same lower bound for qfpyq;
in particular, there exists some C1, r1 ą 0 such that for all y ą r1,

qfpyq ě C1
1

16π2y2 ` 1
.

Now for g P SpRdq we have, with x :“ px1, . . . , xdq P Rd

qgpxqp16π2x2
1 ` 1q . . . p16π2x2

d ` 1q Ñ 0

which implies there exists r2 ą 0, such that for }x} ě r2

|qgpxq| ď
1

p16π2x2
1 ` 1q . . . p16π2x2

d ` 1q
.

Thus, for }x} ě maxtr1, r2u this gives

C1|qgpxq| ď qfpx1q b ¨ ¨ ¨ b qfpxdq .
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By continuity, qg is bounded for all }x} ă maxtr1, r2u, thus there exists some C2

such that
|qg| ď C2 ď C2C1|qgpxq| ď qfpx1q b ¨ ¨ ¨ b qfpxdq

which gives, for all x P Rd

|qg| ď maxtC1, C2up qfpx1q b ¨ ¨ ¨ b qfpxdqq P PKpRdq .

Combining these results gives us the following, which concludes the section.

Theorem 3.3.4. For g P PKpRmq we have

pωg “
1

|detpLq|
ω‹
qg .

Moreover, ω‹
qg is a tempered distribution for all g P PKpRmq .

Proof. The first claim is immediate. For f P PKpRdq, as f b g P PKpRd`mq
by Theorem 3.3.2 we have

pωgp qfq “ ωgpfq “ δLpf b gq “
1

| detpLq|
δL˝p qf b qgq “ ω‹

qgp
qfq . (3.1)

Note that Equation 3.1 holds for all f in the span of PKpRdqXSpRdq, which
is dense in SpRdq. What remains is to show is that ω‹

qg is indeed a tempered
distribution.

Let φ P SpRdq be given and define h :“ pφ. Then by Proposition 3.3.3, there
exists f P PKpRdq such that

|φ| “ |qh| ď qf .

It follows

ω‹
qgpφq “

ÿ

px,yqPL˝
φpxqqgpyq ď

ÿ

px,yqPL˝
|φpxq|qgpyq ď

ÿ

px,yqPL˝

qfpxqqgpyq “ δL˝p qfbqgq ă 8

which implies ω‹
qg is a tempered distribution.

3.4 Density Formula for Model Sets

In this section we derive the density formula for regular model sets. Throughout
we fix a a model set NpW q in some Euclidean CPS pRd,Rm,Lq. First let us
define our notion of density of a set and mean of a measure.

Definition 3.4.1. For a model set N(W), we define its density as

denspNpW qq “ lim
n

cardpNpW q X r´n, nsdq

p2nqd
,

if such a limit exists.
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Definition 3.4.2. For a pure point measure µ “
ř

xPΛ cpxqδx, we define the
mean of µ as

Mpµq “ lim
n

1

p2nqd

ÿ

xPΛXr´n,nsd

cpxq,

if the limit exists.

Note that the above limit will not always exist, as in the following example.

Example 3.4.3. Take the set

Λ :“ t1, 4, 5, 6, 7, 16, 17, 18, . . . , 31, 64, 65, . . . u “
ď

nPN
t22n, 22n`1, . . . , 22n`1´1u .

Equivalently,

Λ “ tm P N : Dn such that 22n ď m ă 22n`1u .

Intuitively, we list the first natural number, skip the next two, list the next four,
skip the next eight, list the next 16, skip the next 32 and so on. Define

an :“
1

2n
card pΛX r´n, nsq

and note that denspΛq “ limn an. We will show that this limit does not exist.
Now consider

a22n “
1

2 ¨ 22n
cardpΛX r´22n, 22nsq “

1

22n`1
cardpΛX r0, 22nsq

and

a22n`1 “
1

2 ¨ 22n`1
cardpΛX r´22n`1, 22n`1sq “

1

22n`2
cardpΛX r0, 22n`1sq .

Through a recursive argument, we get that

cardpΛX r0, 22nsq “ 1`
n
ÿ

k“0

22k

and

cardpΛX r0, 22n`1sq “

n
ÿ

k“0

22k .

