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Chapter 1

Introduction

Aperiodic order is the mathematical study of non-periodically ordered struc-
tures. It is a combination of several, seemingly disparate, areas of mathematics;
primarily consisting of algebra, analysis, geometry, and number theory. This
field was born out of the 1980’s discovery of physical quasicrystals by Daniel
Schectman [31], for which he was later awarded the 2011 Nobel Prize in Chem-
istry. The most fundamental model of aperiodic structures with high coherence
are model sets [23], which are a natural object arising from so-called cut-and-
project schemes (CPS).

We are interested in a special subclass of model sets known as fully Fuclidean
model sets. A fully Euclidean model set A < R? is obtained by starting with a
lattice £ in some higher dimensional space R4+ which sits at an irrational an-
gle with respect to R?, cutting a sufficiently nice strip within a bounded distance
of R?, and projecting the lattice points inside this strip onto R¢; see Definition
Bl below for a formal definition. As these model sets form the basis of our
project, a brief review of their history is warranted.

Model sets were initially introduced by Meyer [24] and independently re-
discovered by de Brujin [6] when studying the Penrose tilings, by Kramer [13],
Kramer—Neri [14], by Kalugin, Kitaev and Levitov [12], and by Duneau-Katz
[8]. Their use in aperiodic order was popularised by both Moody [23] 24] and La-
garias [15]. For a general review on the subject we refer the reader to [3, 23], [24].

Studies regarding the behaviour of model sets were initially restricted to
the fully Euclidean case; the setting where everything lives in some real space.
Today the theory has advanced to the more abstract case of locally compact
Abelian groups, see [2, [5, 26, 27, B5], B6] for some examples. It is for simplicity
that we restrict ourselves to the fully Euclidean case.

The diffraction formula for fully Euclidean model sets was first proven for
some particular cases by Hof [9, [T0] and later proven in full generality by



Schlotman [30]. Alternative proofs via almost periodicity were also provided
by [, 22| B2] and more recently in [I7) [I8]. Moreover, a proof via the Poisson
summation formula (PSF) was given in [I5], generalising the earlier results in
this direction [9] 10} [19, 20].

The goal of this project is to provide an elementary proof, using only tem-
pered distributions and the PSF for lattices in Euclidean space, that fully Eu-
clidean regular model sets produce a pure-point diffraction measure. Our ap-
proach is based off of the work of [26]. This result is well known in greater
generality and more elegant proofs exist, see [4], @ [17, [26].

The project is structured as follows. We first provide a simple overview of
basic properties of functions and distributions, define pure point tempered mea-
sures, and prove the classic PSF for lattices (Theorem [2.3.10). In Chapter [3] we
introduce cut-and-project schemes and extend the PSF for both fully Euclidean
CPS and PK (R?), the class of compactly supported continuous functions with
a positive Fourier transform (Theorem [3.3.2). We also prove the density for-
mula for regular model sets (Theorem [3.4.7) and use it to show the existence
of the autocorrelation measure for fully Euclidean model sets and derive its for-
mula (Theorem . Combining the results of this chapter, we prove that the
diffraction measure of a regular model set exists and is a positive pure point
tempered measure and we derive the formula for the intensity of each Bragg
peak (Theorem [3.6.4). We conclude by providing in Chapter [4] a simple worked
example of the diffraction measure for the well-known silver mean substitution.



Chapter 2

Functions and Distributions

2.1 Functions

In this chapter we review basic definitions and properties of functions on R<.
We will denote the standard Euclidean vector norm by | - |. For a bounded
function f : R? — C we denote by | - [ the sup-norm. We say a function
f has compact support in R? if there exists some R > 0 such that f(z) = 0
whenever ||z| > R. Let C,(R%),C.(R%), C*, and C*(R?) respectively denote
the space of uniformly continuous and bounded functions, continuous functions
with compact support, infinitely differentiable functions, and those functions
which are compactly supported and infinitely differentiable.

As is standard, we define L!(R?) to be the set of complex valued Lebesgue
integrable functions, that is |f(x)]| is integrable and

J |f(x)|de < .
Rd
We also take the norm on L!(R?) to be

Il = [ 1@ da.

In this project, we will primarily be interested in those functions contained in
LY(RY) A C(RY). As usual, for f e LY(R?), we define its Fourier transform by

flo = | e popa

and its inverse Fourier transform by

flo) = [ e paa.



For a function f : R? — C we define f : R — C by f(z) := f(—=z).
Throughout we will also use the following notations.

[N

IR =0 )= e ipla= ([P a)
Rd
The convolution of two functions f = g is defined as

(F o)) = | fa=Dgle)at

if the integral makes sense for all . Note that the convolution exists whenever
f e L'RY and g € Cu(R?) or f e C,(RY) and g € L}(R?). In particular, it
exists whenever one function is in Cc(R?) and the other in C, (R?).

Next, for f : RY — C and g : R™ — C we define the tensor product
f®g:RHF™ - C as
(f ®9)(z,y) = f(2)g(y).

We now provide an example of class of functions which will be used repeat-
edly.

Example 2.1.1. [7, Example 1.4] There exists some non-trivial f € C*(R9)
such that f(z) = 0 and supp(f) < B1(0).

Proof. Define f : R — C and g : R — C by

fla) = { 1> |z

0 1< |z
and
ew x>0
x) =
9(@) {O z<0.
Then g € C*(R) and f(z) = g(1—|z|?) = g(1—2%—---—23) is the composition
of g with a polynomial, thus f € C*(R9). O

This example motivates us to introduce the following definition.

Definition 2.1.2. A function f,, € C°(R?) is called an approzimate identity if
it satisfies the following.

(a) supp(fn) = B1(0).
(b) fu(z) =0 forall n,z.
(¢) Sga fu(t)dt =1 for all n.



Note that if f is the function from Example taking Cp, := (g, f(nx)dx
gives
1
fulz) = C—f(na:)

n

is an approximate identity.

Lemma 2.1.3. For f € C,(RY) and f, an approzimate identity, we have
ta | £ ¢ fo — flle = 0.

Proof. Let € > 0. By uniform continuity there exists IV such that, whenever
z—y € B1(0), we have |f(z) — f(y)| <e. It follows, that for all n > N and all

z € R4 we have,

[ # fu(2) = f(2)] =

|, =0 - 1)

=000 - L0 @)

< [l =1 - s ey
Rd

~ [ M- sl <.
B 1 (0)

1
N

Taking the supremum over all z € R? we get, for all n > N

”f*fnf.fHOO<€,

which proves the claim. O

2.2 Distributions

In this section we briefly review the notions of distributions, tempered distri-
butions, and their associated Fourier transforms. For a general review of these
concepts, we refer the reader to [7]. Note that the author in [7] uses a different
convention for the Fourier transform, however the theory is unchanged up to a
constant multiple.

