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PURE POINT SPECTRUM FOR DYNAMICAL SYSTEMS

AND MEAN ALMOST PERIODICITY

DANIEL LENZ, TIMO SPINDELER, AND NICOLAE STRUNGARU

Abstract. We consider metrizable ergodic topological dynamical systems over locally com-
pact, σ-compact abelian groups. We study pure point spectrum via suitable notions of almost
periodicity for the points of the dynamical system. More specifically, we characterize pure
point spectrum via mean almost periodicity of generic points. We then go on and show how
Besicovitch almost periodic points determine both eigenfunctions and the measure in this
case. After this, we characterize those systems arising from Weyl almost periodic points
and use this to characterize weak and Bohr almost periodic systems. Finally, we consider
applications to aperiodic order.
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Introduction

This article is concerned with dynamical systems with pure point spectrum. The dynamical
systems in question consist of a continuous action of a locally compact abelian group on a
compact metric space together with an invariant probability measure on the space. Pure point
spectrum means that there exists an orthonormal basis of eigenfunctions. In a sense, such
systems are the simplest possible dynamical systems. Their study is a most basic ingredient in
the conceptual theory of dynamical systems as witnessed by such fundamental results as the
Halmos–von Neumann theorem or the Furstenberg structure theorem. Accordingly, a variety
of characterizations for pure point spectrum has been established over the decades.

Recent years have brought two new lines of interest in such systems. One line is given by a
series of works which analyze such systems via (weak) notions of equicontinuity [10, 15, 16, 17,
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18]. The main thrust of these works is to characterize pure point spectrum as well as various
strengthened versions thereof (see [14, 35] for related work as well). The other line comes
from the investigation of aperiodic order. Aperiodic order, also known as mathematical theory
of quasicrystals, has emerged as fruitful field of (not only) mathematics over the last three
decades, see e.g. [2] for a recent monograph and [5, 21] for recent collections of surveys. A key
feature of aperiodic order is the occurrence of (pure) point diffraction. A central result in the
mathematical treatment of aperiodic order gives that pure point diffraction can be understood
as pure point spectrum of suitable associated dynamical systems. In fact, this result is the
outcome of a cumulative effort of various people over the last decades [11, 23, 20, 32, 3, 29, 27].

A common feature of all these works is that their considerations share a flavor of almost
periodicity. On an intuitive level this is not surprising. After all, pure point spectrum means
that all spectral measures are pure point measures. This in turn is equivalent to the Fourier
transforms of these measures being almost periodic [31, 19]. In this way, almost periodicity
properties of functions and their averages come into play in a very natural way.

However, what is lacking is a description of pure point spectrum via almost periodicity
properties of the points of the dynamical system. The goal of this article it to provide such
a characterization and to study some of its consequences.

In order to do so, we introduce for points in dynamical systems the concepts of mean almost
periodicity, Besicovitch almost periodicity, Weyl almost periodicity, weak almost periodicity
and Bohr almost periodicity, respectively.

After the discussion of the necessary background in Section 1, our first achievement is
Theorem 2.8 in Section 2. This theorem says that a system has pure point spectrum if and
only if every (or even just one) generic point is mean almost periodic. If the dynamical system
is ergodic this is then equivalent to almost all points being mean almost periodic.

As for mean almost periodicity of points in turn various characterizations are discussed
in Section 2. One of them proceeds via averages of distance between the orbit of the point
and a shifted orbit. Another one characterizes mean almost periodicity of a point via almost
periodicity properties of the sampling of continuous functions along the orbit of this point. In
this way, we have a rather complete and clear picture of the meaning of mean almost periodic
points for general dynamical systems.

This picture ties in with various earlier results. In the case where the group is just the
integers a related characterization via sampling of bounded measurable function is given in
[6] for measurable dynamical systems. In the more specific situation of subshifts over a finite
alphabet there is also a characterization of pure point spectrum via a metric property of points
in [35]. Moreover, we point out a companion article [28] dealing with fundamental issues in
aperiodic order via almost periodicity of measures. As an application, it treats the situation
of special dynamical system viz translation bounded measures dynamical systems. These
systems are particularly relevant to aperiodic order. In these systems the points are measures
and this allows one to work with almost periodicity properties of measures. Of course, this
approach it not available for general dynamical systems.

In terms of methods it should be emphasized that our proof of Theorem 2.8 is completely
different from the ones given in [28, 6, 35]. It relies on a recent characterization of pure point
spectrum by Bohr almost periodicity of an averaged metric recently obtained by one of the
authors [25].

In Section 3, we then introduce Besicovitch almost periodic points. While the condition
of Besicovitch almost periodicity is strictly stronger than mean almost periodicity, we can
still show that an ergodic dynamical system has pure point spectrum if and only if almost all
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points are Besicovitch almost periodic and this holds if and only if there exists one generic
Besicovitch almost periodic point (Theorem 3.7). In this respect the difference between mean
and Besicovitch almost periodicity is not too big. The advantage of Besicovitch almost periodic
points is that they allow for averaging with characters. In particular, it is possible to compute
the eigenfunctions via the Besicovitch almost periodic points (Theorem 3.7). In fact, the
complete spectral theory of the dynamical system can be directly computed from any single
typical Besicovitch almost periodic point (Theorem 3.4).