Which implies

lim
n
a22n “ lim

n

1

22n`1
cardpΛX r0, 22nsq “ lim

n

1

22n`1

˜

1`
n
ÿ

k“0

22k

¸

“ lim
n

1

22n`1

4n`1 ` 2

3
“

2

3
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and

lim
n
a22n`1 “ lim

n

1

22n`2
cardpΛX r0, 22n`1sq “ lim

n

1

22n`2

n
ÿ

k“0

22k

“ lim
n

1

22n`2

4n`1 ´ 1

3
“

1

3
.

Thus limn a22n`1 ‰ limn a22n , and denspΛq “ limn an does not exist. Now set
µ :“

ř

xPΛ 1δx a measure on R. Then

Mpµq “ lim
n

1

2n

ÿ

xPΛXr´n,ns

δx “ lim
n
an

does not exist by the above, which implies that µ is a measure without mean.

Next we show that if the Fourier transform of a measure is pure point, then
the mean exists. This result was first proven in Rd by Hof [9, 10], with a general
proof via dynamical systems given by [16]. More recently, this was also proven
via almost periodicity in [25]. Our proof does not require knowledge of any such
theory.

Theorem 3.4.4. If µ “
ř

xPΛ cpxqδx P S 1pRdq with pµ a pure point measure,
then Mpµq exists and

Mpµq “ pµpt0uq.

Proof. We prove first the claim for R. Pick g P C8c pRq with supppgq Ď r´1, 1s,
both g, pg ě 0, and

ş

R gpxqdx “ 1. Such a function always exists in the following
way. Trivially, by Example 2.1.1, there exists f1 P C

8
c pRq such that f1 ě 0 and

f1 ‰ 0, supppf1q Ď r
´1
2 ,

1
2 s, potentially after a scaling argument. Defining

fpxq :“
1

ş

R f1pxqdx
f1pxq

gives
ş

R fpxqdx = 1, as
ş

R f1pxqdx ą 0. Then gpxq :“ f ˚ f̃pxq satisfies the above

requirements. Indeed, we have pg “ pf ¨
p

f̃ “ | pf |2, and

supppgq Ď supppf ˚ f̃q Ď

„

´1

2
,

1

2



`

„

´1

2
,

1

2



“ r´1, 1s

moreover, by Fubini’s theorem,

ż

R
gptqdt “

ż

R
f ˚ f̃ptqdt “

ż

R

ż

R
fpsqf̃pt´ sqdsdt “

ż

R
fpsq

ż

R
fps´ tqdtds “ 1.

Now we may define

fnpxq “
1

2n
1r´n,ns ˚ gpxq .
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It follows supppfnpxqq Ď r´pn` 1q, n` 1s and

fnpxq “
1

2n

ż

R
1r´n,nspx´ yqgpyqdy “

$

’

&

’

%

1
2n |x| ď n´ 1

0 ď fnpxq ď
1

2n n´ 1 ă |x| ă n` 1

0 n` 1 ď |x| .

Thus fn´1 ď
1

2n1r´n,ns ď fn`1, which implies

µpfn´1q ď
1

2n
µpr´n, nsq ď µpfn`1q .

Thus it is sufficient to show µpfnq converges to pµpt0uq, with the desired result
following via the squeeze theorem.

By Fourier inversion, we have µpfnq “ pµp|fnq, with

|fnpxq “
1

2n
q1r´n,nspxq ¨ qgpxq “

2n

2n
sincp2nπxq ¨ qgpxq “ sincp2nπxq ¨ qgpxq,

by [2, Example 8.3] and the fact that sinc is even.

As pµ is pure point, we may write qµ “
ř

xPΛ cpxqδx. Moreover, as qg P SpRq
we have

C :“
ÿ

xPΛ

|qgpxq| |cpxq| ă 8.

Let ε ą 0. Now, as | sincpxq| ď 1
|x| , there exists some A such that, for all x

such that |x| ą A we have

| sincpxq| ă
ε

2C ` 1
.

Take h P C8c pRq such that suppphq Ď r´A ´ 1, A ` 1s, 0 ď hpxq ď 1, and
hpxq “ 1 for all x P r´A,As. We can now define

h1 :“ h sincpxq .

and
h2 :“ p1´ hq sincpxq .

Note that h1 P C
8
c pRdq and h2 P SpRq with, for all x P R,

|h2pxq| ď
ε

2C ` 1
.

Moreover,
|fnpxq “ ph1p2πnxqqgpxqq ` ph2p2πnxqqgpxqq .