Definition 2.2.1. A distribution on R? is a complex-valued linear functional
p on C®(R?), such that for every [—A, A]? € RY, there exists constants C' and
k such that

(@) <C Y} 1D,

|| <k

for all € C*(R?) with support in [—A, A]?. If the same smallest k can be used
for all [—A, A]¢, we say u has order k. In the case of a distribution of order 0,
we refer to it as a measure.



We will denote the set of distributions on R? by D(R?). Next we recall the
space of smooth functions with rapidly decaying derivatives.

Definition 2.2.2. The Schwartz class of functions on R¢, denoted S(R9), is
the set of infinitely differentiable functions that are rapidly decreasing. That is,
for all k,

sup (1 + |z[*)*|D¢(x)| < o0.

zeR4

Moreover, we say f, — 0 € S(R?) if, for all k¥ and «

sup (1 + |w|2)k|D“fn(x)\ —0.

reRd

Note that C*(R%) = S(R?). Moreover, if f € S(R?) and g € S(R™) then
f®ge S(R™). We also have the following properties for Schwartz functions,
whose proofs are standard and are thus omitted.

Proposition 2.2.3. For f,g € S(R?) we have the following.
(a) .
oy () Do,

2
(b) )
(D)) = (2miy)* f(y)
(©) B
Tif(y) = e >V f(y)
(d)

(e) If a # 0 then

lal a
(t) o
fy) = f(—y)
(8)
j f(y)@(y)dy:f Flw)g(y)dy
Rd Rd
(h) -
f*g=fg
(i)
Fes®Y



1l < I£1h -
f®g=F®7.
O

Next we review Plancherel’s theorem, a fundamental result which says that
the Fourier transform is an isometry on (S(R?),]| - |2).

Theorem 2.2.4 (Plancherel). For f,g e S(R?) we have

_ ~  —

| f0a@de= | Faar.
In particular, ~
[ £l = 112
Proof. Let h := g = . Then, by Proposition we have

FORBAt = | FO)R(t)dt.
]Rd Rd

Thus

_ P —

ft)gt)dt = | f(t)g(t)de.
R R4
The final claim is achieved by setting g(t) := f(¥). O

We are now able to introduce a class of functions acting on S(R?).

Definition 2.2.5. A tempered distribution is a linear functional p on S(R?)
such that p(f,) — 0 whenever f, — 0. We denote the space of tempered
distributions by S'(R%).

Next, we show that each function h € C,,(R?) defines a tempered distribution
0r. Note that while it is common to also denote this tempered distribution by
h, to avoid confusion we will use 0, to denote the corresponding distribution.

Lemma 2.2.6. Let h be continuous and bounded. For each f € S(R?) define

Then 0y, is a tempered distribution.

Proof. Clearly 6}, is linear and well defined, so we show continuity. As h is
bounded we have |h(x)| < C for some C' > 0. Thus, whenever f,, — 0 € S(R?),

1 1
h(z) fn(z)d <C d 2o 22+ Dl
| s <o(] g migde) 16t + 0. @+ 05
<CC|(22+1)... (22 + 1) fulew — 0.
Where C; := S]Rd ﬁ ... ﬁdx < o0 is a constant independent of n. O



The tempered distribution 6; defined above is known as the regular dis-
tribution associated to h. Note that, in measure theory, this is known as the
absolutely continuous measure with density function h; however this is beyond
our interest for this project.

For approximate identities we have the following convergence.

Lemma 2.2.7. Let h : R? — C be continuous and bounded. Then, for f, an
approzimate identity,
On(fn) — h(0).
1

Proof. Let € > 0. By continuity of h, there exists N such that whenever |t < &
we have |h(t) — h(0)| < e. Tt follows, for n > N

on(500) = 1) = | [ sutomterar — [ s.comopa
<[ R@h - o) <c.
B%(O)

We immediately get the following equivalence of tempered distributions.

Corollary 2.2.8. For g,h : R? — C, both continuous and bounded, we have
Og =0, < g=nh. O

2.3 Pure Point Tempered Measures

The goal of this section is to prove a few basic results on the behaviour of pure
point tempered measures, such as the Poisson summation formula, which will
be used later.

Definition 2.3.1. By a pure point tempered measure we understand a sum of

the form
W= Z c(x)dy

TEA

where A € R% and ¢ : A — C\{0} with the property that, for all f € S(R?), the

sum
2 le(@) f(@)] < o
TeEA
and pu(f) = D,ep (@) f(2) is a tempered measure. If ¢(z) > 0 for all z € A then
we say p is positive.

The set A is often called the the measurable support of u. We start by
proving the following results, which show that any pure point tempered measure
is a so-called Radon measure. See [28] for definitions and properties.



Lemma 2.3.2. If p =3 _, c(z)d, is a pure point tempered measure then, for
alln e N,
Z le(z)] < 0.
z€AN B, (0)

Proof. Pick arbitrary non-zero n € N and f € C*(R9) such that f > 1,0 It

follows
> le@l< Y < 3 le(@) f(@)] < .

zeAN B, (0) xeAmBn(O) TEA

O

An interesting consequence of this result is that the support of any pure
point tempered measure is at most countable.

Lemma 2.3.3. If p =),
countable.

Proof. Define A, 1, := {x € An B, (0) : |c(x)| > 1/m}, which is finite by Lemma

ven €(a)dq is a pure point measure then A is at most

2.3.20 Then
A= U rem
n=1lm>=1
is also countable. O

Next we provide sufficient conditions on the coefficients c(x) for p = ] _\ ¢(2)d,
to be a pure point tempered measure.

Lemma 2.3.4. If there exists some k = 0 such that

Ll

k
a1+l
then =Y, .\ c(x)d, is a pure point tempered measure.

Proof. Let C =3} A 1‘iHI ”‘ It follows

S le@swi< X DLy el = €10+ el Flo < o
zEA L+ H H

Moreover, when f,, — 0, we have |u(f,)] — 0. L

Note that by [I], the above is actually both a necessary and sufficient con-
dition. As the proof is technical and we do not use the full equivalence, we skip
it.

Now, as we are working with pure point measures, there is a natural exten-
sion to considering the measure of a set. For a given bounded set B and pure

point measure p = Y, ) ¢(x)0,, define



Picking 15 < f € C(R?), necessary as 15 ¢ C.(R%), gives

l(B)| < [u(f)] < e,

and is indeed well defined. Note that this implies for a singleton set {x}

clx) zeA

pl{e)) = {0 N

The above definition turns out to be not very useful for computations. We will
use instead the following equivalent characterisation.

Lemma 2.3.5. Let j1 be a pure point tempered measure. Let a € R? be arbitrary,
and take f, € C.(R?) such that 0 < f, < 1, with supp(f,) S B1(0) and
fala) = 1. Then !

lim pu(fn) = p({a}) .