In Section 4, we introduce Weyl almost periodic points. Weyl almost periodicity of a point
is substantially stronger than Besicovitch almost periodicity. In fact, a point is Weyl almost
periodic if and only if its orbit closure is uniquely ergodic and has pure point spectrum with
continuous eigenfunctions (Theorem 4.5). In this case all points in the orbit closure are Weyl
almost periodic (Lemma 4.3). To put these results in perspective we note that [10, 15] show
that a dynamical system is mean equicontinuous if and only if it is uniquely ergodic with pure
point spectrum and continuous eigenvalues. Hence, a point is Weyl almost periodic if and
only if its orbit closure is mean equicontinuous. So, our results can be understood to provide
a natural pointwise counterpart to the results of [15].

In Section 5, we investigate two special classes of Weyl almost periodic points viz Bohr and
weakly almost periodic points respectively. This allows us to characterize Bohr and weakly
almost periodic dynamical systems. In particular, we reprove a main result of [30]. An
application of our results to aperiodic order is given in Section 6. This includes an alternative
proof for the main results on measure dynamical systems contained in [28].

Our article give a comprehensive treatment of most relevant concepts of almost periodicity
in the context of pure point spectrum. Some parts of our considerations allow for simple
abstractions. As this may be of value for further investigations we include a brief discussion
of some basic results in Section 7.

It seems that Besicovitch almost periodicity is not well known (for groups other than R)
and there is also some ambiguity in the way it is defined. For this reason we include some
appendices discussing the almost periodicity properties needed in this article as well as basic
properties of the class of continuous functions with these almost periodicity properties.
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1. Background on dynamical systems, pure point spectrum and the upper

mean

In this section we review the necessary concepts from dynamical systems and introduce the
upper mean M , which is crucial for our subsequent considerations.

Throughout the paper, we denote the set of continuous complex valued functions on the
topological space Y by C(Y ).

We consider a compact metric space X equipped with a continuous action

α : G×X −→ X, (t, x) 7→ αt(x),
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of a locally compact, σ-compact, abelian group G. We then call (X,G) a dynamical system
(over the space X). Often we will also be given a probability measure m on X, which is
invariant under the action of G. We then call (X,G,m) a dynamical system as well. We
will write tx instead of αt(x) for t ∈ G and x ∈ X. The composition on G itself is written
additively and the neutral element of G is denoted as e. We fix a Haar measure on G. The
Haar measure of a measurable subset A ⊂ G is denoted by |A| and the integral of an integrable
function f on G by

∫
f(t) dt.

Whenever a dynamical system (X,G) is given we will furthermore make use of

• a metric d on X which generates the topology,
• a Følner sequence (Bn) in G, i.e. each Bn is an open relatively compact subset of G

and
|(Bn \ (t+Bn)) ∩ ((t+Bn) \Bn)|

|Bn|
→ 0, n→ ∞,

for all t ∈ G.

Note that a FØlner sequence exists in a locally compact abelian group G if an only if G is
σ-compact [34, Prop. B6]. For this reason, we will always assume that G is σ-compact.

The orbit of x is given by Gx := {tx : t ∈ G} and the orbit closure Gx is the closure of the
orbit. If the orbit closure of x ∈ X agrees with X, the element x is called transitive. If every
x ∈ X is transitive the dynamical system is called minimal. The dynamical system (X,G) is
called uniquely ergodic if there exists only one invariant probability measure on X. We then
denote this measure by m and call (X,G,m) uniquely ergodic as well.

The dynamical system (X,G,m) is ergodic if any invariant measurable subset A of G
satisfies m(A) = 1 or m(A) = 0. If (X,G,m) is ergodic any Følner sequence has a subsequence
(Bn) for which Birkhoff ergodic theorem holds i.e.

lim
n→∞

1

|Bn|

∫

Bn

f(tx) dt =

∫

X

f dm

is valid for almost every x ∈ X whenever f : X −→ C integrable.
Whenever a dynamical system (X,G,m) and a Følner sequence (Bn) is given, a point y ∈ X

is called m-generic with respect to the Følner sequence if

lim
n→∞

1

|Bn|

∫

Bn

f(ty) dt =

∫

X

f(x) dm(x)

holds for any continuous f : X −→ C. If the measure m and the sequence (Bn) are clear from
the context we just speak about generic points. Generic points play a key role in our subsequent
considerations as they determine the measure and - in this sense - the whole dynamical system.
As is well-known (and not hard to see) the set of generic points is measurable and invariant
under the group action. Moreover, the set of generic points has full measure if (X,G,m) is
ergodic and Birkhoff’s ergodic theorem holds along the underlying Følner sequence. While we
do not need it here, it is instructive for our subsequent considerations to note that a converse
of sorts holds as well: If m is an invariant probability measure such that the set of m-generic
points with respect to some Følner sequence has full measure, then (X,G,m) is ergodic. So,
ergodicity is a necessary and sufficient condition for having an ample supply of generic points
at ones disposal. This is ultimately the reason that most (but not all) of our theorems below
deal with ergodic systems.

