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Abstract

The MixGHD package for R performs model-based clustering, classification, and dis-
criminant analysis using the generalized hyperbolic distribution (GHD). This approach
is suitable for data that can be considered a realization of a (multivariate) continuous
random variable. The GHD has the advantage of being flexible due to skewness, concen-
tration, and index parameters; as such, clustering methods that use this distribution are
capable of estimating clusters characterized by different shapes. The package provides
five different models all based on the GHD, an efficient routine for discriminant analysis,
and a function to measure cluster agreement. This paper is split into three parts: the
first is devoted to the formulation of each method, extending them for classification and
discriminant analysis applications, the second focuses on the algorithms, and the third
shows the use of the package on real datasets.

Keywords: model-based clustering, classification, discriminant analysis, EM algorithm, gen-
eralized hyperbolic distribution.

1. Introduction

Broadly, classification refers to the process of assigning labels to sets of observations. In
general, classification is unsupervised (also known as clustering), semi-supervised, or (fully)
supervised. Generally speaking, the goal is the same, to group observations based on shared
characteristics. Classifying, in fact, is a key instrument in data mining and data analysis.
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Classification can serve the twofold aim of highlighting discriminating factors and grouping
homogeneous collections of units in datasets. The latter point is extremely useful in many
fields such as medicine, e.g., for identifying homogeneous groups of patients, or marketing,
e.g., identifying homogeneous groups of customers. This main focus of this paper is cluster
analysis but the described methods can be used for semi-supervised and supervised learning as
well. Many cluster analysis techniques exist in the statistical and machine learning literature,
in this paper we will focus on a non-hierarchical clustering technique known as model-based
clustering (McNicholas 2016).

Of course, not all non-hierarchical clustering techniques are model-based and these are distin-
guished by not making any explicit assumptions on the distribution of the clusters. Typically,
they group statistical units into k clusters with respect to a distance measure. The most com-
mon method in this context is k-means clustering (MacQueen 1967). Several extensions of
k-means for high-dimensional data clustering exist (e.g., Bock 1987; De Sarbo and Manrai
1992; Arabie and Hubert 1994; De Soete and Carroll 1994; Stute and Zhu 1995; Vichi and
Kiers 2001; Vichi and Saporta 2009; Yamamoto and Hwang 2014). An alternative distance-
based method is probabilistic distance (PD) clustering (Ben-Israel and Iyigun 2008), which
assigns units to a cluster according to their probability of membership, under the constraint
that the product of the probability and the distance of each point to any cluster center is
a constant. Tortora, Gettler Summa, Marino, and Palumbo (2016a) propose a transforma-
tion of the method for high-dimensional data sets, Rainey, Tortora, and Palumbo (2019) and
Tortora, McNicholas, and Palumbo (2020a) propose a new distance measure.

Model-based methods assume that a population is a convex linear combination of a finite
number of (component) probability densities. Until recently, the component densities have
typically been Gaussian distributed, and several parsimonious extensions of Gaussian mix-
tures for high-dimensional data have been proposed (e.g., Ghahramani and Hinton 1997;
McLachlan, Peel, and Bean 2003; Bouveyron, Girard, and Schmid 2007; McNicholas and
Murphy 2008, 2010; Baek, McLachlan, and Flack 2010; Montanari and Viroli 2011). Re-
cently, the focus of the literature has been on mixtures of non-Gaussian distributions for
high-dimensional datasets (e.g., Andrews and McNicholas 2011a,b; Steane, McNicholas, and
Yada 2012; Lin, McNicholas, and Hsiu 2014; Murray, McNicholas, and Browne 2014b; Murray,
Browne, and McNicholas 2014a; Lin, McLachlan, and Lee 2016; McNicholas, McNicholas, and
Browne 2017; Tang, Browne, and McNicholas 2018; Kim and Browne 2019; Murray, Browne,
and McNicholas 2020; Punzo, Blostein, and McNicholas 2020). Of particular interest is the
generalized hyperbolic distribution (GHD) which can detect clusters with non-elliptical form
because it contains skewness, concentration, and index parameters. These parameters al-
low the GHD to be much more flexible compared to most other distributions. Browne and
McNicholas (2015) examine different representations of the GHD and outline a mixture of
GHD:s for clustering. Each component scale matrix has a number of free parameters that in-
creases quadratically in the number of variables p. Tortora, McNicholas, and Browne (2016b)
propose a parsimonious version of the model, the mixture of generalized hyperbolic factor an-
alyzers, to extend the method for higher dimensional data sets. A multiple scaled extension
of the method was proposed by Tortora, Franczak, Browne, and McNicholas (2019), where
the authors added even more flexibility to the models letting the concentration and index
parameters vary per dimension.