Proof. Let e > 0. We first deal with the case of a € A. Let = >, _\ ¢(x)0,.
By Lemma we have that A is countable. Let z1 = a,x2,23,... be an
enumeration of A n By(a). Note that By(a) € B,(0) for some n. By Lemma

2.3.2
Y lel@)] <o
zeANBi(a)
or equivalently Y, |c(x,)| < c0. Thus, there exists some N such that, for all

n>N,
D7 le(za)| <e.

n>N

Take M > 0 such that
1
i < min{d(z;,a): 2 < i< N}.

It follows, for n > M, f,(z2) =+ = fu(zy) =0 and

Il Y @@ |-

zeAnBi(a)

[1(fn) = cla)] = (Z C(x)fn(w)> —¢(a)

n
3
i D=
o
8
g
I
=
g
N——
|
o
K

10



Now if u({a}) = 0, define v := p + d,. Then and v(f,,) — v({a}) =1 by the
above. It follows

p(fn) = v(fn) = 0a(fn) — 0 = pu({a})
which proves the claim. O
Let us next recall a special class of point sets defining tempered distributions.

Definition 2.3.6. A point set £ < R? is called a lattice in R if there exists an
R-basis {v1,...,v4} such that

E=ZU1(—B"-(—DZU¢1.
Given a lattice £ € R%, we also define its dual £°, given by
L°:={yeRz-yeZforal zeL}

where - denotes the standard scalar product. However, we can give a simpler
description of the dual lattice.

Lemma 2.3.7. Let £L < R? be a lattice with basis {vi,...,vq} and let A be
the matriz whose columns are precisely vi,...,vq. Denote the rows of A~1 by
wi,...,wq. Then with L° the dual lattice defined above,

LO=Zw D DZwg,.

Proof. Note that, as wy,...,wy are the rows of an invertible matrix, they are
an R-basis for RY. Now, for arbitrary w € £°, as w - v; € Z, we have

d
w-vj=Zciwi-Uj=cjeZ
1

thus w € Zw; @ - - - @ Zwgy. Conversely, for w = 2(11 cw; € Zwi @ -+ - ® Zwy and
arbitrary v = Zf b;v; € L we have

d d d
w-v = Zciwi Zbﬂ}z = Zcz’bi € Z
1 1 i
thus w € L£°, which proves the statement. O

Proposition 2.3.8. Let £L = R? be a lattice. Then 6c(f) = X,cp 62(f) is a
pure point tempered measure.

Proof. We first prove the claim for £ = Z¢, from which the general claim will
follow. As 0za = >, .74 0z we have

1
— < W
2T [z

T€Z

11



thus 0z« is indeed a pure point tempered measure. Let £ = Zv1 @ - - - @ Zvg and
let A be the matrix consisting of the lattice basis vectors. Now for all f € S(R?)

we have
Mf@) =) If(Ay) < o

xel yezZd

as fo A e S(RY). Moreover, as f — f o A is continuous with respect to the
topology of S(RY) we have,

62(f) = 6za(f o A)
is a tempered distribution. O

Now we briefly recall an important theorem whose proof is standard, we
follow that of [2 Section 9.2.1].

Theorem 2.3.9 (Poisson Summation Formula). For all f € S(RY) we have,

> fm) = 3 F(k).

mezZd kezd

by Proposition [2.3.8|and F is a Z%periodic function, so we may write its Fourier
coefficients

Proof. Consider F'(x) = >, .;a f(x +n). Then the sum is uniformly convergent
i

1 1
ck = J F(x)e 2™kedy = J Z f(x +n)e 2 ke dy
0 0

nezd

1 n+1
= 2 f f(x+n)e ke dy = Z J- fz)e 2mkedy
0 n

nezd nezd

fx)e ™ ede = f(k).
]Rd

By definition of Fourier series, F/(z) = >, a cye” 27 k®

D fm) = ).

nezd keZd

, and picking x = 0 gives

O
We conclude the section by extending the PSF to arbitrary lattices in R?.

Theorem 2.3.10 (PSF for lattices). Let £ < R? be a lattice and f € S(R?).
Then, with det(L) := det(A) where A consists of the lattice basis vectors,

1 .
Zf(l’):m > fla).

zel yeL®

12



Proof. By Theorem [2.3.9]

3 f@) = Y (Fo A1) = Y (Fo A)(I) = det(£)[ 71 Y] F((A™)T)(1)
€Z

zel leZ leZ

l
= |det(£)] ™" Y flw).
yeL®

O

Note that a more general result, for a closed topological subgroup of an
arbitrary locally compact Abelian group, is well known; see [I, Prop 6.2]. Our

result is simply a particular instance by taking the closed subgroup to be a
lattice in R?.

13



Chapter 3

Model Sets

3.1 Cut-and-Project Schemes

First we review some basic definitions and preliminary lemmas, following the
notations used in the monograph [2]. We also recommend [21], 23] 24] for further
reading.

Definition 3.1.1. Let A € R%. We say A is

o relatively dense if there exists some R > 0 such that for all z € R%, the
intersection A N Bg(z) is nonempty.

e uniformly discrete if there exists some r > 0 such that for all x € R%, the
intersection A N B,.(z) contains at most a single point.

e Delone if it is both relatively dense and uniformly discrete.
Now we review the notion of cut-and-project schemes and model sets.

Definition 3.1.2. By a fully Euclidean cut-and-project scheme (CPS), we un-
derstand a triple (R?,R™, £) with lattice £ < R? x R™ with the following
properties:

e The restriction 7| of the first canonical projection m; onto R? is injective.
e The image of £ under the second canonical projection 75 onto R™ is dense.

Note that this definition can be generalised beyond Euclidean space to locally
compact Abelian groups, see |2} 23] for a thorough treatment of the topic. For a
given CPS, we define L := 7 (£). As the canonical projection 7 is a bijection
between L and L, we can define the »-mapping as x : L — R™ by

* =Ty o0 (m|c)" .

Note that for any x € £, z* is the unique y € R¢ such that (z,y) € L. We
summarize a CPS in the following diagram.

14



s

R? + = — R? x R™ 2 R™

U U Il
m(L) 55— L dense , pm

Il U

L L*

Equipped with the dual lattice £° we have that (R? R™, £°) is also a CPS,
referred to as the dual cut-and-project scheme [29, [34]. With the »-mapping we
can now construct the following set.

Definition 3.1.3. Given a CPS (R¢,R™, £) and some bounded set W < R™
with non-empty interior, denote by A (W) its pre-image under the *-mapping

AW):={xzeL:z*eW}.

Then A (W) is referred to as a model set with window of W. Moreover, W is
called a regular window if, for all € > 0, there exists non-negative f, g e C*(R%)
such that

f<lw <g and g(x) — f(z)dx < €.
R

In this case, A (W) is then called a regular model set.

Note that by regularity of Lebesgue measure and Urysohn’s lemma, this is
equivalent to the boundary of W having Haar measure zero, i.e A(0(W)) = 0.
Next we show that the translate of a regular window and the intersection of
two regular windows is regular.
Lemma 3.1.4. If W, W' are reqular then, for all t € R?,
(a) t+ W is regular.
(b) W AW’ is regular.