Now as suppph1q Ď r´A´ 1, A` 1s we have

suppph1p2πnxqqgpxqq Ď

„

´A

2nπ
,
A

2nπ


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and Lemma 2.3.5 gives

lim
n

pµph1p2πnxqqgpxqq “ pµpt0uq .

It follows that there exists some N1 such that for all n ą N1

|pµph1p2πnxqq ´ pµpt0uq| ă
ε

2
.

Now as qg, h2 P SpRq, meaning the following sums are absolutely convergent, we
have,

|pµph1p2πnxqqqgpxq| “

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

xPΛ

qgpxqcpxqph2p2πnxqq

ˇ

ˇ

ˇ

ˇ

ˇ

ď
ÿ

xPΛ

|qgpxq| |cpxq| |h2p2πnxq|

ď
ε

2C ` 1

ÿ

xPΛ

|qgpxq| |cpxq| “
ε

2C ` 1
C

with the second inequality coming from the fact that |h2| ď
ε

2C`1 . It follows,

ˇ

ˇ

ˇ
pµp|fnq ´ pµpt0uq

ˇ

ˇ

ˇ
“ |pµph1p2πnxqqqgpxq ` pµph1p2πnxqqqgpxq ´ pµpt0uq|

ď |pµph1p2πnxqqqgpxq ´ pµpt0uq| ` |pµph1p2πnxqqqgpxq|

ă
ε

2
`
ε

2
.

Thus µpfnq “ pµp|fnq converges to pµpt0uq as required. The higher dimensional
argument is analogous, taking instead

fn b fn b ¨ ¨ ¨ b fn
loooooooooomoooooooooon

d´times

.

The above equation is known as the formula for the intensity of the Bragg
peak at the origin. We can also easily calculate the Bragg peak at any other
position as follows.

Corollary 3.4.5. If µ “
ř

xPΛ cpxqδx P S 1pRdq with pµ a pure point measure,
then, for all k P Rd we have

pµptkuq “ lim
n

1

p2nqd

ÿ

xPΛXr´n,nsd

e´2πikxcpxq .

Proof. Follows from Theorem 3.4.4, and recalling that, where Ttfpyq :“ fpy´tq,

pµptkuq “ pTkpµqpt0uq “
`

e´2πix¨kµ
˘

Ź

pt0uq “ lim
n

1

p2nqd

ÿ

xPΛXr´n,nsd

e´2πikxcpxq .
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We now show a nice result for the mean of a Dirac comb, which will be
needed for the density formula for model sets.

Lemma 3.4.6 (Density formula for weighted combs). For g P SpRdq,

Mpωgq “ lim
n

1

p2nqd

ÿ

xPr´n,nsd

ωgpxq “
1

|detpLq|

ż

Rd

gpxqdx .

Proof. By Theorem 3.2.3,

Mpωgq “ xωgpt0uq “
1

|detpLq|
ω‹
qgpt0uq “

1

|detpLq|
qgp0q “

1

|detpLq|

ż

Rd

gpxqdx .

With the last two equalities following from

ω‹gpt0uq “
ÿ

px,x‹qPL˝
qgpx‹qδxpt0uq “ qgp0q “

ż

Rd

e2πix¨0gpxqdx .

with the third equality following from injectivity of the ‹-mapping.

Combining these results allows to prove the main result of this section.

Theorem 3.4.7 (Density formula for model sets). If W Ă Rm is pre-compact
and regular then,

denspNpW qq “
1

|detpLq|
λpW q .

Proof. Let ε ą 0 and pick f, g P C8c pRdq such that f ď 1W ď g and

ż

Rd

pg ´ fqpxqdx ă ε .

Such f, g exist by the regularity of W . It follows that ωf ď ω1W
ď ωg and

1

p2nqd
ωf pr´n, ns

dq ď
1

p2nqd
cardpNpW q X r´n, nsdq ď

1

p2nqd
ωgpr´n, ns

dq,

where we write ωf pr´n, ns
dq :“

ř

xPr´n,nsd ωf ptxuq for brevity. By Lemma 3.4.6
we have

1

| detpLq|

ż

Rd

fpxqdx “ lim
n

1

p2nqd
ωf pr´n, nsq

d

and
1

|detpLq|

ż

Rd

gpxqdx “ lim
n

1

p2nqd
ωgpr´n, nsq

d .

