
PBSsatellite 1.0: User’s Guide

Nicholas R. Lefebvre
MacEwan University
lefebvren4@mymacewan.ca

Nicholas M. Boers
MacEwan University
boersn@macewan.ca

Lyse Godbout
Fisheries and Oceans Canada
Lyse.Godbout@dfo-mpo.gc.ca

Rowan Haigh
Fisheries and Oceans Canada
Rowan.Haigh@dfo-mpo.gc.ca

Technical Report
MACEWANU-CMPT-TR--2017-1

August 17, 2017

Department of Computer Science
MacEwan University

Edmonton, Alberta, Canada

mailto:lefebvren4@mymacewan.ca
mailto:boersn@macewan.ca
mailto:Lyse.Godbout@dfo-mpo.gc.ca
mailto:Rowan.Haigh@dfo-mpo.gc.ca

Abstract

This report describes the first version of PBSsatellite, software designed to simplify the extraction
and statistical analysis of gridded satellite data. This software extends the R Project for Statistical
Computing, and it uses PBSmapping, an existing R package, to aid in spatial analysis and the
production of plots. The tools found in this package provide users with the functionality necessary
to work with data from a variety of sources. Additionally, users are able to write their own data
interpretation algorithms and provide them as arguments to some analysis functions within this
package.

Acknowledgements

The MacEwan authors thank Dr. Lyse Godbout from Fisheries and Oceans Canada for approach-
ing us with the business case that led to the PBSsatellite R package. Moreover, they thank both
of their collaborators at Fisheries and Oceans Canada for their insight and assistance during the
development of the software.

Contents

1 Introduction 3
1.1 NetCDF dependency . 3
1.2 Data sources . 4

2 Data structures 7
2.1 ncdfData data structure . 7

2.1.1 Attributes . 7
2.1.2 Structure details . 8

2.2 TimeSeries data structure . 12

3 Usage patterns 15
3.1 Creating time series plots . 15
3.2 Working with coastlines . 17
3.3 Converting HDF to NetCDF to ncdfData . 19

3.3.1 Conversion software . 20
3.3.2 Before converting HDF files . 20
3.3.3 Conversion process: HDF to NetCDF to ncdfData 21

4 PBSsatellite functions 27
PBSsatellite . 27
assessMissingData . 28
clipRegion . 30
convert.ncdfData . 32
create.ncdfData . 34
extractSlices . 36
extractTimeSeries . 38
listToDF . 41
ncdfData . 43
plot.ncdfData . 44
print.ncdfData . 46
read.ncdfData . 47

1

removeAnomalousValues . 49
scaleRegion . 51
sst . 54
to.EventData . 55

References 57

2

1
Introduction

When the development of the package PBSsatellite began in 2015, the existing R packages
related to satellite data typically focused on importing, rather than analyzing, data. With these
libraries, users were largely responsible for writing their own analysis functions. This package
was created to address the analysis need. It provides a front end to the existing import tools,
and it provides additional functions for satellite data analysis. In some cases, it complements
PBSmapping, an existing R package that offers tools for spatial analysis and plotting.

This chapter explores two fundamental aspects of PBSsatellite: (a) the use of the NetCDF file
format and the reasons for its adoption and (b) the data sources that were used in the development
of the package’s data structures.

Chapter 2 explains the package’s primary data structure (ncdfData). Most of the package’s
functions for the extraction and manipulation of data require objects of this structure. Addition-
ally, this chapter explains the TimeSeries data structure in further detail. This latter structure
simplifies the visualization of satellite data trends and the creation of plots.

Chapter 3 demonstrates complex applications of PBSsatellite’s features. The first example
shows the creation of a time series plot that compares, over time, sea surface temperatures for
the Northern and Southern Hemispheres. The second harnesses the power of PBSmapping to
create and subsequently use a complex polygon for selecting and plotting satellite data covering
the BC coast. The final example guides a user through the conversion from an incompatible file
format (HDF) to a NetCDF file that can be imported into PBSsatellite.

This report concludes with Ch. 4, which documents the functions found in PBSsatellite. This
function documentation is also available within R’s help system.

1.1 NetCDF dependency

Three formats are widely used for exchanging and storing meteorological data: (a) Extensible
Markup Language (XML), (b) Network Common Data Format (NetCDF), and (c) Hierarchical Data
Format (HDF) [1]. XML is substantially more verbose than the other two formats, and this verbosity
leads to unnecessarily large files. With this being the case, XML was not seriously considered

3

for integration into PBSsatellite. The two remaining formats, NetCDF and HDF, received further
consideration.

We selected NetCDF over HDF primarily due to the availability and quality of R packages for
importing these files. At the time of writing, the Comprehensive R Archive Network (CRAN) did
not host any packages explicitly for importing HDF files. The package rgdal, available on CRAN1,
provides bindings for the Geospatial Data Abstraction Library, which can import HDF files when
appropriately configured. Unfortunately, the available macOS and (reportedly) Windows versions
are built without support for HDF. In contrast, three available NetCDF packages were hosted on
CRAN: ncdf, ncdf4, and RNetCDF.2 Therefore, we selected NetCDF over HDF for PBSsatellite.

After focusing on NetCDF, we aimed to build upon the best of the three available NetCDF
packages. The best package would maximize NetCDF compatibility and minimize additional sys-
tem requirements (see Table 1.1).

Table 1.1: NetCDF Packages

Package Advantages Disadvantages

ncdf • minimal requirements • supports only NetCDF version 3

ncdf4 • supports NetCDF versions 3 & 4
• supports offsetting into data files

• requires library netcdf (≥ 4.1)

RNetCDF • none for PBSsatellite • supports only NetCDF version 3
• requires library netcdf (≥ 3.6),
udunits (≥ 1.11.7), or
udunits2 (≥ 2.1.22)

It was important to make PBSsatellite compatible with as many data sets as possible. Given
the information in Table 1.1, we chose ncdf4. While ncdf4 adds one external dependency,3 it
provides support for both NetCDF version 3 and 4 and the ability to offset into NetCDF data files.
When users are interested in only a subset of data within a large data set, the offset functionality
can effectively skip irrelevant data to reach desired data, making processing significantly faster.

1.2 Data sources

Before designing the ncdfData object (Section 2.1), eight data sets were obtained and in-
spected. Five of these data sets were from the National Oceanic and Atmospheric Administration
(NOAA), one was from the Joint Institute for the Study of the Atmosphere and Ocean (JISAO),
one was from the U.S. Joint Global Ocean Flux Study (USJGOFS), and the last was from the Cli-

1rgdal is available at https://cran.r-project.org/web/packages/rgdal/index.html.
2ncdf is no longer available on CRAN, ncdf4 is available at https://cran.r-project.org/web/packages/

ncdf4/index.html, and RNetCDF is available at https://cran.r-project.org/web/packages/RNetCDF/
index.html. Additional packages suitable for importing NetCDF files appear to now be available, too.

3This external library, netcdf, is available for macOS, Linux, and Windows from a variety of sources. As a starting
point, see the official site at http://www.unidata.ucar.edu/software/netcdf/. Windows users can download
a binary installer that will simplify the installation.

4

https://cran.r-project.org/web/packages/rgdal/index.html
https://cran.r-project.org/web/packages/ncdf4/index.html
https://cran.r-project.org/web/packages/ncdf4/index.html
https://cran.r-project.org/web/packages/RNetCDF/index.html
https://cran.r-project.org/web/packages/RNetCDF/index.html
http://www.unidata.ucar.edu/software/netcdf/

Table 1.2: The NetCDF data sources initially selected prior to designing the ncdfData object. A
data location of “error” indicates that the R ncdf4 library could not open the file, and such files
were not used in the design stage.

Source Data Type Data Location

NOAA Bedrock error
NOAA Sea Surface Temperature (degrees Kelvin) 1
NOAA Sea Surface Temperature (degrees Celsius) 1
NOAA Sea Surface Temperature error
NOAA Sea Surface Temperature (degrees Kelvin) 1
JISAO Chlorophyll Concentrations 1
USJGOFS Chlorophyll Concentrations 2
CRU Sea Surface Temperature (degrees Kelvin) 1

mate Research Unit (CRU) at the University of East Anglia, UK. These data sets were analyzed for
consistencies, particularly in data location and attribute naming.

Where data sets consistently named their attributes in a particular way, this naming conven-
tion became the default for ncdfData attribute acquisition. For example, most NetCDF data sets
use the names “lat” and “lon” to store attributes for latitude and longitude coordinate sequences,
respectively. Whenever possible, PBSsatellite locates such fundamental attributes automatically.
When a NetCDF data file does not follow the expected naming conventions, the user must provide
attribute names to the import functions to ensure that PBSsatellite locates the correct attributes.

The data variable most commonly appeared as the first variable (Table 1.2, “Data Loca-
tion”). Some data sets, however, used a different location, e.g., the USJGOFS data set used the
second data variable. For this reason, the first variable is the default when creating an ncdf-

Data object, but it can be overridden when necessary using the dataVariable argument of a
PBSsatellite function named read.ncdfData. For example, the user could pass dataVari-
able=2 to read.ncdfData when loading the USJGOFS data set.

The sort order used for the X and Y coordinates was also common between several data
sources. Most of the data sets had increasing X (longitude from west to east) and decreasing
Y (latitude from north to south) coordinates. While it is possible to reorder these coordinates
after creation, the operation can be time consuming. For that reason, we adopted the most
frequently encountered order: increasing X and decreasing Y. When a NetCDF file does not follow
this convention, read.ncdfData detects the situation and reorganizes the X and Y coordinates
accordingly so that the resulting object is always consistent in its ordering.