Proof. The first statement is trivial as the integral is invariant under translation.
Let € > 0 be given. As W, W' are regular, there exists f, g, f1,g1 € C*(R?)
such that f < 1y < g and f1 < 1y < g1. In particular, we may take

J o) = sz < gy

and

15



Then clearly ff1 < lw~w' < gg1 and
|, o)) = @
- |, s@)an@) = @) @) + s@)a(o) = Fa) i (@)
<lgls | 0a) = fi@de + 1file | o(e) = fla)ds

< gl s + | i o 5 <
g 1 €.
*2(lgle + 1) “2([filw + 1)

Which proves the statement. O

The following result, which is needed to prove the regularity of a bounded
interval, is standard; we omit the proof.

Lemma 3.1.5. [7] If c <a <b<deR, there exists f € CX(R) such that

1[a7b] < f < ]‘[C,d]'

Note that in Euclidean space, any bounded interval is indeed regular.
Lemma 3.1.6. If I c R is a bounded interval, then I is reqular.
Proof. As I is bounded, there exists a < b such that
(a,b) < I <a,b].
Thus for arbitrarily fixed n, there exists f,g € CP(R) such that
Vst po1) < F <1y <1 < apy <9< Tppo1p1).

It follows, for sufficiently large n,

4
J g(z) = f(z)dw < f Lom2pr29(@) = Lgy1p-1y(@)de < — <e.
» » b+ :

B n
O

We will now outline the silver mean model set as a motivating example; it
will be revisited in Chapter 4.

Example 3.1.7 (Silver mean model set). Consider the following CPS:
R = R x R = R

] T =

L= L:=7Z(1,1)®Z(V2,—2) —— L*

| H
Z[V2] ; Z[v2]

16



With the *-mapping given by the Galois conjugation
(m 4 nvV2)* =m —nV2, Vm,neZ.

Then, with window W := [—g, g], we obtain the silver mean model set,

AW):={zeL:ax*eW}

Essentially, after picking a lattice and cutting the strip corresponding to
the sought for window, the model set then consists of the projections of lattice
points laying in the strip. This is illustrated later in Figure

3.2 PSF for CPS

Throughout this section we will fix a CPS (R4, R™, £) with dual (R?,R™, £°).
Recall that for two functions f € S(R?) and g € S(R™) we define the tensor
(f®g)(z,y) € S(R? x R™) as

(f®9)(@,y) := f()g(y).
Definition 3.2.1. For some g : R™ — C define the weighted comb of L as

Wq 1= Z g(z*)d,

(z,x*)el
with the weighted comb of the dual lattice
wpi= > gyh)dy.
(yy*)eLe
If f:R? — C is such that 2iwanyec |9(2*) f(2)] is convergent, then we define
wo(f)i= 3, 9@ f(@)
(z,x*)eL
with w} (f) defined similarly.

Note that the above definition is regarded only as a formal sum. We are
interested in cases where w, is a positive measure or tempered distribution, in
which case it is referred to as a weighted Dirac comb.

Lemma 3.2.2. If g € S(R™), then w, is a tempered distribution and for all
feSRY,
wy(f) =6c(f®g)-

Proof. Follows immediately from Proposition [2.3.8] as f ® g € S(R? x R™),

Se(f@g) = Y, [fla)g(x®) = we(f)

(z,z*)eL

is indeed a tempered distribution. O

17



The above lemma holds for any ¢ that is bounded and with compact sup-
port, the proof being identical after picking h € S(R™) such that |g| < h. Note
that, if g = 1y with W a given window, then wy = 6, () is the Dirac comb of
the model set A ().

We conclude this section by showing that the PSF also holds for a CPS,
compare [26] for more details.

Theorem 3.2.3 (PSF for CPS). For all g € S(R™) we have

" L,
97 det(L) T

Proof. Let f € S(R?). Then by definition,
Gy(f) = wy(f) = dc(f®9).
Now Theorem implies, for all f € S(R?),

5:(F @) = |det(£)| " oz (F@ g) = | det(L)| "6+ (f ®7)
~ [det(£)| 1w ().

3.3 PSF for PK

Let us recall [27] the set of compactly supported continuous functions with
positive Fourier transform, that is

PK[R%) = {fe C,(RY) : f > 0}.
Note that for any f € PK(RY), we have f € L'(R?) [26, Lemma 3.6]. We first
prove a proposition needed for the PK (R?) version of the PSF.
Proposition 3.3.1. If ¢ € PK(RY), then
Z m < .

mezZd

Proof. Let ¢ € PK(RY) be given. Then F(z) := dza * ¢ is uniformly continuous
and bounded so let p be the regular distribution associated with it; that is

n(g) = y F(z)g(t)dt.

Then L
f=6za % ¢() = pdga = $pdza
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is clearly a positive measure; we show that it is finite. Let f,, be an approximate
identity, then by Lemma i(frn) converges to F(0).

Now for fixed m € N, pick n such that 2 < L. It follows, for @ € B,,(0)

1
2

Jf%wh@@—4<f Fu(y)dyle*™™ — 1] < 27|ay| < 2mm-—
R B;

n

as 2™V — 1| = 2|sin(ray)| < 27|2zy|. This gives

Fuw) = | gy >

N | =

Now ﬁ(]\”/ ) is convergent, thus bounded by some C, which implies for fixed m
~ 1
alf,) = J‘%m = S )] EEOES
jEZA JeZdan(O)
As C does not depend on m, letting m — oo gives
2 b(j) <2C < 0.
jezd
O
We can prove an extended version of PSF for the class of PK(R?). Note

that while the intersection of PK(R?) and S(R?) is non-empty, neither set sits
completely in the other.

Theorem 3.3.2 (Extended PSF). Let £ < R? be a lattice and ¢ € PK(R?).

Then
2 ¢w) = |dt 7 2 0w

zel yeLe

Proof. Let p be the regular distribution associated with dza * ¢ as in the above
proposition and define 7 := dz4 QS, which is a finite measure by the above propo-
sition. Define g(y) := >, cza ezmzyd)( ) as a function in C,(R?).

Asn =23, cza 62””3’@3 is simply the regular distribution associated to g, and

A~
<

N=n=p<=>1=p
then Corollary [2.2.8| gives g(z) = dz4 * ¢(z) as functions. Finally we have

D (@) = g(0) = 6za % 3(0) = Y. ¢(n)

zeZd nezd

Then, exactly as in Theorem [2.3.10, we get

S b(@) = | det(£)[ Y] dy)

zeLl yeLe
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The next natural question is whether we can define weighted Dirac combs
for functions in PK (R?). To do so, we need to bound the Schwartz functions.

Proposition 3.3.3. For all g € S(RY), there exists f € PK(R?) such that

~

gl < f.

Proof. First we will construct our f € PK(R). Define

o lal
flz) = =5

DI T[71,1] (7).