A dynamical system (X,G,m) is said to have pure point spectrum if there exists an or-
thonormal basis of L2(X,m) consisting of eigenfunctions. Here, an f ∈ L2(X,m) with f 6= 0
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is called an eigenfunction if for any t ∈ G there exist a ξ(t) ∈ C with

f(t·) = ξ(t)f

in the sense of L2(X,m) functions. In this case, each ξ(t) belongs to the group

T := {z ∈ C : |z| = 1}
and the map

ξ : G −→ T, t 7→ ξ(t),

can easily be seen to be a continuous group homomorphism. It is called eigenvalue. Clearly,
eigenfunctions to different eigenvalues are orthogonal. As X is compact and metrizable,

L2(X,m) is separable. Hence, the set of eigenvalues is (at most) countable. For ξ ∈ Ĝ
we denote by Pξ the projection onto the eigenspace of ξ if ξ is an eigenvalue and set Pξ = 0
if ξ is not an eigenvalue. The set of eigenvalues of (X,G,m) will be denoted by Eig(X,G,m).
As is well known the set of eigenvalues is a group if (X,G,m) is ergodic.

For our further discussion we will also rely on some concepts defined purely with respect
to G (i.e. they do not need the dynamical system). Let (Bn) be a Følner sequence, and let
B(G) denote the set of bounded measurable real-valued functions on G. Then, we define the
associated upper mean via

M (Bn) : B(G) −→ [0,∞), M (Bn)(h) := lim sup
n→∞

1

|Bn|

∫

Bn

h(s) ds.

If the Følner sequence is clear from the context we drop the subscript (Bn). Clearly, M gives
rise to seminorm on the space of bounded measurable functions on G via f 7→M(|f |).

A subset A of G is called relatively dense if there exists a compact set K ⊂ G with

G =
⋃

a∈A

(a+K).

A continuous bounded f : G −→ C is called Bohr almost periodic if for any ε > 0 the set
of t ∈ G with

‖f − f(· − t)‖∞ < ε

is relatively dense. Here, the supremum norm ‖ · ‖∞ for bounded complex valued functions
on G is defined via ‖f‖∞ = sups∈G |f(s)|.

2. Mean almost periodic points and pure point spectrum

In this section, we introduce and study mean almost periodic points. The main result of this
section then provides a characterization of pure point spectrum via mean almost periodicity
of points.

Whenever (X,G) is a dynamical system with metric d and (Bn) is a Følner sequence, we
define

D = D
(Bn)
d : X ×X −→ [0,∞), D(x, y) :=M(s 7→ d(sx, sy)).

Clearly, D is a pseudometric. Moreover, the Følner condition on (Bn) easily gives that D is
invariant i.e. satisfies D(tx, ty) = D(x, y) for all x, y ∈ X and t ∈ G. Furthermore, for each
x ∈ X the function G → [0,∞), t 7→ D(x, tx), is uniformly continuous. Indeed, continuity at
t = 0 is easily seen from the definition. Moreover, due to the invariance and the pseudometric
properties we infer

|D(x, tx)−D(x, sx)| ≤ D(tx, sx) = D(x, (s− t)x). (♣)
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When combined with continuity at t = 0, this gives uniform continuity. We will refer to D as
the averaged metric on X associated to d and (Bn).

Definition 2.1 (Mean almost periodic points). Let (X,G) be a dynamical system and d a
metric on X generating the topology and (Bn) a Følner sequence and D the associated averaged
metric. Then, a point x ∈ X is called mean almost periodic with respect to d and (Bn) if for
every ε > 0 the set

{t ∈ G : D(x, tx) < ε}
is relatively dense.

Remark. Almost periodicity properties with respect to M are often connected with the name
of Besicovitch. We use this for a strengthened version to be introduced below. Here we stick
to the term ‘mean’ as this seems to be the common term within the study of equicontinuity
properties in recent years (see e.g. [10, 15, 17] as well as discussion in Appendix C).

By definition, mean almost periodicity depends on the chosen Følner sequence. In our
subsequent discussion of mean almost periodic points, however, we will often refrain from
explicitly referring to the Følner sequence (Bn) if it is clear from the context which sequence
is involved.

Lemma 2.2. Let (X,G) be a dynamical system and d a metric on X generating the topology.
An x ∈ X is mean almost periodic if and only if the function G ∋ t 7→ D(x, tx) ∈ R is Bohr
almost periodic.