The time units within NetCDF files vary. For example, some files strictly use seconds since
an epoch, whereas others use minutes or hours since an epoch. The format of this time attribute
also varies greatly between data sets, e.g., “seconds since 1981-01-01 00:00:00” and “hours
since 1997-1-1 1:0:0”. When creating an ncdfData object, the import routine performs a date
conversion on these time attributes to create consistent timestamps. The creation of consistent
timestamps simplifies subsequent data extraction and comparison operations. For example, prior
to date conversion, a sheet of data with the epoch “seconds since 1981-01-01 00:00:00” could
have erroneously received a date of “1”. After introducing date conversion, however, it correctly
receives the date “1981-01-01 00:00:01”.

5

NetCDF data sets frequently have missing data (see Section 2.1.2), and the value used to
represent them varies between data sets, e.g., one data set might use -32767 and another might
use -99. The ncdf4 package’s function nc_open, which is used by PBSsatellite to read NetCDF
files, automatically detects the NetCDF’s missing value attribute and replaces all occurrences of
the specified value with NA. Given this ncdf4 functionality, missing data consistently appears as
NA within ncdfData objects.

One final significant inconsistency occurs with temperature units in sea surface temperature
data sets. Chapter 2 describes that ncdfData objects contain an attribute that stores the ncdf-
Data’s data units. In most cases, the attributes in ncdfData objects are detected upon import
without input from the user. In cases where an attribute is not located or an incorrect value is
selected, the user can manually change the unit’s variable when creating the ncdfData object
(the same applies with the data type variable).

6

2
Data structures

PBSsatellite works with gridded satellite data in the NetCDF format and provides users with
tools for manipulating, extracting, and analyzing information in a user-friendly manner. Given the
variety of and variability within NetCDF files, this package introduces a new data type, ncdfData,
to make the representation of data consistent within PBSsatellite. In addition to this new type,
the extractTimeSeries function produces a well-defined data frame intended for statistical
analyses. The sections that follow describe both of these data structures.

2.1 ncdfData data structure

The ncdfData data structure is the primary type used by the functions in PBSsatellite. The
structure is a list of named objects (slices), where each slice represents satellite data from a mo-
ment in time and is named with a timestamp (a required date and an optional time in the format
YYYY-MM-DD HH:MM:SS). More specifically, each slice is a list of matrices, where each matrix
represents a layer of information. One of these layers, the data layer, is mandatory, and it con-
tains the gridded satellite data corresponding to the timestamp of the slice. This layer is always
the first in the slice, i.e., the first element in the list of layers. In some situations, a slice has ad-
ditional layers such as the missing and/or error layer. These additional layers are created by the
scaleRegion function, which is used to change the resolution of an ncdfData object.

2.1.1 Attributes

In addition to the R objects (lists and matrices) that must appear in an ncdfData object,
these objects must also have a set of attributes (Table 2.1). This section describes each attribute.

Recall that an ncdfData object is a list of slices. Since it is a list, the conventional attribute
names refers to the character vector that provides each slice’s name. As described above, the
slice names are timestamps, and naming slices in this manner allows for easy data extraction of
both exact dates and date ranges. Slices are always stored in chronological order, i.e., the first
slice in an ncdfData object is the oldest.

7

Table 2.1: Required attributes for an ncdfData object.

Attribute Description

names Vector of timestamps, one per slice
dataType Description of the data set
dataUnits Units of the data set
x Vector of longitude coordinates
y Vector of latitude coordinates
class Type of the data structure (ncdfData)

The dataType attribute describes the data being stored, e.g., “Long Term Mean of Sea
Surface Temperature”. Its value is often retrieved automatically when importing NetCDF data, but
the user can override the description if desired.

The dataUnits attribute refers to the actual units for the object’s data component,
e.g., “degC” or “Kelvin”. As with dataType, it is often retrieved automatically and can be overrid-
den. Within an ncdfData object, the units are consistent, i.e., the dataUnits attribute applies
to every slice within the object.

The x attribute provides a numeric vector of longitude values (in degrees) for the X axis of
the data in each slice. This sequence is always stored in ascending order, i.e., longitude values
increase from left to right on a map. Note that internally, this attribute actually labels the rows
of a slice matrix rather than the columns. Storing the data in this manner allows for the familiar
ordering of X and Y when indexing a matrix, i.e., [X, Y].

The y attribute provides a numeric vector of latitude values (in degrees) for the Y axis of
the data in each slice. This sequence is always stored in descending order, i.e., latitude values
decrease from top to bottom on a map. Note that internally, this attribute actually labels the
columns of a slice matrix rather than the rows for the reason discussed earlier.

Given the sort order of the values in the x and y attributes, the top-left corner of a map is the
origin. For example, if a variable named m contains a matrix of data, the point m[1, 1] is located
in the top-left corner of a plotted map.

In addition to the above attributes, an ncdfData object must have the class ncdfData.
Where PBSsatellite functions expect ncdfData objects, they may verify the existence of this
class.

2.1.2 Structure details

As introduced in Sect. 2.1, an ncdfData object often contains multiple time slices. A single
slice can be retrieved by either name or index, e.g., the syntax sst$"2001-02-01" and sst

[[1]] both retrieve the first (and oldest) slice from the sst data set.1 Each slice must always
have a layer (data) containing the satellite data, and it may contain additional layers such as
the missing and/or error layer. The scaleRegion function creates these two additional layers
when (and only when) it scales down an ncdfData object. The missing layer (miss) contains the

1The sst data set comes with PBSsatellite, and it can be loaded with the command data(sst).

8

* data

error

Name: 2017-01-02

miss

Name: 2017-01-05

{Single slice

* data

error

miss

Figure 2.1: ncdfData Layers. (* denotes the required layer)

percentage of missing values encountered when scaling down a region. Similarly, the error layer
(error) contains the percentage of error when scaling down a region. It is important to note that
these additional layers must have the same dimensions as the data layer, i.e., they must contain
point-for-point as much data (Fig. 2.1).

Each layer in an ncdfData object is stored as a matrix with dimensions c(length(x),
length(y)). For slices with multiple layers, individual layers can be retrieved using list notation
in the same way that slices can be retrieved.

In certain data sets, such as the ones that pertain to SST (Sea Surface Temperature), it is
common to have missing data values, e.g., data points on land or points obstructed by cloud
cover. In an ncdfData object, an NA value is used to represent missing data.

Using matrices to store geographic data can be problematic as matrices are inherently rect-
angular and areas of interest may be non-rectangular. A non-rectangular region can be repre-
sented within rectangular matrices by assigning the value NaN (Not a Number) to points outside
the region of interest.

In order to save processing time and space for such an ncdfData object, functions that clip
slices will always produce the lowest dimension matrices (considering all layers) that can store
all of the object’s data (values not encoded as NaN). In other words, any rows or columns in an
ncdfData object that contain NaN values exclusively will be removed, as these regions are no
longer of importance due to clipping. For an example, see Figs. 2.2 and 2.3.

9

load the required data

data(sst)

data(worldLL)

plot the first SST slice along with the worldLL polygons

plot(sst, slice=1, plt=c(.08, .98, .12, 1), mgp=c(1.7, 0.4, 0))

addPolys(worldLL)

create 3 arbitrary polygons

polys <- data.frame(

PID=c(rep(1, 4), rep(2, 4), rep(3, 4)),

POS=c(1:4, 1:4, 1:4),

X=c(155, 160, 150, 180, 0, 20, 20, 0, 45, 65, 55, 35),

Y=c(75, 50, 10, 85, 20, 20, 40, 40, 50, 50, 65, 65))

create and add the PolySet

polys <- as.PolySet(polys, projection="LL")

addPolys(polys, col="blue")

(a) R code used to generate the plot in (b).

100 200 300

−
50

0
50

Longitude (°)

La
tit

ud
e

(°
)

(b) Plot generated from the code in (a).

Figure 2.2: Three arbitrary polygons (blue) and the polygons from PBSmapping’s worldLL data
set (white) plotted on unclipped ncdfData.

10

load the required data

data(sst)

data(worldLL)

create 3 arbitrary polygons

polys <- data.frame(

PID=c(rep(1, 4), rep(2, 4), rep(3, 4)),

POS=c(1:4, 1:4, 1:4),

X=c(155, 160, 150, 180, 0, 20, 20, 0, 45, 65, 55, 35),

Y=c(75, 50, 10, 85, 20, 20, 40, 40, 50, 50, 65, 65))

create a PolySet

polys <- as.PolySet(polys, projection="LL")

clip the SST data set using the polygons

sst <- clipRegion(sst, polygons=polys)

plot the first (clipped) SST slice along with the worldLL and

arbitrary polygons

plot(sst, slice=1, plt=c(.08, .98, .12, 0.98), mgp=c(1.7, 0.4, 0))

addPolys(worldLL)

addPolys(polys)

(a) R code used to generate the plot in (b).

50 100 150

20
40

60
80

Longitude (°)

La
tit

ud
e

(°
)

(b) Plot generated from the code in (a).

Figure 2.3: The result of clipping ncdfData using the polygons in Fig. 2.2. In the resulting
ncdfData object, NaN values represent clipped areas outside of the three polygons and NA values
represent areas inside the polygons that have a missing data component.