The volume of work on clustering and classification methodology has led to the release of
new clustering software. A commonly used statistical software is R (R Core Team 2021),
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and many of the previously cited methods have a corresponding R package. For example,
k-means clustering is directly implemented in R through the stats package (R Core Team
2021), specifically with the kmeans function. Two packages that are worth mentioning, be-
cause they implement several techniques useful for cluster visualization and for the choice of
the number of clusters together with some basic clustering methods, are cluster (Maechler,
Rousseeuw, Struyf, Hubert, and Hornik 2021) and fpc (Hennig 2020). Some of the extensions
of k-means for high-dimensional datasets can be found in the clustrd package (Markos, Iodice
D’Enza, and Van de Velden 2019). PD-clustering and its extension are implemented in the
package FPDcluster (Tortora, Vidales, Palumbo, and McNicholas 2020b). Among a large
variety of packages available for model-based clustering is the widely used mclust package
(Scrucca, Fop, Murphy, and Raftery 2016) and an analogue in parallel pmclust (Chen and
Ostrouchov 2021). The two packages implement model-based clustering, classification, and
density estimation using the Gaussian distribution. An alternative for model-based cluster-
ing using the Gaussian distribution is the Rmixmod package (Lebret, Iovleff, Langrognet,
Biernacki, Celeux, and Govaert 2015), an R interface for the MixMod software (Biernacki,
Celeux, Govaert, and Langrognet 2006). A third alternative is the package mixture (Pocuca,
Browne, and McNicholas 2021), it carries out model-based clustering and classification using
the 14 parsimonious Gaussian clustering models from Celeux and Govaert (1995). Several
existing packages for clustering high-dimensional datasets use the Gaussian distribution, each
implementing a different model. The pgmm package (McNicholas, ElSherbiny, McDaid, and
Murphy 2019) implements the 12 parsimonious Gaussian mixture models for cluster anal-
ysis from McNicholas and Murphy (2008, 2010) and an associated classification model (see
McNicholas 2010). HDclassif (Bergé, Bouveyron, and Girard 2012) and FisherEM (Bou-
veyron and Brunet 2020) implement the models described in Bouveyron et al. (2007) and
Bouveyron and Brunet (2012), respectively.

The EMMIXskew package (Wang, Ng, and McLachlan 2018) implements model-based clus-
tering using the normal, the Student-, the skew normal, and the skew-t distributions, while
the EMMIXuskew package (Lee and McLachlan 2014b) implements model-based clustering
using the unrestricted skew ¢ distribution given in Lee and McLachlan (2014a). The package
uskewFactors (Murray, Browne, and McNicholas 2016) implements the mixtures of unre-
stricted skew-t factor analyzers. An alternative to the common paradigms is proposed by
Azzalini and Torelli (2007), who use a clustering method based on nonparametric density
estimation. The corresponding package is pdfclust (Menardi and Azzalini 2014). For large
and sparse data sets, mixtures of von Mises-Fisher distributions can be fit using the package
movMF (Hornik and Griin 2014). The two packages flexmix (Leisch 2004; Griin and Leisch
2008) and mixtools (Benaglia, Chauveau, Hunter, and Young 2009) allow the user to choose
different distributions. Specifically, flexmix is extremely flexible letting the user input the
chosen distribution. For a list of R packages on cluster analysis and finite mixture models see
Leisch and Griin (2021).

The aim of this paper is to describe the MixGHD package (Tortora, El-Sherbiny, Browne,
Franczak, and McNicholas 2021) which implements five different methods based on the GHD.
The package is available from the Comprehensive R Archive Network (CRAN) at https:
//CRAN.R-project.org/package=MixGHD. As mentioned before, the GHD is a very flexible
distribution that has many other distributions as special or limiting cases. For these reasons,
this package fills in the gap in the existing package landscape. Moreover, in this paper, the
three methods proposed in Tortora et al. (2019) are extended to be used for discriminant
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analysis and model-based classification.

This paper has the following structure. In Section 2, we introduce model-based classification.
Sections 3 to 5 describe the five methods implemented in the MixGHD package, with some
implementation details described in Section 6. Section 7 describes the MixGHD package with
real data examples.