In particular, taking N large enough, for n ą N we have both

1

p2nqd
ωgpr´n, ns

dq ă
1

|detpLq|

ż

Rd

gpxqdx` ε
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and
1

p2nqd
ωf pr´n, ns

dq ą
1

| detpLq|

ż

Rd

fpxqdx´ ε .

Which implies,

λpW q

|detpLq|
´ 2ε ă

1

|detpLq|

ż

Rd

gpxqdx´ 2ε

ă
1

|detpLq|

ż

Rd

fpxqdx´ ε ă
1

p2nqd
ωf pr´n, ns

dq

and

1

p2nqd
ωgpr´n, ns

dq ă
1

|detpLq|

ż

Rd

gpxqdx` ε

ă
1

|detpLq|

ż

Rd

fpxqdx` 2ε ă
λpW q

|detpLq|
` 2ε .

Combining these inequalities we obtain, for all n ą N ,

λpW q

|detpLq|
´ 2ε ď

cardpNpW q X r´n, nsdq

p2nqd
ď

λpW q

|detpLq|
` 2ε .

Thus the claim follows.

For a generalization of the above result, see [3, Lemma 4.10.7].

3.5 Autocorrelation of Model Sets

In this section we derive the formula for the autocorrelation measure of regular
model sets. We first show that for a bounded set W , the corresponding model set
is uniformly discrete. This result is well-known and holds in greater generality,
see [23, Prop. 2.6].

Lemma 3.5.1. If NpW q Ă Rd is a fully Euclidean model set then NpW q is
uniformly discrete.

Proof. By definition of L, there exists a linear transformation T : Rd`m Ñ Rd`m
such that its restriction to L gives an isomorphism between L and Zd`m. Now
as T is uniformly continuous and Zd`m is uniformly discrete, so is L.

Thus, as r´1, 1sd ˆ pW ´W q is bounded and L is uniformly discrete,

cardpLX pr´1, 1sd ˆ pW ´W qqq ă 8

which implies π1pLX pr´1, 1sd ˆ pW ´W qqq is also finite. Moreover, as

0 P π1pLX pr´1, 1sd ˆ pW ´W qqq ,
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there exists some r ą 0 such that

Brp0q X π1pLX pr´1, 1sd ˆ pW ´W qqq “ t0u.

As π1 is injective, this gives

LX pBrp0q ˆ pW ´W qq “ tp0, 0qu .

We show this r is the needed minimal radius. Let x, y P NpW q be such that
dpx, yq ă r. Then x‹, y‹ PW and

ppx´ yq, px´ yq‹q P LX pBrp0q ˆ pW ´W qq “ tp0, 0qu.

Hence x “ y, which completes the proof.

An immediate consequence of this result is that every fully Euclidean model
set satisfies the so-called Meyer property.

Corollary 3.5.2 (Meyer property). NpW q ´NpW q is uniformly discrete.

Proof. By Lemma 3.5.1 it is sufficient to show NpW q ´NpW q ĎNpW ´W q.
Let x P NpW q ´ NpW q. Then x “ y ´ z P NpW q ´ NpW q, which by

definition gives py ´ zq‹ PW ´W , thus x PNpW ´W q.

For several equivalent definitions of Meyer sets, we refer the reader to [15,
21, 23, 24, 35]. We now define the concept of autocorrelation for models sets
where we follow the approach of [4]. Note that by [2, Example 9.2] and Corollary
3.5.2, this definition coincides with the usual definition of autocorrelation, see
[2, Chpt. 9] for details.

Definition 3.5.3. We say NpW q has a well defined autocorrelation if, for all
z PNpW q ´NpW q, the following limit exists:

ηpzq :“ lim
n

cardtx P pNpW q X r´n, nsdq : x` z PNpW qu

p2nqd
.

The autocorrelation is then given by

γpzq :“
ÿ

zPNpW q´NpW q

ηpzqδz .

Note that ηpzq is simply counting how often, on average, the vector z appears
between two points of NpW q; for this reason the autocorrelation is also known
as the 2-point correlation.

Theorem 3.5.4. If NpW q is regular then ηpzq exists and

ηpzq “

#

1
| detpLq|λpW X p´z‹ `W qq z P L

0 z R L .
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Proof. In the case of z R L, then x ` z R NpW q as NpW q Ď L and L is a
subgroup of Rd. Trivially it follows

ηpzq “ 0 “ denspW X p´z‹ `W qq .