11

The code below shows creating, printing, and plotting a trivial ncdfData object.

d <- list()

d$`2017-06-16` <- list()

d$`2017-06-16`$data <-

matrix(c(1, 1, 2, 3),

nrow=2,

byrow=FALSE)

attr(d, "x") <- c(-128, -127)

attr(d, "y") <- c(49, 48)

attr(d, "dataType") <- "Sample"

attr(d, "dataUnits") <- "none"

attr(d, "class") <- "ncdfData"

print(d)

NCDF data

Data type: Sample

Data units: none

Slices:

Count: 1

First: 2017-06-16

Last: 2017-06-16

Slice data:

X: -128.000 to -127.000 by 1.000

Y: 48.000 to 49.000 by 1.000

print(d$`2017-06-16`$data)

[,1] [,2]

[1,] 1 2

[2,] 1 3

plot(d, slice=1)

−128 −127

48
48

.5
49

Longitude (°)

La
tit

ud
e

(°
)

2.2 TimeSeries data structure

A TimeSeries object is a list of data frames that contains an analytical summary
of an ncdfData’s slices over time. These objects can be created using the function
extractTimeSeries.

extractTimeSeries(ncdfData, xlim=NULL, ylim=NULL,

polygons=NULL, functions=c("sum", "mean", "sd"),

na.rm=TRUE, tlim=NULL, combine=1, by=NULL,

include.lowest=TRUE)

The extractTimeSeries function accepts both standard R summary functions (e.g., sum,
mean, and sd) and user-defined summary functions. User-defined summary functions allow users
to incorporate their own research and summary techniques into their analysis. The functions
argument of extractTimeSeries determines the summary functions to apply when creating
the TimeSeries.

Using the polygons argument to extractTimeSeries, a user can restrict the application
of the summary function to subregions in each ncdfData slice. If the polygons argument is not
provided, the whole ncdfData is considered one large subregion and the entire object will be
summarized.

A TimeSeries object contains a list of data frames where each data frame summarizes a
single slice of an ncdfData object. Each polygon from polygons results in an additional row
identified by a PID (polygon identifier). Each summary function creates an additional column
identified by the function name. Within a single TimeSeries object, all of the data frames are
uniform.

The polygons object must be a PolySet.2 Figure 2.4 shows the creation of a trivial PolySet
and its use with extractTimeSeries.

Slices from the original ncdfData object may be omitted from the TimeSeries object using
extractTimeSeries’s tlim (time limit) argument. When the user provides a tlim argument,

2The PolySet object is defined by PBSmapping. After loading the PBSmapping package in R, view the PolySet
documentation with the command ?PolySet.

12

load sample ncdfData object

data(sst)

create a PolySet with two polygons

polys <- data.frame(

PID=c(rep(1, 4), rep(2, 4)),

POS=c(1:4, 1:4),

X=c(155, 160, 150, 180, 0, 20, 20, 0),

Y=c(75, 50, 10, 85, 20, 20, 40, 40))

polys <- as.PolySet(

polys, projection="LL")

create a time series object that

contains a summary for each of the

two polygons

ts <- extractTimeSeries(sst, polygons=polys)

display the resulting object (right)

print(ts)

$`2001-02-01`

PID sum mean sd

1 1 1190.98 2.802306 7.5412064

2 2 1729.63 15.040261 0.8559354

$`2001-03-01`

PID sum mean sd

1 1 1152.40 2.711529 7.4471030

2 2 1733.61 15.074869 0.7494353

$`2001-04-01`

PID sum mean sd

1 1 1254.69 2.952212 7.716375

2 2 1825.51 15.874000 0.721301

$`2001-05-01`

PID sum mean sd

1 1 1535.88 3.613835 8.1701254

2 2 2082.60 18.109565 0.5885894

(a) The code to create a TimeSeries object. The function
extractTimeSeries uses sum, mean, and sd by default.

(b) The resulting TimeSeries object cre-
ated by the sample code in (a).

Figure 2.4: Sample code to create a TimeSeries object and the resulting object.

only the slices that fall within the provided tlim will be used to create the TimeSeries object.

The xlim and ylim arguments allow the user to limit the range of x and y coordinates that
will be used in the TimeSeries. Similar to the tlim argument, only the coordinates that fall
within the ranges of xlim and ylim will be used to create the TimeSeries. When using the
xlim and ylim arguments combined with polygons, it is possible to clip out polygons entirely.
When such clipping occurs, the resulting data frames do not contain rows for entirely clipped
polygons, e.g., Fig. 2.5.

13

load ncdfData object

data(sst)

create a PolySet with three polygons

polys <- data.frame(

PID=c(rep(1, 4), rep(2, 4), rep(3, 4)),

POS=c(1:4, 1:4, 1:4),

X=c(155, 160, 150, 180, 0, 20, 20,

0, 45, 75, 65, 35),

Y=c(75, 50, 10, 85, 20, 20, 40,

40, 80, 90, 75, 65))

polys <- as.PolySet(polys, projection="LL")

create a time series object that contains

one summary for each polygon that is not

clipped by the xlim/ylim argument

ts <- extractTimeSeries(sst, polygons=polys,

xlim=c(0, 100), ylim=c(35, 60))

display the resulting object (right)

print(ts)

$`2001-02-01`

PID sum mean sd

1 2 1196.96 14.59707 0.4590395

$`2001-03-01`

PID sum mean sd

1 2 1203.55 14.67744 0.3992889

$`2001-04-01`

PID sum mean sd

1 2 1269.96 15.48732 0.3930226

$`2001-05-01`

PID sum mean sd

1 2 1459.84 17.80293 0.3553732

(a) Code that creates a TimeSeries object. The function
extractTimeSeries accounts for both PolySet’s poly-
gons and the xlim and ylim arguments.

(b) The resulting TimeSeries object cre-
ated by the sample code in (a). Notice
that the X/Y limits caused the first and third
polygons to be clipped.

Figure 2.5: Sample code to create a TimeSeries object that combines a PolySet with xlim and
ylim arguments. Note that two polygons (PIDs 1 and 3) are missing in the resulting TimeSeries
due to a clipping operation specified by the xlim and ylim arguments.

14

3
Usage patterns

This chapter describes some common usage patterns and aims to further explain the pack-
age’s functionality. PBSsatellite’s functionality can greatly simplify otherwise complex operations.

The first example describes how to create a time series plot from imported satellite data to
visualize changes over time. The second describes how to limit such a plot to only those data
points that occur within a specific region. It leverages functionality from a related package, PB-
Smapping, to define a complex polygon for British Columbia’s coastline. Given the polygon, it
extracts the data from an ncdfData object that overlap with the ocean. It uses this subset of
points to ultimately create a time series plot. In the last example, a sequence of files from ver-
sion 4 of the Hierarchical Data Format (HDF) are converted to NetCDF. Following the conversion,
PBSsatellite can import the data into R.

3.1 Creating time series plots

When studying satellite data, the ability to quickly visualize trends for a specific geographic
region can improve the efficiency of data analysis. In PBSsatellite, the extractTimeSeries

function returns a TimeSeries object. This object has a straightforward structure (Section 2.2),
and using the PBSsatellite function listToDF, can be converted into a data frame that combines
time slices and can be easily plotted using built-in R functions.

Consider the first slice of the sea surface temperature data set (sst) included with the
PBSsatellite package (Fig. 3.1a). Suppose that the user wants to extract time series data for each
hemisphere and plot the mean sea surface temperature for each hemisphere. The PBSmapping
commands

15

g <- makeGrid(x=c(0, 360), y=c(-90, 0, 90), addSID=FALSE)

print(g)

PID POS X Y

1 1 1 0 -90

2 1 2 360 -90

3 1 3 360 0

4 1 4 0 0

5 2 1 0 0

6 2 2 360 0

7 2 3 360 90

8 2 4 0 90

create a PolySet with one polygon for each hemisphere (Fig. 3.1b). Superimposing the two poly-
gons (Fig. 3.1b) over the sea surface temperatures (Fig. 3.1a) with the commands

plot(sst, slice=1)

addPolys(g, col=adjustcolor(c("blue", "red"), alpha.f=0.2))

produces Fig. 3.1c and clearly shows the relationship between the polygons and the data set.

100 200 300

−
50

0
50

Longitude (°)

La
tit

ud
e

(°
)

100 200 300

−
50

0
50

Longitude (°)

La
tit

ud
e

(°
)

100 200 300
−

50
0

50
Longitude (°)

La
tit

ud
e

(°
)

(a) The sst data set bundled
with PBSsatellite.

(b) The PolySet generated by
makeGrid.

(c) The PolySet representing
the two hemispheres superim-
posed on the sst data set.

Figure 3.1: Input data used in this example.

Given this input data, the PBSsatellite function extractTimeSeries can extract summary
data for each polygon from each slice of the sst object. The command

extractTimeSeries(sst)

will generate Fig. 3.2a. Although such a TimeSeries object follows rather directly from the input
data, it is not especially amenable to plotting and further analysis. The PBSsatellite function
listToDF simplifies further processing by using the attribute names to collapse the list of data
frames into a single data frame while generating a new column for the names (Fig. 3.2b).

Given the data frame from listToDF, built-in R functions can generate a time series plot
(Fig. 3.3). This figure provides code for the complete process that includes creating one polygon
for each hemisphere, creating a TimeSeries object, and plotting the collapsed time series object.

16

$`2001-02-01`

PID sum mean sd

1 1 357483.4 15.46141 10.73330

2 2 246355.0 11.67670 11.95005

$`2001-03-01`

PID sum mean sd

1 1 355020.1 15.35488 10.92622

2 2 247695.1 11.74022 12.07278

$`2001-04-01`

PID sum mean sd

1 1 342895.3 14.83047 11.02855

2 2 255777.8 12.12332 12.28897

$`2001-05-01`

PID sum mean sd

1 1 325321.3 14.07038 10.92656

2 2 271396.7 12.86362 12.42489

names PID sum mean sd

1 2001-02-01 1 357483.4 15.46141 10.73330

2 2001-02-01 2 246355.0 11.67670 11.95005

3 2001-03-01 1 355020.1 15.35488 10.92622

4 2001-03-01 2 247695.1 11.74022 12.07278

5 2001-04-01 1 342895.3 14.83047 11.02855

6 2001-04-01 2 255777.8 12.12332 12.28897

7 2001-05-01 1 325321.3 14.07038 10.92656

8 2001-05-01 2 271396.7 12.86362 12.42489

(a) Sample list produced by extractTime-

Series.
(b) Sample data frame returned from listToDF when
given the list in (a).