Now fix a > 0 such that |sinc(2rz) — 1| < 1 on [—a,a]. This gives, on this

interval,
1
sinc?(2mz) > 7

By [2, Example 8.3] it follows, for y > a,

e*|y‘

fly) = 3 # 111y * 11 (y)

1 ., 1 L,
Z T 1) x 4sinc” (2my) = T * sinc” (27y)
1
sinc?(2nt)dt

1 , a

- - stz | ——
L@ 2y —np g 1o (%) Ll An2(y — )2 + 1

1

1 1 1 1 a
> — dt> - ——dt=-——-——>0.
1) a2y —02+1 T 4)  ara2+ 1 216722 + 1
As a can be made arbitrarily small, this shows f(y) > 0 when y > 0, thus
f € PK(R). In an identical calculation we get the same lower bound for f(y);
in particular, there exists some C7,7; > 0 such that for all y > rq,
F) > Oy
Y2 enyr 11

..,xd)ERd

~

Now for g € S(R?) we have, with = := (z,.
J(x)(16722? +1)... (167222 + 1) — 0
which implies there exists 7o > 0, such that for |z| = ro
- 1
9]l < (167223 + 1) ... (167222 + 1)

Thus, for || > max{ry,r2} this gives

~

Cilg(2)] < f(21) ® - ® f(za) -

~
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By continuity, g is bounded for all |z < max{ry,rs}, thus there exists some Cy
such that

~ ~

9] < C2 < CoGh|g(z)| < f21) @ -+ - ® f(za)
which gives, for all z € R?

~ ~

|| < max{C1, Co}(f(z1) ® - ® f(2a)) € PK(RY).
O

Combining these results gives us the following, which concludes the section.
Theorem 3.3.4. For g e PK(R™) we have
~ 1 x

0T Tdet(0)] 7
Moreover, w¥ is a tempered distribution for all g € PK(R™).

Proof. The first claim is immediate. For f € PK(R%), as f ® g € PK(R*™)
by Theorem we have
P 1 o
Wg(f) =we(f) =6c(f®g) = mfsm(f@g) = Wg(f)- (3.1)
Note that Equation [3.1/holds for all f in the span of PK (R?) nS(R?), which

is dense in S(R?). What remains is to show is that w? is indeed a tempered
distribution.

Let ¢ € S(RY) be given and define h := ¢. Then by Proposition m there
exists f € PK(R?) such that

ol = Ih < F
It follows
W)= D e@ily) < Y, 1B@Fwy) < Y, F@)gy) = 5 (fR) < o
(w,y)eLe (w,y)eLe (w,y)eLe
which implies wg is a tempered distribution. O

3.4 Density Formula for Model Sets

In this section we derive the density formula for regular model sets. Throughout
we fix a a model set A (W) in some Euclidean CPS (R%,R™, L). First let us
define our notion of density of a set and mean of a measure.

Definition 3.4.1. For a model set A (W), we define its density as

. card(A (W) n [-n,n]?)
dens( A (W)) = 117rln (2n)d ;

if such a limit exists.
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Definition 3.4.2. For a pure point measure p = Y, _, ¢(x)d,, we define the
mean of y as

M) =limg Y ),

n
zeAn[—n,n]?
if the limit exists.

Note that the above limit will not always exist, as in the following example.

Example 3.4.3. Take the set

A:={1,4,5,6,7,16,17,18,...,31,64,65,...} = U{22",22"+1,...,22”“—1}.

neN

Equivalently,
A = {m e N: 3n such that 2*" < m < 22"},

Intuitively, we list the first natural number, skip the next two, list the next four,
skip the next eight, list the next 16, skip the next 32 and so on. Define

ap, 1= % card (A n [—n,n])

and note that dens(A) = lim,, a,. We will show that this limit does not exist.
Now consider

1 n n 1 n
agan = 5 card(A n [-22",22"]) = DPTES| card(A n [0,2%"])

and

card(A n [-227F1 22 Hl]) = L card(A ~ [0,2*"1]).

A92n+1 = = W

2. 22n+1

Through a recursive argument, we get that
card(A n [0,2*"]) =1 + Z 22k
k=0

and
n

card(A n [0,22"1]) = Z 22k
k=0
Which implies

. . 1 n . 1 S
117rlna22n = 117rln Fon i1 card(A n [0,2°"]) = 117£n Jon i1 <1 + Z 22k>
k=0
1 4mtlg2 2

= h?{n 922n+1 3 3
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and

card(A N [0,2*" 1)) = lim —5— Z 2%k

hm a = hm
22n+1 Py 22n+2

22 n+2

1 47+t _1 1
22n+2 3 T3
Thus lim,, agzn+1 # lim, agen, and dens(A) = lim, a,, does not exist. Now set
pi=Dcp 10, a measure on R. Then

1
M(p) = 117?1— Z 0 = lirrlnan

zeAN[—n,n]
does not exist by the above, which implies that p is a measure without mean.

Next we show that if the Fourier transform of a measure is pure point, then
the mean exists. This result was first proven in R? by Hof [0} [10], with a general
proof via dynamical systems given by [I6]. More recently, this was also proven
via almost periodicity in [25]. Our proof does not require knowledge of any such
theory.

Theorem 3.4.4. If p = Y,
then M(u) exists and

c(z)d, € S'(RY) with [i a pure point measure,

M(p) = 1({0}).

Proof. We prove first the claim for R. Pick g € C*(R) with supp(g) < [-1,1],
both g,§ = 0, and {; g(z)dz = 1. Such a function always exists in the following
way. Trivially, by Example [2.1.1] there exists f; € CX(R) such that f; > 0 and
f1#0,supp(f1) < [ 21, 2] potentially after a scaling argument. Defining

zeA

1
S f1(2)dz

gives {, f(x)dz =1, as {; fi(z)dz > 0. Then g(x ) — [ f(z) satisfies the above

fz) = fi(x)

requirements. Indeed, we have g = f f = |f|2,

supp(g) < supp(f * f) < [_21;] + [_171] = [-1,1]

moreover, by Fubini’s theorem,

f t)dt = Jf f(t dt—fff F(t — s)dsdt = JRf(s)JRf(s—t)dtds:l.

Now we may define

1
fn(x) = %”—n,n] *9(33)
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It follows supp(fn(z)) € [—(n + 1),n + 1] and

1

) 5 |z <n—1
fn(x)zﬁf1[_n7n](x—y)g(y)dy= 0<ful@)<dt n-l<lol<n+l
* 0 n+1<|z.

Thus fr—1 < 5=1{_pn] < fn+1, Which implies

i) < 5pll=n,n) < ).