2. Model-based classification

The basic idea of model-based clustering is that a random vector X follows a (parametric)
finite mixture distribution if, for all x C X, its density can be written as

G
Fx|9) =) mfy(x | 8y),

g=1

where G is the number of clusters, 7, > 0 is the gth mixing proportion such that 25:1 Ty =1,
fq(x | 84) is the gth component density that we assume to be of the same type for all the
components, i.e., fo(x | 84) = f(x | 0,). Therefore, the model-based clustering likelihood
function, for x1,...,X,, can be written as

n G
L) =[] D mgf(x; | 8y). (1)

j=1g=1

In model-based classification, given n p-dimensional vectors x1,...,X,, k of them have known
labels and the model can be used to predict the other n — k labels. Following McNicholas
(2010), order the n observations so that the first k are labeled — this can be done without loss
of generality. Let G be the number of classes, H > G be the number of fitted components,
and z;, the component membership labels so that z;, = 1 if x; is in component g, and z;; = 0
otherwise, for i =1,...,k and g = 1,...,G. The model-based classification likelihood is

E G n H
L) = ITlmaf(xi | 6% TT D mnf(x; | 6n). (2)
i=1g=1 j=k+1h=1
Note that H > G in general, but it is typically assumed that H = G.

Discriminant analysis is a special case of classification in which k& = n and, therefore, we only
use the first part of (2). Cluster analysis in (1) can be obtained setting k = 0, in which case we
use only the second part of Equation (2); see McNicholas (2010) for details. In the following,
we will consider the GHD density function. Extensive details on model-based clustering,
classification, and discriminant analysis are given by McNicholas (2016).

3. Mixture of generalized hyperbolic distributions

A random p-dimensional variable X is distributed according to a GHD if its density can be
represented as

fon(x | 1S, a,w,n, ) = /0 6p (x| o+ vo, vE) B (v | w,m, \) do, (3)
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where ¢, is a multivariate p dimensional Gaussian distribution and h (v | w,n, ), called the
weight function, is the density of a univariate generalized inverse Gaussian (GIG) distribution.
Formally, the density of the GIG distribution is given by

h(v|w,n,)\):%exp{—; <z+z>}, (4)

where n > 0 is a scale parameter, w > 0 is a concentration parameter, A € R is an index
parameter, and K is the modified Bessel function of the third kind with index A.

Browne and McNicholas (2015) propose an identifiable representation of the GHD by setting
n = 1, which gives

fanlx | i Eeaw ) = [0y (x| ot 0o, vE) (v @, 1A do
0

) {w%—é(x,u\ﬁ)} k| KA_g<\/[w+aT2—1a][w+5(x7“ | 2”) (5)

w+ a3 la

2m)E B2 K)\(w)exp{—(u—x)T= 'a}

where 6 (x, 11 | ) = (x — p) ' 27! (x — p) is the squared Mahalanobis distance between x
and location parameter p € RP, a € RP? is a skewness parameter, X is a p X p positive
defined scale matrix, and K, w, and X are as defined for (4).

The random variable X can be generated via the relationship
X =p+Va+ VVN, (6)

where N ~ N,(0,X) and V ~ GIG (w, 1, A), i.e., V follows a GIG distribution with density
as in (4). It follows that

X|V=v~N,(p+va,vX). (7)
A finite mixture of GHDs (MGHD) has density
G
fMGH(X | 19) = Z TrngH(X | l‘l’_q?zg?agawga)‘g)a
g=1

where fau(x | pg, Xg, By, wy, Ag) is the density of the GHD given in (5) and, as before, 7, is
the gth mixing proportion.

4. Mixture of generalized hyperbolic factor analyzers

In the MGHD, the scale matrices X1,...,3g contain Gp(p + 1)/2 free parameters, i.e., a
number that is quadratic in p. When p is large, the number of parameters to estimate
becomes too big, so to overcome this issue Tortora et al. (2016b) propose the mixture of
generalized hyperbolic factor analyzers (MGHFA). In a factor analyzers model (Ghahramani
and Hinton 1997; McLachlan and Peel 2000), the random variable X can be represented as

Xi=pg+AgUig + €4 (8)

with probability my, for ¢ = 1,...,n and g = 1,...,G. The matrix A, is a p X ¢ matrix of
factor loadings. The factors U;, are independently distributed U;, ~ N, (0,1,) with ¢ < p,
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independently of €;; ~ N,(0,¥,), which are also independently distributed, where ¥, is a
p X p diagonal matrix with positive diagonal entries. The marginal distribution of X; from
model (8) is /\/},(;J,Q,AQA;;r + ¥,). Consider (6) and note that N can be decomposed as
N = AU +¢€, where U ~ N,(0,1,;) and € ~ N,(0, ¥), and A and ¥ are a p x ¢ factor loading
matrix and a p X p diagonal matrix with positive entries, respectively. From (7), it follows
that

X |V =0v~Ny(pp+va,v(AAT + ).