Figure 3.2: Conversion from a list produced by extractTimeSeries to a data frame using the
function listToDF.

3.2 Working with coastlines

Satellite data sets often include points spanning the entire globe, and in many cases, they
may contain readings from both land and water. Meanwhile, analysis may focus on a specific
geographic area, e.g., only measurements for the water within a region. This section provides an
example of selecting a region of interest (a coastline) and excluding land measurements from the
ncdfData object.

In this scenario, a user wants to perform sea surface temperature analysis on the coastal
region of British Columbia (BC). Consider the sea surface temperature data set (sst) included with
PBSsatellite, which was previously used in Sect. 3.1 (Fig. 3.1a). The PBSmapping commands

bcCoast <- data.frame(PID=c(rep(1, 7)), POS=c(1:7),

X=c(223, 226, 235, 238, 238, 226, 223),

Y=c(58, 53, 48, 48, 50, 60, 59.5))

bcCoast <- as.PolySet(bcCoast, projection="LL")

print(bcCoast)

PID POS X Y

1 1 1 223 58.0

2 1 2 226 53.0

3 1 3 235 48.0

4 1 4 238 48.0

5 1 5 238 50.0

6 1 6 226 60.0

7 1 7 223 59.5

17

1 ## load ncdfData object

2 data(sst)

3

4 ## create a PolySet with a polygon

5 ## for each hemisphere

6 polys <- makeGrid(

7 x=c(0, 360), y=c(-90, 0, 90),

8 addSID=FALSE, projection="LL")

9

10 ## create a time series object

11 tsList <- extractTimeSeries(

12 sst, polygons=polys)

13

14 ## convert the time series object into

15 ## a data frame

16 tsDF <- listToDF(tsList)

17

18 ## set up some plot parameters

19 par(mgp=c(1.7, 0.4, 0),

20 mar=c(2.7, 2.7, 1.5, 1.5),

21 tck=c(-0.02), cex=0.9)

22

23 ## plot mean for the southern

hemisphere

24 ## first (without x axis)

25 plot(tsDF[tsDF$PID == 1, "mean"],

26 type='b', xaxt='n', col='blue',

27 ylim=c(11, 16),

28 ylab=attributes(sst)$dataUnits)

29 lines(tsDF[tsDF$PID == 2, "mean"],

30 type='b', col='red')

31

32 ## create appropriate x-axis labels

and

33 ## add a title

34 axis(1,

35 at=1:nrow(tsDF[tsDF$PID == 1,]),

36 lab=as.Date(names(tsList)))

37 title(main=attributes(sst)$dataType)

(a) The code used to generate the time series plot shown in (b).

● ●

●

●

11
12

13
14

15
16

Index

de
gC

● ●

●

●

2001−02−01 2001−03−01 2001−04−01 2001−05−01

Long Term Mean of Sea Surface Temperature

(b) A time series plot showing the mean sea surface temperature for data within the southern (blue) and
northern (red) hemispheres.

Figure 3.3: Time series plot.

18

create a PolySet containing a polygon with seven vertices that overlies both land and sea within
the BC coastal region (Fig. 3.4a). PBSmapping includes the joinPolys function, which can
join one or more PolySets using set theoretic operations, i.e., difference, intersection, union, and
exclusive-or. This function can be used to subtract the BC coastline and its islands from the
seven-vertex polygon to generate a new PolySet with polygons that overlie only the water within
our region of interest. The following PBSmapping commands

data(worldLLhigh)

bcComplex <- joinPolys(bcCoast, worldLLhigh, operation="DIFF")

perform the subtraction and produce the PolySet shown in Fig. 3.4b.

The PBSsatellite commands

data(sst)

sstBcCoast <- clipRegion(sst, polygons=bcComplex)

clip data from the existing data set (sst). The resulting data set contains sea surface temperature
readings for the coloured portions of Fig. 3.4c. Note that regions without colour have no numeric
value, i.e., their value is NaN.

225 230 235

50
52

54
56

58

Longitude (°)

La
tit

ud
e

(°
)

225 230 235

50
52

54
56

58

Longitude (°)

La
tit

ud
e

(°
)

225 230 235

50
52

54
56

58

Longitude (°)

La
tit

ud
e

(°
)

(a) Arbitrary polygon used in this
example.

(b) PolySet result of subtracting
the BC coast (worldLLhigh)
from (a) with PBSmapping’s
joinPolys function.

(c) Sea surface temperature (SST)
data clipped using the polygon in
(b).

Figure 3.4: The steps in isolating the sea surface temperatures (SSTs) within an arbitrary polygon.

3.3 Converting HDF to NetCDF to ncdfData

As stated in Sect. 1.1, R lacks adequate library support for importing files in the HDF file
format. For that reason, PBSsatellite can only directly import NetCDF data files. At the same
time, important satellite data sets are available as HDF files, and PBSsatellite users should be

19

able to use them. This section describes how PBSsatellite users can convert HDF data sets to
NetCDF data sets outside of the PBSsatellite package.

3.3.1 Conversion software

Two software packages are required to complete the the HDF to ncdfData conversion.

The University Corporation for Atmospheric Research provides software named the NCAR
Command Language (NCL). This software supports file format conversion between many satellite
data formats including from HDF to NetCDF.

The software is available as a binary download for Windows, macOS, and Linux systems with
step-by-step installation instructions and examples. These installation instructions are available
at https://www.ncl.ucar.edu/Download/. Look for the section titled “Download source
code or the appropriate binaries for your system.” Note that running NCL on Windows can only
be done under the Windows 10 Subsystem for Linux or under Cygwin/X (32-bit).

The second software package that aids in the HDF to ncdfData conversion is developed
by the NetCDF Operators (NCO) and provides NetCDF merging functionality. NCO additionally
provides tools that allow for both renaming and creating dimensions, which are fundamental in
this conversion process.

The software is available as a binary download for Windows, macOS, and Linux systems.
Users can download NCO and access installation instructions at http://nco.sourceforge.
net/. Click on the link “Executables” to see the available pre-built executables.

3.3.2 Before converting HDF files

This section provides a list of issues that must be resolved during the conversion progress.
The next section, Sect. 3.3.3, documents solutions to them.

Each HDF file typically contains data from one moment in time. Thus, creating an ncdfData
object from such a file (after converting it to a NetCDF file) would produce an object containing only
a single slice. If multiple NetCDF files are merged before they are imported into PBSsatellite, we
can obtain multi-slice ncdfData objects, but these objects will have inconsistencies (compared
to typical NetCDF files) that must be resolved.

The inconsistencies in merged files include the following:

1. The time attributes may be incorrectly formatted. The time unit attribute in converted files
is spread over multiple parameters such as a day, hour, minute, second rather than a single
attribute. In a typical NetCDF file, the units for the single time attribute may be something
such as “days since 2006-01-01 00:00:00.”

2. The time dimension may be absent. After the individual parameters of the converted file are
manipulated to create a single time attribute, this attribute may not be correctly identified
as the time dimension. In a NetCDF file, the data dimension (sequence of slices) must
have a corresponding time dimension that provides a time attribute for each slice. The time
dimension is required because slices may be spaced irregularly in time.

20

https://www.ncl.ucar.edu/Download/
http://nco.sourceforge.net/
http://nco.sourceforge.net/

3. Latitude and longitude coordinate sequences may be absent. The new NetCDF files do not
contain proper X and Y sequence components. For more information on these sequences,
see Fig. 3.5. Without these components, it is impossible to create an ncdfData object
because points of data are lacking locations in geographic space.

4. The missing value attribute cannot be found. On import, the ncdf4 library automatically
detects the missing value argument and converts each missing value to NA. With the new
NetCDF file, the missing value argument cannot be found by the library.

$names

[1] "1-02-01" "1-03-01" "1-04-01" "1-05-01"

$dataType

[1] "Long Term Mean of Sea Surface Temperature"

$dataUnits

[1] "degC"

$x

[1] 0.5 1.5 2.5 3.5 ... 359.5

$y

[1] 89.5 88.5 87.5 86.5 ... -89.5

$class

[1] "ncdfData"

Figure 3.5: The attributes of a sample ncdfData object within R.

With the additional software from NCO (http://nco.sourceforge.net/
#Executables), most of the issues above can be fixed. After addressing the issues, newly
created NetCDF files are fully functional with PBSsatellite.

3.3.3 Conversion process: HDF to NetCDF to ncdfData

This section provides a step-by-step description of how HDF data can be imported into
PBSsatellite. The process involves converting the HDF files into NetCDF files, which are subse-
quently merged and used to create an ncdfData object.

The conversion is described in four parts. Parts one to three use the operating system’s
command line with the required NCL and NCO software mentioned in section 3.3.1.1 Part four
uses R to complete the conversion by creating an ncdfData object.

At the start of the process, assume that three HDF files exist in a directory with the following
filenames: 20170102.hdf, 20170105.hdf, and 20170109.hdf.2 These three related HDF
files hold data from three separate dates, with the first file having the date January 2, 2017. It

1We tested these commands on both an Ubuntu Linux and a macOS machine. The commands may need to be
adapted for a Windows machine.

2These files were downloaded from https://data.nodc.noaa.gov/crw/tsps50km/sst/2017/. The original
filenames, e.g., sst.night.field.50km.n19.20170102.hdf, have been abbreviated for clarity.