Thus it is sufficient to show u(f,) converges to [i({0}), with the desired result
following via the squeeze theorem.
By Fourier inversion, we have u(f,) = f(f,), with

1
T on

~

J\f;(x) T[,nyn] () g(x) = ;—Z sinc(2nwz) - g(x) = sinc(2nwz) - §(z),

by [2, Example 8.3] and the fact that sinc is even.
As [i is pure point, we may write i = Y] _, ¢(z)d,. Moreover, as g € S(R)
we have
C = [i(@)]e(x)| < .

zeA

Let € > 0. Now, as |sinc(z)| < |917‘, there exists some A such that, for all =
such that |z| > A we have

€
2C0+1°

Take h € CP(R) such that supp(h) € [-A—-1,A+ 1], 0 < h(z) < 1, and
h(z) =1 for all z € [—-A, A]. We can now define

| sinc(z)] <

hi := hsinc(x).
and
hg := (1 — h)sinc(z) .
Note that hy € CP(R?) and hy € S(R) with, for all = € R,

€

20 +1°

|ha(2)| <
Moreover,

Falz) = ((2mna)j(2) + (ha (2mna)j(x))
Now as supp(h1) € [-A — 1, A + 1] we have

—A A}

supp(in(2na)7(o) = | 5 5o
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and Lemma [2.3.5| gives
lim fi(h (25 () = ({0})
It follows that there exists some Ny such that for all n > N;
[ (27na)) = f({O})] < 5.

Now as g, hs € S(R), meaning the following sums are absolutely convergent, we
have,

|fi(hy (2mna))g(2)| = | Y G(@)e() (ha(2mna))| < Y [5(2)] |e(x)| |he (2mna)|

zeA TEA
€

€ -~
< — E =
2C+1x€A|g(x)Hc($)‘ 50 +1°

with the second inequality coming from the fact that |hg| < It follows,

= QC+1
A = AON| = 1A (2rn2)g(x) + Al (2m0)) ) — A0

(h1(2mna))g(z) — p({0})] + [1(ha (2mn))g()]
+

<

)

A
NN e

€
5

Thus p(f,) = ﬁ(};) converges to [i({0}) as required. The higher dimensional
argument is analogous, taking instead

In®@Mh® - ®fn .

~
d—times

O

The above equation is known as the formula for the intensity of the Bragg
peak at the origin. We can also easily calculate the Bragg peak at any other
position as follows.

Corollary 3.4.5. If p = Y,
then, for all k € R% we have

c(z)6, € S'(RY) with i a pure point measure,

zeA

6727rikzc(1,) )

) = lim oo

zeAn[—n,n]d

Proof. Follows from Theorem and recalling that, where T} f(y) := f(y—1t),

AED = @A) = (R (o) = lm s Y e ),

zeAn[—n,n]d
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We now show a nice result for the mean of a Dirac comb, which will be
needed for the density formula for model sets.

Lemma 3.4.6 (Density formula for weighted combs). For g e S(R?),

. 1 1
M(wg) = h;bn ) Z wg(z) = TAt(L)] Jo g(z)dz.

Proof. By Theorem [3.2.3]

1 1 o 1

M (wg) = w,y({0}) = m%({o}) = \det(ﬁ)\gm) = Tdet (D) g(z)dz.

| Jra

With the last two equalities following from

wy({O) = )] E(x*)5x({0})=§(0)=f ™0y (z)da .

(z,x*)eLe R
with the third equality following from injectivity of the *-mapping. O
Combining these results allows to prove the main result of this section.

Theorem 3.4.7 (Density formula for model sets). If W < R™ is pre-compact

and regular then,
1

Proof. Let € > 0 and pick f, g€ CX(R?) such that f < 1y < g and

J (9 — f)x)dz <e.
R4

Such f, g exist by the regularity of W. It follows that wy < w1, < w,y and

@w([—n, nl?) <

g7 CArACA W) o [onnl) < sy ([, nl),

where we write wy([—n,n]?) := Dive[—n,n)e Wr({}) for brevity. By Lemma

we have

1 1 J

T@et(D] Jea T4 = B s ()
d

an ) . ) )
Ay | 9(@)de = lim ———wg([-n,n])?.
| det(L)] Jra n (2n)

In particular, taking N large enough, for n > N we have both

1 d 1

W(&)g([_n, n] ) < m e g(m)dl‘ + €
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and

1 1

Wwf([_mn]d) > m o (z)dz — €.

Which implies,

AW)

m — 2 < W JRd g(z)dx — 2¢
1 1
< W fRd f(z)dz —e < ijf([—n,n]d)

and

1 1

ng([_n,n]d) < m N g(x)dx + €
L AOV)
< [det(2)] Jo (x)dz + 2 < WJFQE'

Combining these inequalities we obtain, for all n > N,

_ d
AW) % < card( A (W) n [—n,n]?) < A(W) + 9
| det(L)] (2n)d | det(L)]
Thus the claim follows. O

For a generalization of the above result, see [3, Lemma 4.10.7].

3.5 Autocorrelation of Model Sets

In this section we derive the formula for the autocorrelation measure of regular
model sets. We first show that for a bounded set W, the corresponding model set
is uniformly discrete. This result is well-known and holds in greater generality,
see [23, Prop. 2.6].

Lemma 3.5.1. If A(W) < R? is a fully Euclidean model set then A (W) is
uniformly discrete.

Proof. By definition of £, there exists a linear transformation 7" : R4+ — Rd+m
such that its restriction to £ gives an isomorphism between £ and Z?*™. Now
as T is uniformly continuous and Z%*™ is uniformly discrete, so is L.

Thus, as [—1,1]¢ x (W — W) is bounded and £ is uniformly discrete,
card(£ n ([-1,1]¢ x (W = W))) < w0
which implies 71 (£ n ([—1,1]% x (W — W))) is also finite. Moreover, as

0em(Ln ([~1,1]x (W -W)),
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there exists some r > 0 such that
B,(0) nmi(L N ([~1,1]" x (W = W))) = {0}.
As 7 is injective, this gives
L (Br(0) x (W =W)) ={(0,0)}.

We show this r is the needed minimal radius. Let z,y € A (W) be such that
d(z,y) <r. Then z*,y* € W and

(=y) (x=y)") e Ln(Br(0) x (W-W))={(0,0)}.
Hence = = y, which completes the proof. O

An immediate consequence of this result is that every fully Euclidean model
set satisfies the so-called Meyer property.

Corollary 3.5.2 (Meyer property). A(W) — A (W) is uniformly discrete.

Proof. By Lemma it is sufficient to show A (W) — A (W) < A(W —W).
Let z € A(W)— A(W). Then z = y — z € A(W)— A(W), which by
definition gives (y — z)* € W — W, thus x € A(W —W). O

For several equivalent definitions of Meyer sets, we refer the reader to [I5]
211, 23], 24), [35]. We now define the concept of autocorrelation for models sets
where we follow the approach of [4]. Note that by [2, Example 9.2] and Corollary
this definition coincides with the usual definition of autocorrelation, see
[2, Chpt. 9] for details.

Definition 3.5.3. We say A (W) has a well defined autocorrelation if, for all
ze A(W) — A (W), the following limit exists:

cardfz e (AW) A [-n,n]?) a4+ 2e A(W)}
n(z) := 1111111 @n) .