Now let z P L and define Λn :“ tx P NpW q X r´n, nsd : x ` z P NpW qu.
Then we have

x P Λn ô x PNpW q X r´n, nsd;x` z PNpW q

ô x P LX r´n, nsd;x‹, px` zq‹ PW

ô x P LX r´n, nsd;x‹ PW X p´z‹ `W q

ô x PNpW X p´z‹ `W qq X r´n, nsd .

Therefore Λn “ pNpW X p´z‹ `W qqq X r´n, nsd. As W is regular, by Lemma
3.1.4, so is W X p´z‹ `W q. Therefore, by Theorem 3.4.7 we have

ηpzq “ lim
n

Λn
p2nqd

“ denspNpW X p´z‹ `W qqq “
1

|detpLq|
λpW X p´z‹ `W qq .

This completes the proof.

Theorem 3.5.4 motivates us to to introduce the following notation.

Definition 3.5.5. Denote the Lebesgue measure by λ and define CW : Rm Ñ R
by

CW pxq “ λpW X p´x`W qq .

Then CW is known as the covariogram function of W .

Note that Theorem 3.5.4 gives that for all z P L we have

CW pz
‹q “ |detpLq| denspNpW q X p´z‹ `NpW qqq ,

meaning that the covariogram of the window measures the internal coherence
of the solid. We now list the basic properties of CW .

Proposition 3.5.6. Let W be a regular window. The covariogram function has
the following properties.

(a) CW ” 0 outside W ´W .

(b) CW p´xq “ CW pxq.

(c) CW pxq “ 1W ˚ Ă1W pxq.

(d) CW pxq is continuous.
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Proof. First if CW pxq ‰ 0 then λpW X p´x`W qq ‰ 0 which implies

W X p´x`W q ‰ H.

Let z P W X p´x `W q. Then there exists some t P W such that z “ ´x ` t;
thus x “ t ´ z P W ´W which proves (a). The second claim follows from the
translational invariance of the Lebesgue measure.

Now by (b),

1W ˚ r1W pxq “

ż

Rd

1W ptq1W pt´ xqdt “

ż

Rd

1WXpx`W qdt “ CW p´xq “ CW pxq ,

which proves (c). Finally, we show continuity.
Let ε ą 0 and, by regularity of W , we may take f, g P CcpRdq such that

f ď 1W ď g and
ş

Rdpg ´ fqpxqdx ă
ε
4 . This gives

f ˚ rf ď 1W ˚ r1W ď g ˚ rg .

As f is uniformly continuous, there exists δ such that whenever |x ´ y| ă δ,
then |fpxq ´ fpyq| ă ε

4λpW q`1 . It follows, for |x´ y| ă δ,

ˇ

ˇ

ˇ
1W ˚ r1W pxq ´ 1W ˚ r1W pyq

ˇ

ˇ

ˇ
“

ˇ

ˇ

ˇ

ˇ

ż

Rd

p1W px´ tq ´ 1W py ´ tqqr1W ptqdt

ˇ

ˇ

ˇ

ˇ

ď

ż

Rd

|1W px´ tq ´ gpx´ tq|r1W ptqdt`

ż

Rd

|gpx´ tq ` fpx´ tq|r1W ptqdt

`

ż

Rd

|fpx´ tq ´ fpy ´ tq|r1W ptqdt`

ż

Rd

|fpy ´ tq ´ 1W py ´ tq|r1W ptqdt

ď

ż

Rd

|1W px´ tq ´ gpx´ tq|dt`

ż

Rd

|gpx´ tq ` fpx´ tq|dt

`

ż

Rd

ε

4λpW q ` 1
r1W ptqdt`

ż

Rd

|fpy ´ tq ´ 1W py ´ tq|dt

ă 3

ż

Rd

gpx´ tq ´ fpx´ tqdt`
ε

4
ă

4ε

4
.

The covariogram allows us to re-write the autocorrelation coefficients as

ηpzq “

#

1
| detpLq|Cpz

‹q z P L

0 z R L

which gives, noting that CW pxq R SpRdq,

γpzq “
1

|detpLq|
ÿ

zPNpW q´NpW q

Cpz‹qδz “
1

| detpLq|
ωCW

.
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3.6 Diffraction by Regular Model Sets

Recall for finite set F the normalised diffraction intensity function, known as
the Patterson function, is defined as

IF pyq “
1

|F |

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

xPF

e´2πixy

ˇ

ˇ

ˇ

ˇ

ˇ

2

.