This leads to a mixture of generalized hyperbolic factor analyzers model with density

G
fucura(x | 9) =D mofau(x | pg, AgA) + Ty, o, Ag,wy),
g=1

where fou(x | pg, AgA; + W, a4, \g,wy) is the density of the GHD given in (5) and 7, are
the mixing proportions.

5. Extensions of the generalized hyperbolic distribution

The multiple scaled distributions are an extension of the distribution of the type in (3), where
the weight function is the product of p univariate functions (Forbes and Wraith 2014). This
transformation can be obtained by letting ¥ = I'®I'" and adding A, = diag (vf Lo yUp 1),
so that the density function of a multiple scaled GHD (MSGHD) is

fMSGH(X’Il/’F?(I)?avw?)‘):/ / qbp(FTX_H_AVa‘O?AV@)
0 0 (9)

X hy (v1,...,0p | W, A) dv,
where hy (v1,...,vp | 0) = h(vi |01) x --- x h(vp | 6,) is a p-dimensional density such that
the random variables Vi,...,V, are independent (Tortora et al. 2019). A finite mixture of

multiple scaled GHDs (MMSGHDs) has density

G
fMMSGH(X ‘ '19) = Zﬂ'ngSGH (X | l‘l’g7F97 q)gaanggy)\g) .
g=1

The MSGHD is not convex nor quasi-convex, and consequently there are situations in which
the contour plots are not convex. In some situations, see Figure 1a and 1b, a convex contour
plot can be more suitable. For this reason, Tortora et al. (2019) propose the convex MMSGHD
(cMMSGHD). A convex contour plot can be ensured by adding a constraint to the index
parameter A, i.e., A > 1, see Tortora et al. (2019) for details. The GHD cannot be obtained
as a special or limiting case of the MSGHD and vice versa. For this reason, Tortora et al.
(2019) propose the mixture of coalesced GHDs (MCGHD). A random variable X follows a
CGHD if it can be modeled as follows

X =wR+ (1 -w)S,

where w € (0,1), S is distributed according to a MSGHD fysan (@, T, @, a,w, A), and R =
I'Y where Y is distributed according to a GHD fou (u, T, ®, o, wp, Ag), where ¥ = T'®TY.
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MSGHD cMSGHD

(a) Results obtained with MSGHDs. (b) Results obtained with cMSGHDs.

Figure 1: Cluster partitions obtained using the MMSGHDs and cMMSGHDs, respectively,
on a three-component simulated dataset.

This implies that the density of a MCGHD is

fCGH (X ’ IJ‘7P7 @,a,w,A,WQ,)\O,W) - (10)
w.fGH (X ’ H, F, @7 &, Wo, )\0) + (1 - w)fMSGH (X ‘ M, F7 (I)a &, W, A) .

It is worth nothing that the main difference from the GHD is that the MSGHD parameters
wgy and A4 are p-dimensional vectors whereas the GHD parameters wo, and \gg are unidimen-
sional. The advantage of the MCGHD is that it includes both the GHD and the MSGHD as
special cases.

6. Implementation

6.1. Overview

The most widely used technique for parameter estimation in a finite mixture model context
is the expectation-maximization (EM) algorithm (Dempster, Laird, and Rubin 1977), which
is an iterative technique for finding maximum likelihood estimates when data are incomplete
or treated as incomplete. The EM algorithm iterates between two steps, an E-step and an
M-step. On the E-step, the (conditional) expected value of the complete-data log-likelihood,
Q say, is calculated. On the M-step, Q is maximized with respect to the parameter estimates.
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The E-step and the M-step are iterated until convergence is reached; see Section 6.2 for details
about stopping rules.

For the MGHFA, the parameters are estimated using an extension of the EM algorithm
called the alternating expectation-conditional maximization (AECM) algorithm (Meng and
Van Dyk 1997). Similar to the EM algorithm, it is based on the complete-data log-likelihood,
but it allows for the specification of different complete-data at each stage of the algorithm
and the M-step is replaced by a number of conditional maximization (CM) steps. For details
on parameter estimation in the MGHFA, refer to Tortora et al. (2016b). For the MMSGHD,
cMMSGHD and MCGHD, T cannot be found in closed form and an optimization routine is
used. The result is that, in each M-step, the likelihood increases with respect to I' but it is
not maximized; accordingly, the algorithm is formally a generalized EM (GEM) algorithm.
For details on parameter estimation, refer to Tortora et al. (2019).