Proof. Define f on G via f(t) := D(x, tx). We have already noted that the function f is
uniformly continuous. Clearly, Bohr almost periodicity of f implies that x is mean almost
periodic (as f(0) = 0). Conversely, (♣) gives |f(t+ s)− f(s)| ≤ f(t) for all s, t ∈ G and mean
almost periodicity of x implies Bohr almost periodicity of f . �

Our next aim is to discuss independence of this definition from the metric and to provide an
alternative way of defining mean almost periodicity via density of super level sets. The proofs
of the corresponding statements are not difficult and rather close to each other. They rely on
some simple facts stated in the next proposition. We denote the characteristic function of a
set A ⊂ G by 1A (i.e. 1A(x) = 1 for x ∈ A and 1A(x) = 0 for x /∈ A).

Proposition 2.3. Let f : G −→ [0, 1] be given. Then, for any δ > 0 the following estimates
hold for the set

A(f, δ) := {s ∈ G : f(s) ≥ δ} :

(a) M(1A(f,δ)) ≤ 1
δ
M(f).

(b) M(f) ≤M(1A(f,δ)) + δ.

Proof. (a) We clearly have 1{s∈G:f(s)≥δ} ≤ 1
δ
f . This easily gives (a).

(b) We compute

M(f) ≤M(f · 1{s∈G:f(s)≥δ}) +M(f · 1{s∈G:f(s)<δ}) ≤M (1{s∈G:f(s)≥δ}) + δ.

This finishes the proof. �

Lemma 2.4 (Independence of the metric). Let (X,G) be a dynamical system with metrizable
X and (Bn) a Følner sequence on G. Then, mean almost periodicity of an x ∈ X does not
depend on the chosen metric (provided it generates the topology).
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Proof. Let e, d be two metrics on X, which generate the topology. For x ∈ X and t ∈ G
we define the functions dt,x and et,x on G via dt,x(s) = d(sx, tsx) and et,x(s) = e(sx, tsx),
respectively. We show that for any ε > 0 there exists a δ > 0 such that for any t ∈ G and
x ∈ X we have

M(dt,x) < ε

whenever M(et,x) < δ holds. The statement with the roles of e and d reversed can be shown
analogously and taken together these two statements prove the lemma.

Without loss of generality we assume d, e ≤ 1.

Let ε > 0 be given. Choose δ′ > 0 with d(z, y) < ε
2 whenever e(z, y) < δ′. Set

δ := δ′ · ε
2
.

If M (et,x) < δ then (a) of Proposition 2.3 gives

M(1{s:et,x(s)≥δ′}) ≤
1

δ′
M(et,x) <

δ

δ′
=
ε

2
.

Furthermore we note that, by definition of δ′, we have

M (dt,x1{s:et,x(s)<δ′}) ≤
ε

2
.

Given this we can now estimate

M(dt,x) ≤M(dt,x1{s:et,x(s)≥δ′})) +M(dt,x(s)1{s:et,x<δ′}) <
ε

2
+
ε

2
= ε.

This is the desired statement. �

By the previous lemma mean almost periodicity of a point is independent of the underlying
metric. Hence, we can (and will) from now on refrain from specifying a metric when talking
about mean almost periodicity.

We define the upper density of a subset A ⊂ G via

Dens(A) :=M (1A).

Lemma 2.5 (Mean almost periodicity via density of superlevel sets). Let (X,G) be a dy-
namical system with metrizable X and (Bn) a Følner sequence on G. Then, the following
assertions for x ∈ X are equivalent:

(i) The point x is mean almost periodic.
(ii) For any δ > 0 the set of t ∈ G with

Dens({s ∈ G : d(sx, tsx) ≥ δ}) < ε

is relatively dense for any ε > 0.

Proof. We use the notation of the proof of the preceding lemma.

(i)=⇒(ii): Let δ > 0 and ε > 0 be arbitrary. By (i) the set of t ∈ G with M (dt,x) < δε is
relatively dense. Now, for any such t ∈ G we obtain from (a) of Proposition 2.3

M (1{s:dt,x(s)≥δ}) < ε.
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(ii)=⇒(i): Let ε > 0 be given. Assume without loss of generality that d ≤ 1. Set δ = ε
2 .

By (ii) the set of t ∈ G with Dens({s ∈ G : d(sx, tsx) ≥ δ}) < ε
2 is relatively dense. Choose

such a t ∈ G. Then, (b) of Proposition 2.3 gives

M(dt,x) ≤M(1{s:dt,x(s)≥δ}) + δ = Dens({s ∈ G : d(sx, tsx) ≥ δ}) + δ <
ε

2
+
ε

2
= ε.

This finishes the proof. �

We finish this section with the discussion of a further characterization of mean almost
periodicity via suitable functions. To state this characterization (and similar characterizations
in subsequent sections) it is useful to define for x ∈ X and f ∈ C(X) the function

fx : G −→ C, fx(t) = f(tx).

Moreover, we set

Ax := {fx : f ∈ C(X)}.
Clearly, Ax is an algebra.

Proposition 2.6 (Completeness of Ax). The algebra Ax is complete with respect to ‖ · ‖∞.