The autocorrelation is then given by

V(2) = 1(2)d .
zeEA(W)—A (W)

Note that 7(z) is simply counting how often, on average, the vector z appears
between two points of A (WW); for this reason the autocorrelation is also known
as the 2-point correlation.

Theorem 3.5.4. If A(W) is reqular then n(z) exists and

(2) = | AW (=2 + W) ze L
! 0 z¢ L.
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Proof. In the case of z ¢ L, then . + 2 ¢ A(W) as A(W) < L and Lis a
subgroup of R?. Trivially it follows

n(z) =0 =dens(W n (—2z* + W)).

Now let z € L and define A,, := {x € A(W)n[-n,n]¢: 2+ 2e A(W)}
Then we have

reh, exe AW)n[-n,n]%z+ze A(W)
szeln[-nn]%a* (z+2)eW
sreln[-nn]%az*eWn (=2 +W)
sze AWn (=2 +W))n[-n,n]¢.

Therefore A, = (A(W n (—z* + W))) n [-n,n]%. As W is regular, by Lemma
so is W n (—z* + W). Therefore, by Theorem we have

A 1
=1 L AW A(=2"+W))) = ——— AW A (=2 +W)).
n(z) im @n)i dens(A (W n (=2* + W))) |det(£)|)\< N (=z"+W))
This completes the proof. O

Theorem [3.5.4] motivates us to to introduce the following notation.

Definition 3.5.5. Denote the Lebesgue measure by A and define Cyy : R™ — R
by
Cw(z) = AW n (=z+W)).

Then Cy is known as the covariogram function of W.

Note that Theorem gives that for all z € L we have
Cw(z*) = |det(L)| dens(A (W) n (=z* + A(W))),

meaning that the covariogram of the window measures the internal coherence
of the solid. We now list the basic properties of Cyy.

Proposition 3.5.6. Let W be a regular window. The covariogram function has
the following properties.

(a) Cw =0 outside W —W.

(d) Cw(x) is continuous.
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Proof. First if Cy () # 0 then \(W n (—z + W)) # 0 which implies
Wn(—z+W)#&.

Let z € W n (—x + W). Then there exists some ¢t € W such that z = —x + ¢;
thus ¢ =t — z € W — W which proves (a). The second claim follows from the
translational invariance of the Lebesgue measure.

Now by (b),

Ty * 1w (z) :f

Rd

lw(t)lw(t - :Z?)dt = f

) 1Wm(m+W)dt = C’W(—x) = Cw(ﬂj),
R

which proves (c). Finally, we show continuity.
Let ¢ > 0 and, by regularity of W, we may take f,g € C.(R?) such that
f<1lw <gand {;,(g— f)(z)dz < §. This gives

fef<iwslw<g=*j.

As f is uniformly continuous, there exists d such that whenever |x — y| < J,
then |f(z) — f(y)| < g1 1t follows, for |z —y| <9,

‘hv*fwﬂx)—lw/*ﬁvﬂﬁlz‘&dﬂwdx—i)—1w4y—fﬁiw%ﬂdf

<J‘uwm—w—gu—wﬁwmw+f gz — 1) + flz — t)[Tw (D)t
Rd

R4

] =0~ f = Owod+ [ 170~ 1wty - 0w @
R4 Rd

< J]Rd [Tw(z —t) — g(x — t)|dt + JRd lg(z —¢t) + f(ax —t)|dt

* fRd miw@dt + JRd |fly—t) — Lw(y —t)|dt

4
<3J o —1) — flo—t)dt + S < 2
e 171

The covariogram allows us to re-write the autocorrelation coefficients as

L_C(z*) zelL
n(z) = {Idet(ﬁ)l (%)
0 z¢ L

which gives, noting that Cy () ¢ S(R9),
1

Y(2) = —— C(2)0, = ——Wey -
O~ @@, 2, O T
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3.6 Diffraction by Regular Model Sets

Recall for finite set F' the normalised diffraction intensity function, known as
the Patterson function, is defined as

2
1

|F]

Z 6727Tza:y

zeF

Ir(y)

This function highlights the so called phase problem in crystallography: when
making a physical measurement the intensity of the sample points are known,
while the phase information is lost. For more details regarding diffraction theory,
we refer the reader to [2 Chapter 9]. Now, as §, = e~ 2™@%_ we have

2 — =

‘ = 75F * 5F .

1 i~
Ir(y) = [E] ‘51? 7]

This observation leads to the following commutative diagram, known as the
Wiener diagram.

(SF%SF

| |

L(SF*SF 4A> ﬁ‘SF

2
[£] ‘

Figure 3.1: Wiener diagram for finite samples.

Note that in the case /Qf an infinite set A < R?, /Ehe above diagram only
works when considering §, as a distribution, and |§5|? is thus meaningless.
Therefore, for A € R? we instead define F,, := A n [~n,n]¢ which gives the
following commutative diagram, with §r, a tempered distribution. Note that
the diffraction is the limit of the bottom right term with respect to the topology
of tempered distributions.

0p, —— IR,

| |

.k
hydn, * 35, —— g o,

2

Figure 3.2: Wiener diagram for infinite samples.
As is standard, we assume our solid to be homogeneous, thus for any sample

we can replace F,, with the respective volume of (2n)?. Now in a similar way
as [9], we can define the autocorrelation of an arbitrary Delone set.
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Definition 3.6.1. Let A € R? be Delone. We say A has a well defined auto-
correlation with respect to [—n, n]d if the sequence

1

Yn 1= 7(271)61 *0p

n

o,
converges in the tempered distribution topology to some tempered measure
v, which is referred to as the autocorrelation measure. Moreover, the Fourier

transform 7 of 7, as a tempered distribution, is called the diffraction measure
of A.

Remark. As ~y, converges to 7 in the tempered distribution topology, and the
Fourier transform is continuous in this topology, we have

~y =lim#7, .
n
When working with measures in general, the continuity of the Fourier trans-

form is subtle, see [33] for a discussion. However, we are able to claim that the
diffraction measure is a positive distribution.

Corollary 3.6.2. 7 is a positive distribution.

Proof. For all f e S(R?) with f > 0 we have, by continuity of Fourier transform
in this case,

O

Note that 4 models the physical diffraction. Now, [9] gives that the limit
in Definition exists as a limit of measures, however does not claim the
convergence in the sense of tempered distributions. Some work must be done
to show that these convergences are in fact equivalent, which is a consequence
of the uniform discreteness of the support. These equivalences are what we now
prove.

Theorem 3.6.3. Let A € R? be such that A — A is uniformly discrete. Then
the following are equivalent.