6.2. Model selection, convergence, and evaluation

The five models require the choice of the number of components G and the MGHFA requires
the choice of the number of factors q. For both choices, the package offers four different
criteria: the Akaike information criterion (AIC; Akaike 1974), the AIC3 (Bozdogan 1993), the
Bayesian information criterion (BIC; Schwarz 1978), and the integrated completed likelihood
(ICL; Biernacki, Celeux, and Govaert 2000). Write I(9) and ¥ to denote the maximized log-
likelihood and the vector of parameters that maximizes the log-likelihood, respectively, and
let p denote the number of free parameters. When the algorithm converges, we compute 2,
as the a posteriori expected value of z;, and the maximum a posteriori (MAP) classification
values using the final Z;;; MAP {%;,} = 1 if maxj, {;,} occurs in component h = g, and
MAP {Z;4} = 0 otherwise. The various criteria are given as follows:

AIC = 21(9) — 2logn,  AIC3 =2I(9) —3logn,  BIC = 2I(9) — plogn,
n G

ICL ~ 21(9) — plogn +2Y_ Y MAP{Z,} log 2,
i=1g=1

where >7 4 Engl MAP{Z;4}log 24 is the estimated mean entropy.

The EM algorithm, the AECM algorithm, and the GEM algorithm used for the parameter
estimation of the models are iterated until convergence is reached. The convergence is deter-
mined using a stopping rule based on the Aitken acceleration (Aitken 1926). Let I¥) be the
value of the log-likelihood after k iterations. The asymptotic maximum of the log-likelihood
at iteration k can be estimated using the Aitken acceleration via

K J(e+1) _ (k)

(k) _ T =0
a 1) — je=1)°

An asymptotic estimate of the log-likelihood at iteration k + 1 is

1
(k+1) _ (k) (k+1) _ (k)
oo ¢ 1— a® (l : )7

and we consider the algorithm to have converged if

14D _1(R) € (0, ),
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where € is small (McNicholas, Murphy, McDaid, and Frost 2010).

The adjusted Rand index (ARI; Hubert and Arabie 1985), which compares predicted classi-
fications with true classifications, can be used to evaluate the results. The ARI corrects the
Rand index (Rand 1971) for chance; its expected value under random classification is 0 , and
it takes a value 1 when there is perfect class agreement. Steinley (2004) gives guidelines for
interpreting ARI values. For more pairwise agreement indices see the c1_agreement function
in the CLUE package (Hornik 2005).

7. MixGHD R package

MixGHD is an R package developed in an object-oriented design using the standard S4
paradigm and C programming language. The package contains five functions for model-
based clustering and classification: MGHD, MGHFA, MSGHD, cMSGHD, and MCGHD. The DA function
is a routine for discriminant analysis, the ARI function computes the adjusted Rand index,
and the contourpl function produce a contour plot. The package also contains the functions
rGHD, rMSGHD, and rMCGHD, to pseudo-randomly generate numbers from the corresponding
distributions, and the functions dGHD, dMSGHD, and dMCGHD to compute the density of the
corresponding distributions. Table 1 shows the input arguments for the MGHD, MGHFA, MSGHD,
cMSGHD, and MCGHD functions with a brief description.

7.1. Cluster analysis

To illustrate the use of the package, we use the bankruptcy dataset (Alman 1968) from the
MixGHD package . The dataset contains the ratio of retained earnings (RE) to total assets as
well as the ratio of earnings before interests and taxes (EBIT) to total assets of 66 American
firms. Half of the selected firms had filed for bankruptcy.

R> library("MixGHD")

R> data("bankruptcy", package = "MixGHD")

R> res <- MCGHD(data = bankruptcy[, 2:3], G = 2:3, method = "kmedoids",
+ max.iter = 1000, modelSel = "BIC")

The best model (BIC) for the range of components used is G = 2.
The BIC for this model is -288.7835.

R> summary(res)

The number of components used for the model is G = 2.

BIC = -288.7835. AIC = -238.4214. AIC3 = -261.4214. ICL = -294.7374.
Cluster N. of elements

1 1 36

2 2 30

The variables RE and EBIT are considered for cluster analysis. The BIC criterion is used to
select between G = 2 or G = 3, the maximum number of iterations is 1000, and k-medoids is
used as the starting criterion.
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Arguments Description

data An n X p matrix or data frame such that rows correspond to observations and
columns correspond to variables.
gparO0 An optional list containing the initial parameters of the mixture model. If

specified, it must have a list structure containing as many elements as the
number of components G. Each element must include all the parameters for
the selected model.