Proof. Consider a sequence (f (n)) in C(X) such that (f
(n)
x ) is a Cauchy sequence with respect

to ‖·‖∞. Then, a direct ε/3 argument shows that the restrictions of f (n) to the orbit closure of
x converge uniformly to a continuous function on the orbit closure. Now, the desired statement
follows from Tietze’s extension theorem. �

A bounded measurable function f : G −→ C is mean almost periodic with respect to (Bn)
if for every ε > 0 the set

{t ∈ G :M(|f(·)− f(· − t)|) < ε}
is relatively dense. The set of uniformly continuous mean almost periodic functions is an
algebra and closed under complex conjugation and uniform convergence (see appendix B).

As a consequence of the previous considerations we can now characterize mean almost
periodicity via functions.

Lemma 2.7 (Mean almost periodicity via functions). Let (X,G) be a dynamical system and
(Bn) a Følner sequence on G. For x ∈ X the following assertions are equivalent:

(i) The point x is mean almost periodic.
(ii) Every element from Ax is mean almost periodic.
(iii) The set {f ∈ C(X) : fx is mean almost periodic} separates the points of Gx.

(iv) For any s ∈ G the function d
(s)
x is mean almost periodic, where d(s) ∈ C(X) is defined

via d(s)(y) := d(sx, y).

Remark. As the proof shows condition (iii) could equivalently be formulated withGx replaced
by the whole space X.

Proof. (iv)=⇒(iii): This follows as the d(s), s ∈ G, clearly separate the points of Gx.

(iii)=⇒(ii): Invoking the corresponding properties of mean almost periodic functions, we can
easily see that {f ∈ C(X) : fx is mean almost periodic} is an algebra, which is closed under
complex conjugation and uniform convergence. This algebra clearly contains the constant
functions. Moreover, by assumption (iii) it separates the points of Gx. Furthermore this
algebra contains every function f ∈ C(X), which vanishes on Gx (as fx = 0 for any such
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functions). Thus, this algebra even separates the points of X. Now, (ii) follows from Stone–
Weierstraß’ theorem.

(ii)=⇒(i): Choose a countable set C ⊂ C(X) such that any f ∈ C satisfies ‖f‖∞ ≤ 1 and
such that the elements of C separate the points of X. Let cf > 0, f ∈ C, with

∑
f∈C cf < ∞

be given. Then,

e(z, y) :=
∑

f∈C

cf |f(x)− f(y)|

is a metric on X, which generates the topology. Moreover, by assumption (ii) the function fx
is mean almost periodic for any f ∈ C(X) and, hence, any f ∈ C. This easily gives that the
set of t ∈ G with M(s 7→ e(sx, (t + s)x)) < ε is relatively dense (compare Proposition B.4).
Thus, x is mean almost periodic with respect to the metric e. As mean almost periodicity
does not depend on the metric, we conclude (i).

(i)=⇒(iv): Let z ∈ X be arbitrary and define d(z) ∈ C(X) by d(z)(y) := d(z, y). The
triangle inequality for d gives

M(|d(zx)(·−t)−d(z)x |) =M(s 7→ |d(z, (s−t)x)−d(z, sx)|) ≤M(s 7→ d(sx, (s−t)x)) = D(x,−tx)
for any t ∈ G and z ∈ X. Now, mean almost periodicity of dzx(·) follows (for any z ∈ X) from
(i).

�

We now come to the main result of this section, which provides a characterization of pure
point spectrum via mean almost periodic points.

Theorem 2.8. Let (X,G,m) be a dynamical system and (Bn) a Følner sequence on G. As-
sume that there exists a generic point for (X,G,m). Then, the following assertions are equiv-
alent:

(i) The dynamical system (X,G,m) has pure point spectrum.
(ii) Every generic point of X is mean almost periodic.
(iii) One generic point of X is mean almost periodic.

If (X,G,m) is ergodic and the Birkhoff theorem holds along (Bn), these statements are also
equivalent to the following statement:

(iv) Almost every x ∈ X is mean almost periodic.

Remark. A related result for subshifts over a finite alphabet can be found in Lemma 5 of
[35]. There, pure point spectrum (i) is characterized via a variant of (iv) given by a mean
almost periodicity condition on points defined via a metric (close in spirit to what is discussed
above in Lemma 2.5).

Proof. In the ergodic case almost every point is generic. Hence, (ii)=⇒(iv) and (iv)=⇒(iii)
follow. So we now turn to showing equivalence between (i), (ii) and (iii) in the general case.
We clearly have (ii)=⇒(iii). To show (i)=⇒(ii) and (iii)=⇒(i) we define

d : G −→ [0,∞), d(t) =

∫

X

d(x, tx) dm(x).