21

http://nco.sourceforge.net/#Executables
http://nco.sourceforge.net/#Executables
https://data.nodc.noaa.gov/crw/tsps50km/sst/2017/

is important that all of the HDF files are from the same data source as attempts to merge files
with varying resolutions and/or units will likely fail. If the file names did not contain necessary
information for the conversion, e.g., dates or units, the command ncl_filedump can be used
to gather more information about the file, e.g., Fig. 3.6.

ncl_filedump 20170102.hdf

Copyright (C) 1995-2017 - All Rights Reserved

University Corporation for Atmospheric Research

NCAR Command Language Version 6.4.0

The use of this software is governed by a License Agreement.

See http://www.ncl.ucar.edu/ for more details.

Variable: f

Type: file

filename: 20170102

path: 20170102.hdf

file global attributes:

crwhdf_version : 1.0

cwhdf_version : 3.4

...

start_time : 0

start_time_unit : seconds since 00:00:00 UTC

begin_date : 2016-12-29

begin_time : 00:00:00 UTC

stop_date : 2017-01-02

stop_time : 00:00:00 UTC

...

Figure 3.6: Abbreviated output from the command ncl_filedump showing the date and time of
collection.

Part 1: Convert HDF files to NetCDF

The program ncl_convert2nc performs the HDF to NetCDF conversion. Further docu-
mentation and examples can be found at https://www.ncl.ucar.edu/Document/Tools/
ncl_convert2nc.shtml.

The following command line
for f in *.hdf; do

ncl_convert2nc $f -c 'Comment: Converted 3 HDF files to NetCDF'

done

will convert all of the files with the hdf file extension within the current directory, and it will produce
NetCDF files within the same directory.3

3Using an earlier version of ncl_convert2nc, the following command line would perform the conversion:
ncl_convert2nc *.hdf -c 'Comment: Converted 3 HDF files to NetCDF'

According to ncl_convert2nc --help for the latest version of the software, this command line continues to be
correct. Unfortunately, the latest of version of the software fails when the command line specifies multiple HDF files.

22

https://www.ncl.ucar.edu/Document/Tools/ncl_convert2nc.shtml
https://www.ncl.ucar.edu/Document/Tools/ncl_convert2nc.shtml

The -c argument will create a comment within the new NetCDF files. In our example, the pre-
ceding command will convert 20170102.hdf, 20170105.hdf, and 20170109.hdf to produce
20170102.nc, 20170105.nc, and 20170109.nc, respectively.

Part 2: Merge new NetCDF files

After converting individual HDF files to the NetCDF format, the individual NetCDF files must
be merged into a single NetCDF file containing an array of slices (Section 3.3.2). To simplify the
commands in Part 3, we recommend that you create the output file in a different directory than the
input files, e.g., a subdirectory named out. The following command line uses ncecat (provided
by NCO) to merge all of the files with the file extension nc within the current directory:

ncecat 20170102.nc 20170105.nc 20170109.nc out/20170102-20170109.nc

It produces the output file 20170102-20170109.nc within a directory named out. In the pre-
ceding command, the input filenames were listed explicitly to ensure that they appear in the cor-
rect order. Depending on the filenames, you may be able to use a shortcut. If the following
command

echo *.nc

20170102.nc 20170105.nc 20170109.nc

lists the files in the correct order, then the ncecat command line can safely be abbreviated to
ncecat *.nc out/20170102-20170109.nc

Part 3: Add missing attributes

At this stage, we have a single NetCDF file (20170102-20170109.nc) that contains the
data of all the source NetCDF files. Before we can import this file into an R-based ncdfData

object, we must ensure that it contains several essential values:

• an integer time dimension for units since an epoch,
• a floating-point lon dimension for longitude values in the grid,
• a floating-point lat dimension for latitude values in the grid, and
• an integer missing_value attribute that specifies the value used for missing data.

The command ncdump shows the content of a NetCDF file, and its output can help us de-
termine whether we need to create any new dimensions. For example, the initial lines from the
output of the following command line

ncdump out/20170102-20170109.nc

netcdf \20170102-20170109 {

dimensions:

record = UNLIMITED ; // (3 currently)

latitude = 331 ;

longitude = 720 ;

list the dimensions in the NetCDF file. In this case, the output shows that both the latitude and
longitude dimensions exist and the time dimension is missing.

23

The integer time dimension provides a timestamp for each slice within the merged file. We
recommend that you use ncl_filedump to manually find the appropriate attributes by inspecting
one of the input NetCDF files, e.g.,

ncl_filedump 20170102.nc

...

pass_date_unit : days since 1 January 1970

pass_date : 17164

...

In the sample above, the string pass_date_unit describes the epoch and pass_date provides
an appropriate integer for the time dimension. At this time, note the string used for the epoch;
you will need it in Part 4. If the earlier command echo *.nc listed files in the correct order, use
the following command to extract all of the integer timestamps

TIMES=($(ls *.nc | xargs -n1 ncl_filedump | grep "pass_date :" | \

egrep -o '[0-9]+'))

and determine whether the command succeeded by listing the times with the command
echo ${TIMES[@]}

In our example, the command produces the output 17164 17168 17171.

Given that the variable TIMES now contains the timestamps, we can add them to the merged
NetCDF file with the following command

ncap2 -Oh -s "defdim(\"time\", ${#TIMES[@]}); \

time[time]={$(IFS=,; echo "${TIMES[*]}")};" \

out/20170102-20170109.nc out/20170102-20170109.nc

In the preceding command, defdim(\"time\", ${#TIMES[@]}); defines a new dimen-
sion named time with a fixed size equal to the number of times in the variable named TIMES. The
fixed size should also correspond to the number of files that were merged together. The argument
out/20170102-20170109.nc appears twice on the command line: the first occurrence refers
to the input file and the second the output file. In this particular case, the command will overwrite
the file out/20170102-20170109.nc with a new file containing the time dimension.

Although the NetCDF file already contains dimensions for both longitude and latitude, the
following text demonstrates the creation of both dimensions. To manually create the dimensions,
we recommend that you use ncl_filedump to manually determine the distance between points
in the newly created NetCDF file out/20170102-20170109.nc.

ncl_filedump out/20170102-20170109.nc

...

easternmost_longitude : 179.75

westernmost_longitude : 179.75

northernmost_latitude : 85.25

southernmost_latitude : -80.25

spatial_description : The rows of the data array are oriented in

west-east direction and columns in north-south direction. Each

element (pixel) is 0.5 by 0.5 degree in size. The first element

(0,0) is at the northwest corner of the coverage area. The

southernmost_latitude, northernmost_latitude,

westernmost_longitude, and easternmost_longitude attributes give

the locations of the outer edges of the boundary pixels.

24

spatial_resolution_unit : degrees

spatial_resolution_row : 0.5

spatial_resolution_column : 0.5

...

latitude = 331

longitude = 720

Note that the attribute names vary between NetCDF files. For example, we have observed
Longitude_Step and Latitude_Step in place of spatial_resolution_column and
spatial_resolution_row, respectively. Look for attributes that describe the data layout, too,
e.g., the preceding spatial_description attribute.

In the output above, note that westernmost_longitude/easternmost_longitude,
the spatial_description, and longitude contradict each other. If these boundaries
represent the outer edges of boundary pixels (spatial_description), the western-most
pixel center would be -179.5 and the eastern-most pixel center would be 179.5. The se-
quence -179.5, -179.0, -169.5, …, 179.5 contains 719 points, one less than the expected
720 (longitude). To determine the correct range of longitude points, we revisited the data
source web site: http://coralreefwatch.noaa.gov/satellite/metadata/crw_sst_
50km_xml_2003_format_20110103.txt. This page describes

Each grid is 0.5 degree latitude by 0.5 degree longitude in size, centered at latitudes
of from 80.0S northward to 85.0N and at longitudes of from 180W eastward to 179.5E.

The following commands will create and display the size of longitude and latitude dimensions.
LON=($(printf "%sf " $(seq -180 0.5 179.5)))

echo ${#LON[@]}

720

LAT=($(printf "%sf " $(seq 85 -0.5 -80)))

echo ${#LAT[@]}

331

Once these values are correct, the commands
ncap2 -Oh -s "defdim(\"lon\", ${#LON[@]}); \

lon[lon]={$(IFS=,; echo "${LON[*]}")};" \

out/20170102-20170109.nc out/20170102-20170109.nc

ncap2 -Oh -s "defdim(\"lat\", ${#LAT[@]}); \

lat[lat]={$(IFS=,; echo "${LAT[*]}")};" \

out/20170102-20170109.nc out/20170102-20170109.nc

will create the dimensions in the NetCDF file.

In the last step of this part, an attribute named missing_valuemay need to be added to the
NetCDF file. The utility ncl_filedump can help identify an appropriate value for this attribute:

ncl_filedump out/20170102-20170109.nc

...

missing_value : -7777

...

_FillValue : -7777

...

Note that the missing value attribute may appear under other names, too, e.g., Fill. In this
particular case, the value -7777 is a placeholder for missing values in the data matrix.

25

http://coralreefwatch.noaa.gov/satellite/metadata/crw_sst_50km_xml_2003_format_20110103.txt
http://coralreefwatch.noaa.gov/satellite/metadata/crw_sst_50km_xml_2003_format_20110103.txt

After identifying the value for the missing attribute, the following command can be used to
set the attribute:

ncatted -O -a missing_value,,c,i,"-7777" out/20170102-20170109.nc

Even if a correctly-named attribute exists, the preceding call to ncatted can be used without
causing any harm. It is important to use the name missing_value because the R library ncdf4
will look such an attribute when converting missing values to NA.

Part 4: Create the ncdfData object

The preceding parts have produced a NetCDF file, e.g., out/20170102-20170109.nc that
can be imported into R. For this part, use the PBSsatellite package within R.