G A numerical vector giving a range of values for the number of compo-
nents/clusters; if not specified, G = 2.

max.iter  An optional numerical parameter giving the maximum number of iterations
each EM algorithm is allowed to use; 100 by default.

label An optional n dimensional vector. If label[i] = k, then observation i be-
longs to group k; If label[i] = O, then observation 7 is unlabeled; if NULL,
then the data have no known groups.

eps An optional number specifying the epsilon value for the convergence criteria
used in the EM algorithms; see Section 6.2.
method An optional string indicating the initialization criterion; if not speci-

fied k-means clustering is used.  Alternative methods are hierarchical
"hierarchical", k-medoids "kmedoids", random "random", and model-
based "modelBased" clustering.

nr An optional number indicating the number of starting values when random is
used, 10 by default.
scale An optional logical value indicating whether or not the data should be scaled;

true by default.

modelSel  An optional string indicating the model selection criterion; if not specified,
the AIC is used. Alternative methods are the BIC, ICL, and AIC3.

q Only when MGHFA is used, a numerical vector specifying the number of latent
factors; ¢ = 2 by default.

Table 1: Arguments for the MGHD, MGHFA, MSGHD, cMSGHD, and MCGHD functions.

The function summary shows the value of the BIC, AIC, AIC3, and ICL and the number of
elements in each cluster. The output is an S4 object of class ‘MixGHD’ containing the following
parameters:

e index: Value of the index used for model selection for each model, BIC in this case.
e AIC: Akaike information criterion.

e AIC3: Akaike information criterion 3.

e BIC: Bayesian information criterion.

e ICL: Integrated completed likelihood.

e gpar: A list of the model parameters in the rotated space.

e loglik: The log-likelihood values.
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e map: A vector of integers indicating the maximum a posteriori classifications for the
best model.

e par: A list of the model parameters.
e z: A matrix giving the raw values upon which map is based.
For each component, the estimated parameters are stored in the list gpar,
R> 1s(res@gpar[[1]])
(1] "alpha" "cpl" "cplO" ‘“gam" "mu" "phi" "wg"
R> 1s(res@gpar[[2]])

[1] llalphall llelll IICP:LOII llgamll Ilmull IIPhill Ilwg

using the function ARI we can measure the accuracy of the classification, the vector map
contains the membership for each unit.

R> ARI(res@map, bankruptcy[, 1])
[1] 0.8237573

R> table(res@map,bankruptcy[, 1])

0 1
133 3
2 0 30

The MCGHD has good performance on the bankruptcy dataset, with an ARI of 0.824 and
only three misclassifications. Figure 2a shows the obtained partition. The cluster represented
by o is characterized by skewness in both directions, which makes it hard to be identified
by less flexible clustering methods. Figure 2b shows the value of the log-likelihood at each
iteration of the EM algorithm. For comparison, the MGHD is applied on the same dataset.

R> resl <- MGHD(data = bankruptcy[,2:3], G = 2:3, method = "kmedoids",
+ max.iter = 1000, modelSel = "BIC")

R> ARI(resl@map, bankruptcyl[, 11)

[1] 0.01863933

One of the clusters is characterized by two outliers in two different directions, and this char-
acteristic affects the performance of the MGHD with an ARI close to zero. Figures 3a and3b

show the contour plots obtained using the MGHD and the MMCGHD, respectively, which
were obtained using the following commands:
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Figure 2: Results obtained using MCGHD on the bankruptcy dataset.

R> plot(resi)
R> plot(res)

7.2. Data generation and density estimation

For the three density functions: GHD, MSGHD, and MCGHD, the package also contains
functions to pseudo-randomly generate data (rGHD, rMSGHD, and rMCGHD) and for density
estimates (dGHD, dMSGHD, and dMCGHD). The input of the functions are described in Table 2.

The output of the random generation functions are pseudo randomly generated n x p datasets,
the output of the d functions are numerical vectors with the density values. The following
examples show the use of the rMCGHD and dMCGHD function, the use of the other functions is

analogues.

R> set.seed(12345)
R> datal <- rCGHD(n
R> set.seed(12345)
R> data2 <- rCGHD(n 600, p = 2, alpha = c(2, -2), omegav = c(2, 2),
+ omega = 3, lambdav = c(0.7, 0.9))

R> densities <- dCGHD(data2, p = 2, alpha = c(2, -2), omegav
+ omega = 3, lambdav = c(0.7, 0.9))

R> head(densities, n = 3)

2)

600, p

=c(2, 2),

[1] 0.03646365 0.03328875 0.04613655
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(a) Contour plot of the MGHD. (b) Contour plot of the MMCGHD.