The main result of [25] says that (i) is equivalent to d being Bohr almost periodic. Thus, it
remains to show that

• Bohr almost periodicity of d implies (ii);
• (iii) implies Bohr almost periodicity of d.
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Now, for t ∈ G we can consider ft : X −→ [0,∞), ft(x) = d(x, tx). Then, ft is clearly
continuous. Thus, whenever y ∈ X is generic, we find

d(t) =

∫

X

d(x, tx) dm(x) =

∫

X

ft(x) dm(x) =M(s 7→ ft(sy)) = D(y, ty)

for every t ∈ G. Moreover, the triangle inequality gives that d is Bohr almost periodic if and
only if the set

{t ∈ G : d(t) < ε}
is relatively dense in G for all ε > 0. Putting this together we easily obtain that d is Bohr
almost periodic if and only if one (every) generic y ∈ X is mean almost periodic. �

We emphasize that the first part of the preceding theorem does not need an ergodicity
assumption and illustrate this by the following example.

Example - pure point spectrum in non ergodic case. Consider {0, 1} with discrete
topology and X = {0, 1}Z with product topology. Equip X with the shift action of Z given
by αn(x) = x(· − n) for n ∈ Z. Let 1 and 0 be the elements of X which are constant equal to
1 and 0 respectively. Then, clearly each of these elements is invariant under the shift action
and so are then the sets {0} and {1}. Thus,

m :=
1

2
(δ0 + δ1)

is an invariant probability measure (where δp denotes the unit point mass at p). Obviously, m

is not ergodic. The space L2(X,m) is two-dimensional and
√
2 ·1{0},

√
2 ·1{1} is an orthogonal

basis consisting of eigenfunctions (to the eigenvalue 1). In particular, (X,Z,m) has pure point
spectrum. Now, consider the point x ∈ X with x(−k) arbitrary for k ≥ 0 and x(k) = 1 if
k ∈ {2n, . . . , 2n + 2n−1 − 1} for some n ∈ N and x(k) = 0 else. Then, it is not hard to see
that x is generic for m with respect to the Følner sequence Bn = {1, . . . , 2n}. So, the theorem
gives that x is mean almost periodic. In this example neither 0 nor 1 are generic. Hence, m
does not give mass to generic points and the set of generic points has measure zero. Note that
the construction of x could easily be modified to yield a transitive generic point (by including
suitable finite words of slowly increasing length between the blocks of 1′s and 0′s in x).

Combining the previous result, Theorem 2.8, with the characterization of mean almost
periodicity via functions in Lemma 2.7 we obtain the following.

Corollary 2.9. Let (X,G,m) be an ergodic dynamical system with metrizable X and as-
sume that the Birkhoff ergodic theorem holds along (Bn). Then, the following assertions are
equivalent.

(i) The dynamical system (X,G,m) has pure point spectrum.
(ii) For almost every x ∈ X the set {f ∈ C(X) : fx is mean almost periodic} separates the

points of X.

Remark. A variant of this statement (with (ii) replaced by the stronger condition that Ax

consists only of mean almost periodic functions) is shown in [26] based on an earlier version
of [28]. Our proof is different. Note also that for ergodic systems over G = Z, it is known that
pure point spectrum is equivalent to Z ∋ n 7→ f(nx) belonging to the Besicovitch class for
almost every x ∈ X whenever f is a bounded measurable function on X, see Theorem 3.22 in
[6]. The condition of Besicovitch class is stronger than mean almost periodicity (see also next
section).
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If the system (X,G,m) is uniquely ergodic, then every x ∈ X is generic irrespective of the
underlying Følner sequence (Oxtoby’s theorem). Thus, from the previous theorem we obtain
immediately the following corollary.

Corollary 2.10. Let (X,G,m) be a dynamical system and (Bn) a Følner sequence on G.
Assume that (X,G,m) is uniquely ergodic. Then, the following assertions are equivalent:

(i) The dynamical system (X,G,m) has pure point spectrum.
(ii) Every x ∈ X is mean almost periodic.
(iii) One x ∈ X is mean almost periodic.

Remark. The concept of mean almost periodicity depends on the chosen Følner sequence.
To see this, consider X := {0, 1}Z with product topology and the shift action of Z and the
Bernoulli measure m (product measure of the measures giving equal weights 1/2 to {0} and
{1}). This system is ergodic and m almost every x ∈ X contains arbitrary long stretches of 0′s.
For each of those x we can then choose a Følner sequence (Bn) with M(s 7→ d(sx, (t+s)x) = 0
for all t ∈ Z (by each Bn being chosen ‘within’ a long stretch of 0′s with distance to the
boundary of these stretches increasing in n). Hence, each of these x is mean almost periodic.
On the other hand, as the system does not have pure point spectrum, we obtain from Theorem
2 that not every of these x will be almost periodic with respect to the standard Følner sequence
Bn = {0, . . . , n} along which Birkhoff’s ergodic theorem holds.

3. Besicovitch almost periodic points and eigenfunctions

In this section, we discuss a strengthened version of mean almost periodicity viz Besicovitch
almost periodicity. We show that pure point spectrum can also be characterized via this
strengthened version. In fact, our results can be understood as saying that in a dynamical
system with pure point spectrum both eigenfunctions and eigenvalues can be read of from any
of its (generic) Besicovitch almost periodic points.