The following command will create an ncdfData object and complete the conversation from
HDF to ncdfData:

ncdfData <- read.ncdfData("out/20170102-20170109.nc",

Ux="degrees", Uy="degrees",

Utime="days since 1970-01-01",

dataUnits="x100 Celsius",

dataType="SST", x="lon",

y="lat", time="time")

Note that the units for both the X and Y dimension are specified using the argument Uy and Uy,
respectively. The Utime argument uses the epoch noted earlier in subsection 3.3.3. In order
for the library to correctly interpret the string, the date days since 1 January 1970 must be
rewritten as days since 1970-01-01. In some cases, the R package ncdf4 cannot detect
data units; for this reason, specify dataUnits and dataType to ensure the ncdfData object
has the correct information. The dataUnits argument specifies the units for each point of data
in the data set, and the dataType effectively specifies the title for the data set.

The output from the command-line program ncl_filedump can provide hints for how to
set these various arguments. For more information about ncdfData attributes, see section 2.1.

26

4
PBSsatellite functions

PBSsatellite PBS Satellite: Plot and Analyze Satellite Data

Description

This software stores NetCDF data within a clearly defined structure that we call ncdfData.
Given the consistent representation in an ncdfData object, these objects can be used in a
variety of PBSsatellite functions regardless of variations in length, attributes, data type, and
version. Using the functions available within PBSsatellite, users can manipulate ncdfData
objects in a variety of ways: they can be scaled, clipped, and summarized. PBSsatellite also
allows the subsetting of data based on dates and date ranges. Users have the ability to run
summary functions on ncdfData that allow for statistical analysis of specific regions of data
over time. Users also have the ability to create their own summary functions for more specific
statistical analysis.

Author(s)

Nicholas Lefebvre and Nicholas Boers

See Also

PBSmapping

27

assessMissingData

Assess Missing Data in an ncdfData Object

Description

Create an assessment of missing data in each ncdfData slice.

Usage

assessMissingData(ncdfData, tlim = NULL, xlim = NULL,

ylim = NULL, polygons = NULL, include.lowest = TRUE)

Arguments

ncdfData ncdfData used for missing data assessment.

tlim start date and end date of assessment in a vector of length 2; if
tlim == NULL, then assess all slices.

xlim range of X-coordinates.

ylim range of Y-coordinates.

polygons polygons that describe the complex region to assess; if specified, the value
must be a PBSmapping PolySet.

include.lowest

see clipRegion.

Details

It is common with satellite data for data sets to have missing values. This function indicates
to the user the completeness of a given data set. It is also common for satellites to have bad
readings for a duration, e.g., a week; thus, the function can be applied to every slice. With the
output of this function, the user can determine which slices are complete enough to use.

Value

A numeric vector containing the percentage (i.e., a value from 0 to 100) describing the missing
data in each slice of the ncdfData object.

28

Author(s)

Nicholas Lefebvre

See Also

extractSlices, clipRegion.

Examples

local(envir = .PBSsatEnv, expr = {

load ncdfData object

data(sst)

get missing data assessment

md <- assessMissingData(sst)

print(md)

use a polygon for missing data assessment;

create 2 polygons

polys <- data.frame(PID = c(rep(1, 4), rep(2, 4)),

POS = c(1:4, 1:4),

X = c(155, 160, 150, 180, 0, 20, 20, 0),

Y = c(75, 50, 10, 85, 20, 20, 40, 40))

md <- assessMissingData(sst, polygons = polys)

print(md)

})

29

clipRegion Clip an Existing ncdfData Object

Description

Clip all slices of an ncdfData object to the specified region.

Usage

clipRegion(ncdfData, xlim = NULL, ylim = NULL, polygons = NULL,

include.lowest = TRUE)

Arguments

ncdfData ncdfData from which to clip region.

xlim range of X-coordinates included in the result.

ylim range of Y-coordinates included in the result.

polygons data points that occur inside a polygon are included and points outside all
polygons are excluded; if specified, the valuemust be a PBSmapping PolySet.

include.lowest

ignored unless user specifies xlim/ylim: if TRUE, includes points that fall
on min(xlim) and/or min(ylim) but not points that fall on max(xlim)

and/or max(ylim). If FALSE, it does the opposite, including points that fall
on max(xlim) and/or max(ylim) but not points that fall on min(xlim)

and/or min(ylim). If NULL, includes all boundary points.

Details

In most cases, data sets contain information spanning the whole world; therefore, it is useful
for the user to be able select a region that better suits his or her individual needs. For example,
a user can select a geographical area such as the Northeast Pacific by specifying xlim and/or
ylim arguments. For more complex selection, a user can select a geographical area such as
the Georgia Strait using polygons.

Clipping is applied to every ncdfData slice.

In situations where both xlim and/or ylim and polygons are provided, xlim and ylim clip-
ping occurs first and then polygons clipping occurs on the intermediate result.

Value

A new ncdfData object containing modified slices from an existing ncdfData.

30

Author(s)

Nicholas Lefebvre

See Also

extractSlices.

Examples

local(envir = .PBSsatEnv, expr = {

load ncdfData object

data(sst)

load worldLL polygons for displaying

data(worldLL)

clip region based on xlim and ylim

ncdfDataClip <- clipRegion(sst, xlim = c(190, 320),

ylim = c(5, 80),

include.lowest = NULL)

print newly clipped ncdfData object

print(ncdfDataClip)

plot ncdfData object

plot(ncdfDataClip, slice = 1)

addPolys(worldLL, col = "beige")

clip region based on xlim, ylim, and polygons:

create 2 polygons

polys <- data.frame(PID = c(rep(1, 4), rep(2, 4)),

POS = c(1:4, 1:4),

X = c(155, 160, 150, 180, 0, 20, 20, 0),

Y = c(75, 50, 10, 85, 20, 20, 40, 40))

ncdfDataClip <- clipRegion(sst, xlim = c(.5, 300),

ylim = c(-50, 90), polygons = polys,

include.lowest = NULL)

print newly clipped ncdfData object

print(ncdfDataClip)

plot ncdfData object

plot(ncdfDataClip, slice = 1)

add some polygons to show the clipped region

addPolys(polys, border = "blue", lwd = 2)

addPolys(worldLL, border = "gray")

})

31

convert.ncdfData Convert ASCII Data to a NetCDF File

Description

Convert satellite ASCII data to a NetCDF file, specifically an ncdf4 binary file.

Usage

convert.ncdfData(filename, zfld, nc.filename = "converted.nc",

summary.func = sum, offset = c(0, 0), mv = NA,

dataType = "Chlorophyll", dataUnits = "mg/m3")

Arguments

filename name of the ASCII source file (comma-delimited, CSV-like) containing satellite
gridded data.

zfld string vector of fields in the source file that contain satellite measurements
(e.g., ”Chl”).

nc.filename

name of the NetCDF binary file that user wants to create.
summary.func

summary function (e.g., sum) to aggregate multiple measurements at unique
combinations of (lon, lat, time).

offset coordinate (x, y) offset to adjust ASCII (X, Y) grid coordinates in case the latter
is defined by some vertex other than the top left one.

mv missing value indicator, usually NA in PBSsatellite.

dataType string representing type of data in the file (e.g., ”SST”, ”Chl”).

dataUnits string representing units of dataType (e.g., ”Celsius”, ”mg m^3”).

Details

Users sometimes prefer storing satellite data in cumbersome ASCII files. This function at-
tempts to convert such files to a more efficient ncdf4 binary format. The function imports the
ASCII file and locates the appropriate three dimensions (lon, lat, date) to create 3D arrays of
z-value data. These data are then passed to the PBSsatellite function create.ncdfData,
which creates an ncdf4 binary file.

32

Value

No object is returned to the user’s working environment. An ncdf4 file (e.g., ”con-
verted_chla.nc”) is created in the user’s working directory.

Note

This function uses the fread function from the R package data.table to facilitate loading very
large ASCII files.

Author(s)

Rowan Haigh, Research Biologist,
Pacific Biological Station, Fisheries and Oceans Canada, Nanaimo BC

See Also

create.ncdfData, read.ncdfData, plot.ncdfData

33

create.ncdfData Create an ncdf4 File

Description

Create a NetCDF (ncdf4) file from data.

Usage

create.ncdfData(filename, xvals, yvals, tvals,

tmess = "days since 1900-01-01", zlist, mv = NA,

dataType = "Chlorophyll", dataUnits = "mg/m3",

longname = filename)

Arguments

filename name of ncdf4 file to create.

xvals discrete values of X (longitude) that define the spatial grid.

yvals discrete values of Y (latitude) that define the spatial grid.

tvals discrete values of time (dates ”YYYY-MM-DD”) to define temporal slices.

tmess time message or descriptor; the most versatile is ”days since YYYY-MM-DD”,
where specified date is the first in the series.

zlist list of z-value 3D arrays, where each array dimension is defined by (lon, lat,
date).

mv missing value indicator, usually NA in PBSsatellite.

dataType string representing type of data in the file (e.g., ”SST”, ”Chl”).

dataUnits string representing units of dataType (e.g., ”Celsius”, ”mg m^3”).

longname long name descriptor, e.g., ”Some chlorophyll data I downloaded from
NOAA.”

Details

This function creates NetCDF files in the ncdf4 format. Such files load into R incredibly quickly.

Value

No object is returned to the user’s working environment. An ncdf4 file (e.g., ”some_chla.nc”)
is created in the user’s working directory.

34

Note

See posting by user3710546 (Mar. 11, 2015 at 10:48) at:
http://stackoverflow.com/questions/28949971

Author(s)

Rowan Haigh, Research Biologist,
Pacific Biological Station, Fisheries and Oceans Canada, Nanaimo BC

See Also

read.ncdfData, print.ncdfData, plot.ncdfData

35

http://stackoverflow.com/questions/28949971

extractSlices Extract ncdfData Slice(s)

Description

Extract slices from an ncdfData object.