This function highlights the so called phase problem in crystallography: when
making a physical measurement the intensity of the sample points are known,
while the phase information is lost. For more details regarding diffraction theory,
we refer the reader to [2, Chapter 9]. Now, as pδx “ e´2πixy, we have

IF pyq “
1

|F |

ˇ

ˇ

ˇ

pδF

ˇ

ˇ

ˇ

2

“
1

|F |
δF ˚ rδF

Ź

.

This observation leads to the following commutative diagram, known as the
Wiener diagram.

δF pδF

1
|F |δF ˚

rδF
1
|F |

ˇ

ˇ

ˇ

pδF

ˇ

ˇ

ˇ

2

p

p

Figure 3.1: Wiener diagram for finite samples.

Note that in the case of an infinite set Λ Ď Rd, the above diagram only

works when considering xδΛ as a distribution, and |xδΛ|
2 is thus meaningless.

Therefore, for Λ Ď Rd we instead define Fn :“ Λ X r´n, nsd which gives the
following commutative diagram, with δFn

a tempered distribution. Note that
the diffraction is the limit of the bottom right term with respect to the topology
of tempered distributions.

δFn
pδFn

1
|Fn|

δFn
˚ rδFn

1
|Fn|

ˇ

ˇ

ˇ

pδFn

ˇ

ˇ

ˇ

2

p

p

Figure 3.2: Wiener diagram for infinite samples.

As is standard, we assume our solid to be homogeneous, thus for any sample
we can replace Fn with the respective volume of p2nqd. Now in a similar way
as [9], we can define the autocorrelation of an arbitrary Delone set.
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Definition 3.6.1. Let Λ Ď Rd be Delone. We say Λ has a well defined auto-
correlation with respect to r´n, nsd if the sequence

γn :“
1

p2nqd
δFn ˚

rδFn

converges in the tempered distribution topology to some tempered measure
γ, which is referred to as the autocorrelation measure. Moreover, the Fourier
transform pγ of γ, as a tempered distribution, is called the diffraction measure
of Λ.

Remark. As γn converges to γ in the tempered distribution topology, and the
Fourier transform is continuous in this topology, we have

pγ “ lim
n

xγn .

When working with measures in general, the continuity of the Fourier trans-
form is subtle, see [33] for a discussion. However, we are able to claim that the
diffraction measure is a positive distribution.

Corollary 3.6.2. pγ is a positive distribution.

Proof. For all f P SpRdq with f ě 0 we have, by continuity of Fourier transform
in this case,

pγpfq “ lim
n

pγnpfq “ lim
n

1

p2nqd

ż

Rd

´

pδFn ˚
rδFnq

pf
¯

ptqdt

“ lim
n

1

p2nqd

ż

Rd

ˆ

ˇ

ˇ

ˇ

pδFn

ˇ

ˇ

ˇ

2

f

˙

ptqdt ě 0 .

Note that pγ models the physical diffraction. Now, [9] gives that the limit
in Definition 3.6.1 exists as a limit of measures, however does not claim the
convergence in the sense of tempered distributions. Some work must be done
to show that these convergences are in fact equivalent, which is a consequence
of the uniform discreteness of the support. These equivalences are what we now
prove.

Theorem 3.6.3. Let Λ Ď Rd be such that Λ ´ Λ is uniformly discrete. Then
the following are equivalent.

(i) γn converges as a tempered distribution to some tempered distribution γ.

(ii) γn converges as a measure to some measure γ1.

(iii) For all z P Λ´ Λ, the following limit exists

ηpzq :“ lim
n

cardtx P ΛX r´n, nsd : x` z P Λu

p2nqd
.
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Moreover, in this case we have,

γ “ γ1 “
ÿ

zPΛ´Λ

ηpzqδz .

Proof. Note first that

γn “
1

p2nqd
δΛXr´n,nsd ˚ ČδΛXr´n,nsd “

1

p2nqd

ÿ

xPΛXr´n,nsd

δx ˚
ÿ

yPΛXr´n,nsd

δ´y

“
ÿ

x,yPΛXr´n,nsd

δx´y
p2nqd

“
ÿ

zPΛ´Λ

¨

˚

˚

˝

ÿ

x,yPΛXr´n,nsd

x´y“z

δz
p2nqd

˛

‹

‹

‚

“
ÿ

zPΛ´Λ

ηnpzqδz

where

ηnpzq :“
1

p2nqd
cardtx, y P ΛX r´n, nsd : x´ y “ zu .