We consider a σ-compact, locally compact abelian group together with a Følner sequence

(Bn). As usual the set of all continuous group homomorphisms ξ : G −→ T is denoted as Ĝ
and called the dual group of G. We say that a bounded function f : G −→ C is Besicovitch

almost periodic if for any ε > 0 there exist k ∈ N, ξ1, . . . , ξk ∈ Ĝ and c1, . . . , ck ∈ C with

M (|f −
k∑

j=1

cjξj|) < ε.

A discussion of basic properties of uniformly continuous Besicovitch almost periodic functions
is given in Appendix C. This shows in particular that any uniformly continuous Besicovitch
almost periodic function is also mean almost periodic and admits an average (see below as
well). The discussion also shows that the set of these functions forms an algebra and is closed
under uniform convergence.

Definition 3.1 (Besicovitch almost periodic points). Let (X,G) be a metrizable dynamical
system and (Bn) a Følner sequence. Then, a point x ∈ X is called Besicovitch almost periodic
with respect to (Bn) if Ax consists only of Besicovitch almost periodic functions.

As in the definition of mean almost periodicity also Besicovitch almost periodicity depends
on the chosen Følner sequence. In our subsequent discussion, however, we will often refrain
from explicitly referring to the Følner sequence (Bn) if it is clear from the context which
sequence is involved.
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Remark. (a) To set this definition in perspective we refer to Lemma 2.7. This lemma shows
that a point is mean almost periodic if and only if Ax consists of mean almost periodic
functions only.

(b) Note also that the statements of Lemma 2.7 remain true (with essentially the same
proof) after ’mean almost periodic’ is replaced with ’Besicovitch almost periodic’.

(c) As Besicovitch almost periodic functions are mean almost periodic, any Besicovitch
almost periodic point is mean almost periodic. The converse is not true. To see this consider
X := {0, 1}Z with product topology and the shift action of Z. Set Bn := {0, . . . , n} for n even
and Bn = {−n, . . . ,−1} for n odd. Consider now y ∈ X with y(k) = 1 for k ≥ 0 and y(k) = 0
otherwise. Then, it is not hard to see that D(y, ny) = 0 for all n ∈ Z. Hence, y is mean
almost periodic. On the other hand, consider f : X −→ {0, 1} with f(x) = x(0). Clearly f is
continuous. Moreover,

an :=
1

|Bn|
∑

k∈Bn

f(ky)

does not converge (as a2n = 1 and a2n+1 = 0 for all n ∈ N). By the discussion in the appendix
(see subsequent proposition as well), this shows that fy is not Besicovitch almost periodic.
Hence, y is not Besicovitch almost periodic.

Here comes a characterization of Besicovitch almost periodic points via existence of means.
To state it, we first introduce some notation. For a bounded measurable function h : G −→ C,
we define the mean or average of h with respect to (Bn) by

A(h) := lim
n→∞

1

|Bn|

∫

Bn

h(t) dt

whenever the limit exists.

Proposition 3.2 (Averaging along orbits). Let (X,G) be a dynamical system and (Bn) be a
Følner sequence. Then, the following assertions are equivalent for x ∈ X:

(i) The point x is Besicovitch almost periodic.

(ii) For any f ∈ C(X) there exists a countable set Ff ⊂ Ĝ such that the limits

A(|fx|2) = lim
n→∞

1

|Bn|

∫

Bn

|f(tx)|2 dt and A(fxξ) = lim
n→∞

1

|Bn|

∫

Bn

f(tx) ξ(t) dt

exist for all ξ ∈ Ff and

A(|fx|2) =
∑

ξ∈Ff

|A(fxξ)|2

holds.

Moreover, in case that (i) and (ii) hold, A(fξ) exists and equals 0 for f ∈ C(X) and ξ ∈ Ĝ\Ff .
Proof. This is a direct consequence of the definition of Besicovitch almost periodicity of a
point and Proposition C.4 in Appendix C. �

Definition 3.3 (Frequency). Let (X,G) be a dynamical system and x ∈ X a Besicovitch

almost periodic point. Then, every ξ ∈ Ĝ with A(fxξ) 6= 0 for some f ∈ C(X) is called a
frequency of x. The set of all frequencies of x is denoted by Freq(x).

Here is the first main result of this section. It shows that any Besicovitch almost periodic
point completely determines a dynamical system with pure point spectrum.
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Theorem 3.4. Let (X,G) be a dynamical system, (Bn) a Følner sequence and p ∈ X a
Besicovitch almost periodic point. Then, there exists a (unique) ergodic probability measure
m on X such that p is generic with respect to m. The dynamical system (X,G,m) has pure
point spectrum and Eig(X,G,m) = Freq(p) holds. To each eigenvalue ξ ∈ Eig(X,G,m) there
exists a (unique) eigenfunction eξ ∈ L2(X,m) with

∫

X

f eξ dm = A(fpξ)

for all f ∈ C(X).