Usage

extractSlices(ncdfData, slices = NULL, dates = NULL, tlim = NULL)

Arguments

ncdfData ncdfData from which to extract slices.

slices numeric vector containing the slices to extract from ncdfData.

dates vector of date strings containing specific dates of slices used to extract slices
from ncdfData.

tlim vector of date strings (length 2) used to extract slices from ncdfData based
on a time range.

Details

The user must specify one of the three arguments: slices, dates, or tlim. A new
ncdfData object will be created containing the slices that the user has indicated.

Value

An ncdfData object containing the specified slices.

Author(s)

Nicholas Lefebvre

See Also

assessMissingData, clipRegion.

36

Examples

local(envir = .PBSsatEnv, expr = {

load ncdfData object

data(sst)

extract slices based on date strings:

create dates object

dates <- c("2001-03-01", "2001-05-01")

newNcdfData <- extractSlices(sst, dates = dates)

print(newNcdfData)

extract slices based date range/tlim:

create tlim object

tlim <- c("2001-02-04", "2001-07-02")

newNcdfData <- extractSlices(sst, tlim = tlim)

print(newNcdfData)

extract slices based on slices

newNcdfData <- extractSlices(sst, slices = c(2,3))

print(newNcdfData)

})

37

extractTimeSeries

Extract ncdfData Time Series

Description

Create a time series from ncdfData based on a given location, using specified functions.

Usage

extractTimeSeries(ncdfData, xlim = NULL, ylim = NULL,

polygons = NULL, functions = c("sum", "mean", "sd"),

na.rm = TRUE, tlim = NULL, combine = 1, by = NULL,

include.lowest = TRUE)

Arguments

ncdfData ncdfData to extract time series from.

xlim range of X-coordinates.

ylim range of Y-coordinates.

polygons complex range of coordinates from which to extract time series. If more than
one polygon, a time series is created for each polygon and will be labelled
with the PID. If specified, the value must be a PBSmapping PolySet.

functions vector of strings where each string names a function; each function must ac-
cept a numeric vector and produce a single numeric value.

na.rm Boolean or Boolean vector that indicates whether NAs should be omitted; if a
vector, should match one-to-one with elements of functions.

tlim start date and end date of when to begin and end a time series.

combine integer number of slices to be combined in each call to each function in
functions, e.g., given ncdfData with 6 slices, a combine value of 2 will
produce time series statistics for three times, where the value for each time is
derived from the data from two source slices.

by integer number indicating whether the function should skip slices, e.g., pro-
duce time series statistics for every second slice in ncdfData.

include.lowest

see clipRegion.

38

Details

In the case of xlim/ylim, the resulting time series data does not include a subregion identifier.
In the case of polygons (one or more), the resulting data set contains a subregion identifier
equal to the corresponding PID from polygons.

For each slice in the data set, the function will determine which points fall within the region(s)
of interest. It will pass these points (as a vector) into each of the listed functions.

If a combine value is provided that is not a factor of length(ncdfData) (the number of
slices), slices will be removed from the tail of the ncdfData object in order to accommodate
the combine value.

Value

A list of data frames, where each list element is named according to its corresponding times-
tamp. The data frames contain a PID for each polygon that exists inside of xlim and ylim.
If xlim == NULL, ylim == NULL, and polygons == NULL, functions will summarize
the entire region specified in ncdfData.

If polygons == NULL there will be only one PID for the entire xlim/ylim of ncdfData. If
polygons != NULL, each polygon will have a corresponding row in the data frame. Each
specified function in functions will have a corresponding column in the data frame.

Author(s)

Nicholas Lefebvre

See Also

clipRegion, EventData.

Examples

local(envir = .PBSsatEnv, expr = {

load ncdfData object

data(sst)

create a time series based on full map

ts <- extractTimeSeries(sst)

print(ts)

create a time series based on 2 polygons:

create polygons

polys <- data.frame(PID = c(rep(1, 4), rep(2, 4)),

POS = c(1:4, 1:4),

X = c(155, 160, 150, 180, 0, 20, 20, 0),

39

Y = c(75, 50, 10, 85, 20, 20, 40, 40))

ts <- extractTimeSeries(sst, polygons = polys)

print(ts)

})

40

listToDF Convert a List to a Data Frame

Description

Convert a list, such as a TimeSeries list returned from extractTimeSeries, into a single
data frame object.

Usage

listToDF(lst, newColumnName = "names")

Arguments

lst list to be converted to a data frame.
newColumnName

name of the new column in the data frame.

Details

Converts a list of data frames to a single data frame. It performs the conversion by adding a
new column to each individual data frame, where the column’s name comes from the argument
newColumnName and the column’s value is the name of the list element. It then concatenates
all of these data frames to produce a single data frame.

Value

A data frame where the list’s names attribute has been incorporated into the data frame as a
new column named according to the value of newColumnName.

Author(s)

Nicholas Boers

See Also

data.frame, extractTimeSeries.

41

Examples

local(envir = .PBSsatEnv, expr = {

load ncdfData object

data(sst)

create a time series based on 2 polygons

create polygons

polys <- data.frame(PID = c(rep(1, 4), rep(2, 4)),

POS = c(1:4, 1:4),

X = c(155, 160, 150, 180, 0, 20, 20, 0),

Y = c(75, 50, 10, 85, 20, 20, 40, 40))

ts <- extractTimeSeries(sst, polygons = polys)

turn TimeSeries list into a DataFrame

tsDF <- listToDF(ts)

print(tsDF)

})

42

ncdfData ncdfData Object

Description

PBS Satellite data object that contains satellite data for varying data types and spatial reso-
lutions.

Details

An ncdfData object is, at the highest level, a list. Each element of this list is named with
a timestamp, and its value is referred to as a slice. Each slice is actually a list, too, and its
elements are matrices that describe data at the slice’s timestamp. Each of these list elements
is referred to as a layer, and the only required layer has the name ”data”.

In addition to the names attributes required for the lists, ncdfData objects contain attributes
for data type (title of data), vectors of x and y coordinates, and data units. Slices can optionally
hold additional layers of information that contain point for point the same data span as the the
data layer. Additional layers are created with functions such as scaleRegion, which gives
the user the option to include both missing and error layers when scaling down.

An ncdfData object clipped with a polygon creates a complex region. In order to use a
matrix to store such complex regions, layers use NaN as a place holder for data clipped from
the original ncdfData object. Data that is missing from the original data set and has not been
clipped is represented as NA.

Value

An ncdfData object.

Author(s)

Nicholas Lefebvre and Nicholas Boers

See Also

read.ncdfData, scaleRegion, clipRegion.

43

plot.ncdfData Plot an ncdfData Slice

Description

Plot an ncdfData time slice.

Usage

S3 method for class 'ncdfData'

plot(x, slice, layer = "data",

xlim = NULL, ylim = NULL, style = c("image", "contour"),

projection = "LL", tck = -0.014, tckMinor = 0.5 * tck,

...)

Arguments

x ncdfData object, location of slice to be plotted.

slice time slice to plot; if NULL, then the first slice is selected.

layer layer name to plot.

xlim range of X-coordinates to plot.

ylim range of Y-coordinates to plot.

style method for plotting the Z-value – either "image" or "contour".

projection desired projection when PolySet lacks a projection attribute; one of
"LL", "UTM", or a numeric value. If Boolean, specifies whether to check
polys for a projection attribute.

tck numeric vector (length 1 or 2) describing the length of tick marks as a fraction
of the smallest dimension. If tckLab = TRUE, these tick marks will be auto-
matically labelled. If given a two-element vector, the first element describes
the tick marks on the x-axis and the second element describes those on the
y-axis.

tckMinor numeric vector (length 1 or 2) describing the length of tick marks as a fraction
of the smallest dimension. These tick marks can not be automatically labelled.
If given a two-element vector, the first element describes the tick marks on the
x-axis and the second element describes those on the y-axis.

... additional arguments sent to style function.

44

Details

Plots an ncdfData layer. If no slice is given assumes the first slice. If no layer is given
assumes the "data" layer of ncdfData object.

The user can select a region to plot based on xlim and/or ylim arguments.

The user can select different plotting styles to plot ncdfData such as "image" or
"contour".

Author(s)

Nicholas Boers

See Also

read.ncdfData, ncdfData, plotMap, addPolys.

Examples

local(envir = .PBSsatEnv, expr = {

load ncdfData object

data(sst)

load worldLL polygons from PBSmapping

data(worldLL)

plot map using image functionality on the first slice

plot(sst, slice = 1, style = "image")

addPolys(worldLL)

plot map using contour functionality on the first slice

plot(sst, slice = 1, style = "contour")

addPolys(worldLL)

})

45

print.ncdfData Print an ncdfData Object

Description

Print ncdfData object.

Usage

S3 method for class 'ncdfData'

print(x, ...)

Arguments

x ncdfData object to be printed.

... additional printing arguments.

Details

Prints an ncdfData object.

Author(s)

Nicholas Boers

See Also

read.ncdfData, ncdfData, print.

Examples

local(envir = .PBSsatEnv, expr = {

load ncdfData object

data(sst)

print ncdfData object

print(sst)

})

46

read.ncdfData Create a New ncdfData Object

Description

Create and return an ncdfData object. When possible, auto detect names from file and inform
the user. User has the ability to override any inconsistencies between NetCDF attribute names
and the given ncdfData object attribute values.