Now the claim is essentially that of [33, Prop. 4.6]; we include it for complete-
ness.

(i) ñ (iii) Fix z P Λ ´ Λ, and pick f P C8c pRdq such that fpzq “ 1 and
fptq “ 0 for t P pΛ ´ Λqztzu. Such an f exists by the uniform discreteness of
Λ´ Λ. Since C8c pRdq Ď CcpRdq, by (i) we have

γ1pfq “ lim
n
pγnqpfq “ lim

n
ηnpzq “ lim

n

cardtx, y P ΛX r´n, nsd : x´ y “ zu

p2nqd

exists. Note that

A :“tx P ΛX r´n, nsd : x` z P ΛX r´n, nsdu

“tx P ΛX r´n, nsd : Dy P ΛX r´n, nsd such that x´ y “ zu .

We show that, after defining B :“ tx P ΛX r´n, nsd : x` z P Λu,

lim
n

cardpBzAq

p2nqd
“ 0

which implies the desired limit exists. Indeed, as

BzA “ tx P ΛX r´n, nsd : x` z R ΛX r´n, nsdu

this implies that x ` z R r´n, nsd, thus there exists some 1 ď i ď d such that
xi ` zi R r´n, ns. In particular,

xi ě n´ zi ě n´ }z} or xi ď ´n´ zi ď ´n´ }z} .

This gives,

BzA Ď ΛX

˜

d
ď

i“1

r´n, nsi´1 ˆ
`

r´n,´n` }z}s Y rn´ }z}, ns ˆ r´n, nsd´i
˘

¸

.
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Note that, as Λ´Λ is uniformly discrete, say with radius r, then so is Λ´ a for
any fixed a P Λ. It follows that, for any distinct x, y P Λ we have

dpx, yq “ dpx´ a, y ´ aq ě r

thus Λ is uniformly discrete. Hence, the above intersection is finite, which
implies

lim
n

cardpBzAq

p2nqd
“ 0

as required.

(iii) ñ (ii) Let f P C8c pRdq be arbitrary, then

γnpfq “
ÿ

zPΛ´Λ

ηnpzqfpzq “
ÿ

zPΛ´Λ
zPsupppfq

ηnpzqfpzq .

Note that pΛ´ΛqXsupppfq is finite for each z. Moreover, by the above argument,

lim
n
ηnpzq “ lim

n

cardtx P ΛX r´n, nsd : x` z P Λu

p2nqd
“: ηpzq .

Combining these facts gives,

γ1pfq :“ lim
n
γnpfq “ lim

n

ÿ

zPΛ´Λ
zPsupppfq

ηnpzqfpzq “
ÿ

zPΛ´Λ
zPsupppfq

ηpzqfpzq “
ÿ

zPΛ´Λ

ηpzqδzpfq

exists finitely.

(ii) ñ (i) Note that Λ is uniformly discrete by the same argument as above.
In particular,

l :“ lim sup
n

1

p2nqd
cardpΛX r´n, nsdq ă 8 .

Moreover, there exists some l1 ě l such that for all n we have

1

p2nqd
cardpΛX r´n, nsdq ď l1 ă 8 .

It follows immediately that for all z P Λ´ Λ we have

ηnpzq, ηpzq ď l1 .

As Λ ´ Λ is uniformly discrete, it suffices to prove the claim for f P C8c pRdq.
But this follows from (ii).

This completes the proof.
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By combining everything we have obtained thus far, we get that every regular
model set has a well defined autocorreltation and diffraction. Moreover, the
diffraction is a positive pure point tempered measure.

Let NpW q to be a regular model set in some fully Euclidean model set
pRd,Rm,Lq.

Recall that by Theorem 3.6.3 and Proposition 3.5.6, the autocorrelation
exists and equals

γNpW q “
1

|detpLq|
ωCW

.

As the covariogram is continuous by Proposition 3.5.6 and as

yCW “ p1W
p

r1W “

ˇ

ˇ

ˇ

p1W

ˇ

ˇ

ˇ

2

ě 0

we have that CW P PKpRmq. Thus, by Theorem 3.3.4, we get the following.