Figure 3: Contour plots for the bankruptcy data, with symbols denoting predicted classifica-
tions.

Figures 4a and 4b show the datasets obtained using the rCGHD function. commands.

7.3. Discriminant analysis

To easily perform discriminant analysis, the package contains a routine called DA. The DA
function requires the input arguments in Table 1, with the exception of the data and labels
that are substituted by the input parameters in Table 3.

Discriminant analysis requires the dataset to be divided into a training set and a test set,
where ny and n9 are the number of units in the training and test sets respectively. The input
parameters change according to the chosen method. The outputs are:

e model: A list with the model parameters.

e testMembership: A vector of integers indicating the membership of the units in the
test set.

e ARItest : A value indicating the adjusted Rand index for the test set.

e ARItrain : A value indicating the adjusted Rand index for the training set.

We applied the DA routine to the sonar dataset from the MixGHD R package. The data
report the patterns obtained by bouncing sonar signals at various angles and under various
conditions. There are 208 patterns in all: 111 obtained by bouncing sonar signals off a metal

13



14 MixGHD: Mixture of Generalized Hyperbolic Distributions in R

Arguments Description

data (Only for density estimates) A n x p dataset.

n (Only for pseudo random number generation) number of observations to gen-
erate.

P Number of variables.

mu An optional p dimensional numerical parameter giving the mean of the distri-
bution; 0 by default.

alpha An optional p dimensional numerical parameter giving the skewness of the
distribution; 0 by default.

sigma An optional p x p symmetric scale matrix; identity matrix by default.

omega An optional numerical parameter giving the concentration of the distribution;
1 by default. Only for the GHD and CGHD.

lambda An optional numerical parameter giving the index of the distribution; 0.5 by
default. Only for the GHD and CGHD.

omegav An optional p dimensional numerical parameter giving the concentration vec-
tor of the distribution; vector of 1s by default. Only for the MSGHD and
CGHD.

lambdav An optional p dimensional numerical parameter giving the index vector of the
distribution; vector of 0.5s by default. Only for the MSGHD and CGHD.

gam An optional p x p I matrix. Only for the MSGHD and CGHD.

phi An optional p dimensional vector ®. Only for the MSGHD and CGHD.

g An optional numerical parameter with the weight for the CGHD.

Table 2: Arguments for the MGHD, MGHFA, MSGHD, cMSGHD, and MCGHD functions.

Arguments Description

train An ny X p matrix or data frame such that rows correspond to observations and
columns correspond to variables of the training set.

trainL An n; dimensional vector of membership for the units of the training set. If
trainL[i] = k, then the observation i belongs to group k.

test An ny X p matrix or data frame such that rows correspond to observations and
columns correspond to variables of the test set.

testL An no dimensional vector of membership for the units of the test set. If
testL[i] = k, then the observation i belongs to group k.

method An optional string indicating the method to be used for discriminant analysis;

if not specified, "GHD" is used. Alternative methods are the "MGHFA", "MSGHD",
"cMSGHD", and "MCGHD".

Table 3: Additional arguments for the DA function.

cylinder and 97 obtained by bouncing signals off rocks. Each pattern is a set of 60 numbers
(variables) taking values between 0 and 1.

R> data("sonar", package = "MixGHD")

R> lab <- as.numeric(factor(sonar[, 61]))
R> test <- sonar[c(1:29, 175:33), 1:60]
R> testL <- lab[c(1:29, 175:33)]
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Figure 4: Scatter plot of data generated using CGHDs.
R> train <- sonar[c(30:174), 1:60]

R> trainl <- lab[c(30:174)]

The command lab <- as.numeric(factor(sonar[, 61])) transforms the labels into a nu-
merical vector. The data are divided into training and test sets, with 30% of the data in each
cluster belonging to the test set.

R> set.seed(7)
R> modelDA <- DA(train, trainlL, test, testlL, max.iter

200)

The best model (AIC) for the range of components used is G = 2.
The AIC for this model is -12460.25.

R> 1s(modelDA)
[1] "ARItest" "ARItrain" "model" "testMembership"
R> modelDA$ARItest

[1] 0.6605439

R> modelDA$ARItrain

(1] 1

15
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As result of the DA routine, we obtain the ARI for the test and on the training sets, as well
as the model and the membership for the test set. Model is an S4 object of class ‘MixGHD’.
For the test set of the sonar data, the ARI is 0.660 and, because no model was specified, the
routine used the default model, i.e., MGHD.