Usage

read.ncdfData(filename, dataVariable = 1,

convertMissingValues = FALSE, dataType = NULL,

dataUnits = NULL, xlim = NULL, ylim = NULL, tlim = NULL,

x = NULL, y = NULL, time = NULL, Ux = NULL, Uy = NULL,

Utime = NULL)

Arguments

filename path/filename of the NetCDF file to be read.
dataVariable

location of data variable within the NetCDF file.
convertMissingValues

if TRUE, convert missing values NA back to native form.

dataType string representing type of data in the file (e.g., ”SST”, ”Chl”).

dataUnits string representing units of dataType (e.g., ”Celsius”, ”mg m^3”).

tlim range of time (slices) to import. If tlim == NULL, then import all slices.

xlim range of X-coordinates for data slice(s).

ylim range of Y-coordinates for data slice(s).

x name of x variable. If xlim == NULL, then x = "lon".

y name of y variable. If ylim == NULL, then y = "lat".

time name of time variable. If time == NULL, then time = "time".

Ux units of x variable.

Uy units of y variable.

Utime units of time variable.

47

Details

Creates an ncdfData object that can be used with other PBSsatellite functions. Where pos-
sible, this function attempts to read names from the data file, but it allows the user to over-
ride names to account for the inconsistencies between different NetCDF files. The function
read.ncdfDatamakes it possible for a variety of different NetCDF formats with varying data
types to become compatible.

Value

An ncdfData object containing attributes and data slices from a NetCDF file.

Author(s)

Nicholas Lefebvre

See Also

clipRegion, extractSlices.

Examples

local(envir = .PBSsatEnv, expr = {

read in the whole NetCDF file containing the full region

path <- system.file("sst.ltm.1971-2000.nc",

package = "PBSsatellite")

ncdfData <- read.ncdfData(filename = path)

print(ncdfData)

clipping the NetCDF file by dates

create a tlim argument of date strings

dates <- c("1-02-01","1-05-01")

ncdfData <- read.ncdfData(filename = path, tlim = dates)

print(ncdfData)

clipping the NetCDF file by dates and region

ncdfData <- read.ncdfData(filename = path, tlim = dates,

xlim = c(20, 80), ylim = c(-80, 10))

print(ncdfData)

})

48

removeAnomalousValues

Remove Anomalous Values from an ncdfData Object

Description

Remove specified anomalies from every ncdfData slice.

Usage

removeAnomalousValues(ncdfData, zlim)

Arguments

ncdfData ncdfData from which to remove anomalies.

zlim numeric vector containing a range of acceptable values in ncdfData slices.
All values that do not fall in the range of zlim are removed from the data set
and and replaced with the missing value that’s being used for the ncdfData
object. The value NA can be used to omit part of the range specified in zlim.

Details

It is common with satellite data for data sets to contain values that are anomalous. This can
happen due to a variety of environmental reasons. A zlim argument is required that contains
a numeric vector containing a range of values that are considered valid.

Value

An ncdfData object containing slices with removed anomalous values.

Author(s)

Nicholas Lefebvre

See Also

assessMissingData.

49

Examples

local(envir = .PBSsatEnv, expr = {

load ncdfData object

data(sst)

remove values less than -2 and greater than 25

newNcdfData <- removeAnomalousValues(sst, zlim = c(-2, 25))

remove values greater than 25

newNcdfData <- removeAnomalousValues(sst, zlim = c(NA, 25))

})

50

scaleRegion Scale ncdfData to a New Resolution

Description

Scale ncdfData slices to a new resolution based on a scale factor.

Usage

scaleRegion(ncdfData, scaleFactor, fun = "drop",

placement = "topleft", includeErrorMatrix = FALSE,

includeMissMatrix = FALSE, remainder = "crop", na.rm = TRUE)

Arguments

ncdfData ncdfData which will be scaled by scaleFactor.
scaleFactor

positive or negative integer describing the scale factor. A positive integer
will scale up an ncdfData object; a negative integer will scale down an
ncdfData object. All integers must be a power of two. A positive integer
increases the number of data points to 1*scaleFactor in each axis for a
total increase of 1*scaleFactor^2. A negative integer reduces the num-
ber of data points to 1/scaleFactor in each axis for a total reduction of
1/scaleFactor^2.

fun string naming the function to used to scale down: "mean", "min", "max",
"drop". When scaling up, "repeat" is always used.

placement string indicating placement for the computed data point: "topleft" or
"centre".

includeErrorMatrix

logical indicates whether an error matrix should paired with each data matrix
in the resulting ncdfData object.

includeMissMatrix

logical indicates whether a missing matrix should be paired with each data
matrix in the resulting ncdfData object.

remainder string specifying how to handle extra rows and/or columns at the extremeties
of a matrix. If "crop": if len(x) of ncdfData and/or len(y) of ncdfData
is not a factor of scaleFactor, remove rows and/or columns from ncdfData

slices in order to make len(x) and/or len(y) a factor of ncdfData. If
"fill": rows and/or columns of NA values will be added on to ncdfData

slices to make len(x) and/or len(y) a factor of scaleFactor.

na.rm logical indicates if vector values should omit NA values before call to fun.

51

Details

It is common for satellite data to be in different resolutions, e.g., a sea surface temperature
data set may use 1/4 degree grid spacing while a chlorophyll data set may use 1/8 degree grid
spacing. It is much easier to compare different data sets that are in a standardized resolution.

This function creates a new ncdfData object with slices converted to a new resolution. For
this initial version, the new resolution must be an user-specified integer scaleFactor of
the original resolution. When computing new data points, the user may choose to have the
computed data point placed at the "topleft" point’s position or in the "centre" of the
scaled points (scaling down only).

A negative scaleFactor argument can take a function named by fun to perform the scaling
operation. When scaling down, the user can specify fun="drop" to drop points that do not
fall on the points of the new scaled down region.

A positive scaleFactor argument will only use the "repeat" method. When scaling up,
fun="repeat" will repeat a point’s data 1 * scaleFactor^2 times in order to properly in-
crease the scale of ncdfData slices.

Value

An ncdfData object containing slices with a newly scaled region. If the user has spec-
ified includeErrorMatrix=TRUE and/or includeMissMatrix=TRUE, the slices in the
ncdfData object will now have an additional two layers: (error and/or miss). These ad-
ditional layers will have a percent error and a percentage of missing values with every corre-
sponding point in a given slice, and they have the same resolution as the data layer.

Author(s)

Nicholas Lefebvre

See Also

read.ncdfData.

Examples

local(envir = .PBSsatEnv, expr = {

load ncdfData object

data(sst)

scale down ncdfData slices by a factor of 2, using mean

sd <- scaleRegion(sst, scaleFactor = -2, fun = "mean",

remainder = "fill")

print(sd)

52

scale down ncdfData slices by a factor of 2, using drop, place result

in the centre of the clip region

sd2 <- scaleRegion(sst, scaleFactor=-2, fun="drop", remainder="drop",

placement="centre")

print(sd2)

scaling up ncdfData slices by a factor of 4

sd3 <- scaleRegion(sst, scaleFactor=4, fun="repeat")

print(sd3)

})

53

sst Long-term Mean of Sea Surface Temperature

Description

This is an ncdfData object used in the PBSsatellite examples. It contains a data set of long
term means of sea surface temperature for several months of 2001. This data set has grid
spacing of 1.0 degree latitude and 1.0 degree longitude.

Format

ncdfData

Note

Names attribute on this ncdfData object were renamed from 01-MM-DD to 2001-MM-DD to
make the example code easier to understand.

Source

NOAA_OI_SST_V2 data provided by the NOAA/OAR/ESRL PSD, Boulder, Colorado, USA,
from their Web site at http://www.esrl.noaa.gov/psd/.

References

Reynolds, R.W., N.A. Rayner, T.M. Smith, D.C. Stokes, and W. Wang, 2002: An improved in
situ and satellite SST analysis for climate. J. Climate, 15, 1609-1625.

54

http://www.esrl.noaa.gov/psd/

to.EventData Convert an ncdfData Slice to EventData

Description

Create EventData object from an ncdfData slice.

Usage

to.EventData(ncdfData, slice)

Arguments

ncdfData ncdfData where slice is located.

slice date string or integer of slice location.

Details

Converts an ncdfData slice to EventData. EventData makes ncdfData compatible
with PBSmapping functionality. EventData is used to find which data points are in a polygon
and which points fall outside a polygon, known as the points in polygon problem.

Value

EventData with ncdfData slice information.

Author(s)

Nicholas Lefebvre

See Also

extractTimeSeries, assessMissingData, clipRegion, PBSmapping, findPolys.

55

Examples

local(envir = .PBSsatEnv, expr={

load ncdfData object

data(sst)

convert slice to ncdfData

ed <- to.EventData(sst, slice = 1)

dim(ed)

head(ed)

})

56

References

[1] World Meteorological Organization. Satellite Data Formats and Standards. http://www.
wmo.int/pages/prog/sat/formatsandstandards_en.php. last accessed July 9,
2015.

57

http://www.wmo.int/pages/prog/sat/formatsandstandards_en.php
http://www.wmo.int/pages/prog/sat/formatsandstandards_en.php

	Contents
	Introduction
	NetCDF dependency
	Data sources

	Data structures
	ncdfData data structure
	Attributes
	Structure details

	TimeSeries data structure

	Usage patterns
	Creating time series plots
	Working with coastlines
	Converting HDF to NetCDF to ncdfData
	Conversion software
	Before converting HDF files
	Conversion process: HDF to NetCDF to ncdfData

	PBSsatellite functions
	PBSsatellite
	assessMissingData
	clipRegion
	convert.ncdfData
	create.ncdfData
	extractSlices
	extractTimeSeries
	listToDF
	ncdfData
	plot.ncdfData
	print.ncdfData
	read.ncdfData
	removeAnomalousValues
	scaleRegion
	sst
	to.EventData

	References