Theorem 3.6.4. Let pRd,Rm,Lq be a CPS and let W Ď Rm be a regular
window. Then Λ “NpW q has a well defined autocorrelation

γΛ “
1

|detpLq|
ωCW

“
ÿ

zPNpW´W q

CW pz
‹qδz

and diffraction given by

pγΛ “
1

|detpLq|
zωCW

“
1

|detpLq|2
ω‹

qCW
“

1

|detpLq|2
ÿ

kPLf

Ipkqδk

where Lf “ π1pL˝q is the Fourier module and

Ipkq “

ˇ

ˇ

ˇ

ˇ

ż

W

e2πik‹ydy

ˇ

ˇ

ˇ

ˇ

2

ě 0 @k P Lf .

In particular, pγΛ is a positive pure point tempered measure.
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Chapter 4

Diffraction of the Silver
Mean Model Set

In this chapter we provide a short worked example of the diffraction measure of
the silver mean model set.

4.1 Silver Mean Model Set

The silver mean substitution and corresponding substitution matrix are respec-
tively given by

aÑ aba

bÑ a
Msm :“

ˆ

2 1
1 0

˙

with Perron-Frobenius eigenvalue λsm “ 1 `
?

2. The left-hand endpoints of
the geometric realisation of this substitution form the following CPS and model
set. For further background and properties, we refer the reader to [2, Example
4.5].

Example 4.1.1. Consider the following CPS:

R Rˆ R R

L L :“ Zp1, 1q ‘ Zp
?

2,´
?

2q L‹

Zr
?

2s Zr
?

2s

π1 π2

1´1

π2

dense

‹

With the ‹-mapping given by the Galois conjugation

pm` n
?

2q‹ “ m´ n
?

2, @m,n P Z .
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Then, with window W :“ r´
?

2
2 ,

?
2

2 s, we obtain the silver mean model set,

NpW q :“ tx P L : x‹ PW u

illustrated below in Figure 4.1. Moreover, by Lemma 2.3.7, the dual lattice is
given by

L˝ “ Z
ˆ

?
2

4
,´

?
2

4

˙

‘ Z
ˆ

1

2
,

1

2

˙

which gives the dual CPS pR,R,L˝q.

Figure 4.1: Silver mean model set. The window is in blue and the model set in
red.

Note that this is called the silver mean CPS as the corresponding substi-
tution matrix has Perron-Frobenius eigenvalue of 1 `

?
2, which is indeed the

silver mean. Moreover, the choice of window is a consequence of Hutchinson’s
contraction principle on an iterated function system for the point sets of the
substitution; see [2, Chapter 7.1] for details. Next, we calculate the diffraction
for the silver mean model set.

Lemma 4.1.2. With NpW q the model set from Example 4.1.1, the diffraction
measure is given by

pγ “
1

4

ÿ

kP
?

2
4 Zr

?
2s

ˇ

ˇ

ˇ
sincp

?
2πk‹q

ˇ

ˇ

ˇ

2

δk .

Proof. Note that Lf “ π1pL˝q “
?

2
4 Zr

?
2s. Then by Theorem 3.6.4, as NpW q

is a regular model set, its diffraction pγ is given by

pγ “
1

|detpLq|2
ÿ

kPLf

Ipkqδk
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where, recalling that sinpxq is odd and the interval is symmetric,

Ipkq “

ˇ

ˇ

ˇ

ˇ

ż

W

e2πik‹ydy

ˇ

ˇ

ˇ

ˇ

2

“

ˇ

ˇ

ˇ

ˇ

ˇ

ż

?
2

´
?

2

cosp2πk‹yq ` i sinp2πk‹yqdy

ˇ

ˇ

ˇ

ˇ

ˇ

2

“

ˇ

ˇ

ˇ

ˇ

sinp2πk‹yq ` ´i cosp2πk‹yq

2πk‹
|
?

2

´
?

2

ˇ

ˇ

ˇ

ˇ

2

“

ˇ

ˇ

ˇ

ˇ

sinp2πk‹
?

2q

πk‹

ˇ

ˇ

ˇ

ˇ

2

“

ˇ

ˇ

ˇ

?
2 sincp

?
2πk‹q

ˇ

ˇ

ˇ

2

.

Thus,

pγ “
1

4

ÿ

kPLf

| sincp
?

2πk‹q|2δk .

Figure 4.2: Sketch of the diffraction measure of the silver mean chain. Note
that the intensity is bounded by 1

4 . Moreover, when the entire dual lattice L˝
is included, the diffraction pattern is symmetric in k.
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