(i) yn converges as a tempered distribution to some tempered distribution .
(ii) 7y, converges as a measure to some measure yi .
(iii) For all z€ A — A, the following limit exists

. card{fzre An[-n,n]?: 2z +2ze A}
=1 .
n(z) 1= lim oL
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Moreover, in this case we have,
zEA—A

Proof. Note first that

1 —_— 1
Tn = WaAm[fn,n]d * 6An[7n,n]d = ( d Z Og * Z 67y

Op—y 5,

- = = n(2)0
z,yeAnz[l_n,n]d (2n)d zE;A w,yeAr\Z[l—n,n]d (2n)d Z (2
T—y=z2

where )
Nn(z) = @n) card{z,ye A [-n,n]¢:z—y=2z}.

Now the claim is essentially that of [33 Prop. 4.6]; we include it for complete-
ness.

(i) = (iii) Fix z € A — A, and pick f € C®(R%) such that f(z) = 1 and
f(#) =0 for t € (A — A)\{z}. Such an f exists by the uniform discreteness of
A — A. Since CP(R?) < C.(R?), by (i) we have

g —y=2z}

m(f) = lim(yn)(f) = limn,(2) = lim cardizy e A0 ([2_”7;&”]

exists. Note that
A:={zeAn[-nn]?:2+z2€An[-n,n]}
—{zeAn[-n,n]?:3IyeAn[-n,n]such that z —y = z}.
We show that, after defining B := {x € A n [-n,n]?: x + z € A},

card(B\A)

Y eme Y

which implies the desired limit exists. Indeed, as
B\A={zeAn[-nn]?:x+2¢An[-n,n]"}

this implies that = 4+ z ¢ [—n,n]?, thus there exists some 1 < i < d such that
x; + z; ¢ [-n,n]. In particular,

xizn—z=2n—|z| or v <—n—z<-n—|z|.
This gives,

d
B\acAn (U[n,n]“ x ([=n,—n+ [2]] w [n = |2], 7] % [n,n]“)> .

i=1

33



Note that, as A — A is uniformly discrete, say with radius r, then so is A — a for
any fixed a € A. It follows that, for any distinct z,y € A we have

dlz,y)=dx—a,y—a)=r

thus A is uniformly discrete. Hence, the above intersection is finite, which
implies
B\A
lim card(B\A) _0
W 2y

as required.
(iii) = (ii) Let f € C*(R%) be arbitrary, then

W)= D m@f) = D, mE)f().
zeA—A Z(Ez;’sll/};pé\f)

Note that (A—A)nsupp(f) is finite for each z. Moreover, by the above argument,

_ d.
h}lnnn(z) _ llin card{z € A n [(27;,):] cx+ze A} —n(2).

Combining these facts gives,

() =limy(f) =lim Y m()f() = D) n@f()= ) 0(2)5:(f)
L) et et

exists finitely.
(ii) = (i) Note that A is uniformly discrete by the same argument as above.

In particular,

[ := lim sup card(A n [-n,n]?) < 0.

1
(2n)

Moreover, there exists some I’ > [ such that for all n we have

card(A n [-n,n]?) <1 < ©.

1

(2n)?

It follows immediately that for all z € A — A we have
m(2),n(2) <.

As A — A is uniformly discrete, it suffices to prove the claim for f € C*(R?).
But this follows from (ii).
This completes the proof. O
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By combining everything we have obtained thus far, we get that every regular
model set has a well defined autocorreltation and diffraction. Moreover, the
diffraction is a positive pure point tempered measure.

Let A(W) to be a regular model set in some fully Euclidean model set
(RY,R™, L).
Recall that by Theorem and Proposition the autocorrelation

exists and equals
1
Ya(w) = mw(}w :

As the covariogram is continuous by Proposition [3.5.6| and as

—

Cw =Twiw = ‘TW

2
‘20

we have that Cy € PK(R™). Thus, by Theorem [3.3.4] we get the following.

Theorem 3.6.4. Let (R4, R™, L) be a CPS and let W < R™ be a reqular
window. Then A = A (W) has a well defined autocorrelation

1 .
YA = mwcw = Z CW(Z )6,2

and diffraction given by

1 1 1
AN = ey = W = I(k)é
TN Tdet(0)] ¥ T Tdet(D)2“Cw ~ [det(0)? kZ o

where L® = 71(L°) is the Fourier module and

2

I(k) = U T Yqyl >0 VkeL®.
w

In particular, 7, is a positive pure point tempered measure. ]
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Chapter 4

Diffraction of the Silver
Mean Model Set

In this chapter we provide a short worked example of the diffraction measure of
the silver mean model set.

4.1 Silver Mean Model Set

The silver mean substitution and corresponding substitution matrix are respec-

tively given by
a — aba 2 1
b Sa MS’HL L (1 0)

with Perron-Frobenius eigenvalue A, = 1 4+ v/2. The left-hand endpoints of
the geometric realisation of this substitution form the following CPS and model
set. For further background and properties, we refer the reader to [2, Example
4.5].

Example 4.1.1. Consider the following CPS:

R m RxR T2 R

i i Joon

L= L:=7Z(1,1)®Z(V2,—v2) —— L*

|
Z[V32] . Z[V?]

With the x-mapping given by the Galois conjugation
(m+nvV2)* =m—nv2, Vm,neZ.
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Then, with window W := [—?, ?], we obtain the silver mean model set,
AW):={zeL:ax"eW}
illustrated below in Figure Moreover, by Lemma the dual lattice is
given by
2 2 11
oo (Y2 V2 gLt
4 4 2'2

which gives the dual CPS (R, R, £L°).

. . . . '. .

Figure 4.1: Silver mean model set. The window is in blue and the model set in
red.

Note that this is called the silver mean CPS as the corresponding substi-
tution matrix has Perron-Frobenius eigenvalue of 1 4+ 4/2, which is indeed the
silver mean. Moreover, the choice of window is a consequence of Hutchinson’s
contraction principle on an iterated function system for the point sets of the
substitution; see [2 Chapter 7.1] for details. Next, we calculate the diffraction
for the silver mean model set.

Lemma 4.1.2. With A(W) the model set from Example the diffraction
measure is given by

2
sinc(\/iwk:*)) O -

Proof. Note that L& = 71(L°) = %Z[\/ﬁ] Then by Theorem as A (W)
is a regular model set, its diffraction 7 is given by

1 2 I(k)dy,

3= 2
At )P 2,
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where, recalling that sin(z) is odd and the interval is symmetric,

2 2

N
= J cos(2mk*y) + isin(2mk*y)dy
V2

sin(2wk*y) + —i cos(2mk*y) ‘\/5
- 2mk* -2

I(kj) _ ‘f e27rik*ydy
w

_ Sm(%—mr = ‘\/ﬁsinc(\/iﬂk*)

2
wk* ’

Thus,
~ 1 . .
=1 Z | sine(v/2mk*)|?65, .

kel®

02517
0.20

0.15 9

Figure 4.2: Sketch of the diffraction measure of the silver mean chain. Note
that the intensity is bounded by i. Moreover, when the entire dual lattice £°
is included, the diffraction pattern is symmetric in k.
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