7.4. Classification

The wine dataset, pgmm package (McNicholas et al. 2019), contains data on 27 chemical and
physical properties of wine from the Piedmont region of Italy. There are three different types
of wine: Barolo, Grignolino, and Barbera. To perform classification we assume that 25% of
the memberships are unknown, the value 0 indicates unknown membership.

R> data("wine", package = "pgmm")
R> lab <- as.numeric(factor (wine[, 1]))
R> lab[seq(1, 178, 4)] <- 0

MGHD, MSGHD, cMSGHD, and MCGHD are used to classify the data, the parameter label contains
the membership vector, the starting criterion used is k-medoids. To compute the ARI only
the units with unknown membership are used.

R> resMGHD <- MGHD(winel[, 2:28], G = 3, label = lab, method = "kmedoids")

The best model (AIC) for the range of components used is G = 3.
The AIC for this model is -10121.01.

R> resMSGHD <- MSGHD(wine[, 2:28], G = 3, label = lab, method = "kmedoids")

The best model (AIC) for the range of components used is G = 3.
The AIC for this model is -11429.97.

R> rescMSGHD <- cMSGHD(wine[, 2:28], G = 3, label = lab, method = "kmedoids')

The best model (AIC) for the range of components used is G = 3.
The AIC for this model is -11439.12

R> resMCGHD <- MCGHD(wine[, 2:28], G = 3, label = lab, method = "kmedoids")

The best model (AIC) for the range of components used is G = 3.
The AIC for this model is -11350.15.

R> ARI(resMGHD@map[lab == 0], wine[lab == 0, 1])
(11 1
R> ARI(resMSGHD@map[lab == 0], wine[lab == 0, 1])

[1] 0.9338421
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R> ARI(rescMSGHD@map[lab == 0], wine[lab == 0, 1])
[1] 0.8627973

R> ARI(resMCGHD@map[lab == 0], wine[lab == 0, 1])
[1] 1

All the methods have good performances, however, MGHD and MCGHD outperform MSGHD
and cMSGHD with an ARI equal to one.

7.5. Computational details

The package uses several R packages and functions. To implement the Bessel function the
package Bessel (Maechler 2019) is used with exponentially scaled results to avoid underflow.
The gradient is calculated using the function grad, from the package numDeriv (Gilbert and
Varadhan 2019). To generate data the functions rgig and rmvnorm from the packages ghyp
(Weibel, Luethi, and Breymann 2020) and mvtnorm (Genz, Bretz, Miwa, Mi, Leisch, Scheipl,
and Hothorn 2020), respectively, are used. To reduce the computational time, the expectation
step and the parameter updates of the functions MGHD, MGFA, MSGHD, cMSGHD, and MCGHD, are
coded in C. The parameter initialization is done in R using the following functions: kmeans
for k-means, gpem for model-based (package mixture, Pocuca et al. 2021), pam for k-medoids
(package cluster, Maechler et al. 2021), and hclust for hierarchical. The starting parameters
are then passed to C where the appropriate algorithm for each function is used, see Section 6.
The outputs from C are passed back to R where the indices discussed in Section 6.2 are
computed. All the other functions are implemented entirely in R.

8. Conclusion

This paper illustrates the use of the MixGHD package for R. The package contains five main
functions for model-based clustering, classification, and discriminant analysis based on the
generalized hyperbolic distribution (GHD). The GHD is a very flexible distribution; other well-
known distributions are special or limiting cases thereof. It can detect clusters characterized
by a variety of shapes because it has skewness, concentration, and index parameters. The
MGHD function performs clustering and classification using the GHD, the MGHFA function uses
the mixture of generalized hyperbolic factor analyzers, useful for high-dimensional data. The
other three functions: MSGHD, cMSGHD, and MCGHD, implement the three corresponding models
that represent three recently proposed and more flexible variations of the MGHD. All of
the models can be used with different starting techniques and several other options. The
package also contains a DA routine for discriminant analysis, an ARI function that computes
the adjusted Rand index, a contourpl function for contour plots and several functions for
pseudo-random number generation and density estimation using the GHD, MSGHD, and
MCGHD. The paper shows how to use the functions and to interpret the outputs on real
datasets.

The current version of the package includes only one model for high-dimensional data, i.e., the
MGHFA. Future research will focus on the extension of the MSGHD and MCGHD for high
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dimensional data. Moreover, the GHD could also be used for model-based regression, in which
the random response variables follow a generalized hyperbolic regression model given a set of
explanatory variables.
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