Proof. Obviously, the map

Φ : C(X) −→ C, f 7→ A(fp),

is linear and positive (i.e. A(fp) ≥ 0 for f ≥ 0). Hence, there exist a unique measure m on
X with Φ(f) =

∫
X
f dm. Clearly, m(X) =

∫
X
1 dm = A(1) = 1. By the Følner property of

(Bn), the mean A is invariant and so is then Φ. This easily gives that m is invariant. So, m
is an invariant probability measure.

We now turn to the construction of the eigenfunctions. For ξ ∈ Ĝ consider the map

Φξ : C(X) −→ C, f 7→ A(fpξ).

This map is obviously linear and defined on a dense subspace of L2(X,m). By Cauchy-Schwarz
inequality, A(1) = 1 and the construction of m we find

|Φξ(f)|2 = |A(fpξ)|2 ≤ A(|fp|2)A(1) =
∫

X

|f |2 dm.

Hence, Φξ can be extended to a linear continuous map, again denoted by Φξ, on the whole
L2(X,m). By Riesz Lemma there exists then an eξ ∈ L2(X,m) with ‖eξ‖ ≤ 1 and

Φξ(f) =

∫

X

f eξ dm

for all f ∈ C(X). Define

E := {ξ ∈ Ĝ : eξ 6= 0}.
By construction ξ ∈ Ĝ belongs to E if and only if there exists an f ∈ C(X) with A(fpξ) 6= 0.

Hence, E = Freq(p) holds. In particular, we have A(fp̺) = 0 for all f ∈ C(X) and ̺ ∈ Ĝ \E.
A short computation shows for t ∈ G

ξ(−t)
∫

X

f eξ dm = ξ(−t)A(fpξ)

= A(fpξ(t+ ·))
(A invariant) = A(fp(−t·)ξ)

(construction of m) =

∫

X

f(−t·) eξ dm

(m invariant) =

∫

X

f eξ(t·) dm

for all f ∈ C(X). As these f are dense in L2(X,m) this gives

eξ(t·) = ξ(t)eξ
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for all t ∈ G. This shows that eξ is an eigenfunction (to ξ) for each ξ ∈ E. Clearly, eigenfunc-
tions to different eigenvalues are orthogonal.

Next, we show that the eξ, ξ ∈ E, are normalized and form a basis. This gives that
E = Eig(X,G,m) and together with the already shown E = Freq(p), this will then also imply
Eig(X,G,m) = Freq(p).

By Parseval inequality, the definition of m and Proposition 3.2, we have the following:

∑

ξ∈E

∣∣∣∣
∫

X

f eξ dm

∣∣∣∣
2

≤
∫

X

|f |2 dm

= A(|fp|2)
(Proposition 3.2) =

∑

ξ∈Ĝ

|A(fpξ)|2

(construction of E) =
∑

ξ∈E

|A(fpξ)|2

(construction of eξ) =
∑

ξ∈E

∣∣∣∣
∫

X

f eξ dm

∣∣∣∣
2

.

This shows
∑

ξ∈E

∣∣∣∣
∫

X

f eξ dm

∣∣∣∣
2

=

∫

X

|f |2 dm

for all f ∈ C(X). This is only possible if ‖eξ‖ = 1 for all ξ ∈ E and (eξ) form an orthonormal
basis of L2(X,m).

It remains to show ergodicity: For each eigenvalue ξ ∈ E we have constructed an eigen-
function eξ and we have shown that these form a complete set (i.e. eξ, ξ ∈ E, is an or-
thonormal basis). Hence (as different of these eigenfunctions belong to different eigenspaces)
each eigenspace is one-dimensional. In particular the eigenspace to the eigenvalue 1 is one
dimensional and the system is ergodic. �

Remark. Note that the proof relies (and only relies) on the characterizing properties of
Besicovitch almost periodic points given in Proposition 3.2.

The previous theorem shows that any Besicovitch almost periodic point is generic with
respect to a (uniquely determined) measure. It may well be that different Besicovitch almost
periodic points are generic with respect to different measures. Consider e.g. the full shift
X = {0, 1}Z with Tx(n) = x(n + 1). Then, any periodic element of X is Besicovitch almost
periodic. Clearly, elements with different periods will not be generic with respect to the same
measure. This motivates the following definition.

Definition 3.5 (Generic Besicovitch almost periodic points). Let (X,G) be a dynamical sys-
tem and (Bn) a Følner sequence on G. Then, for any invariant probability measure m on
(X,G) we denote by Bap(X,G,m) the set of those Besicovitch almost periodic points which
are generic with respect to m.

We have the following consequence of the preceding theorem.

Proposition 3.6. Let (X,G,m) be a dynamical system and (Bn) be a Følner sequence. Then,
Bap(X,G,m) is a measurable invariant set.
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Proof. Clearly, Bap(X,G,m) is invariant as both the set of generic points and the set of
Besicovitch almost periodic points are invariant. If Bap(X,G,m) is empty there is nothing
left to show. So, consider the case Bap(X,G,m) 6= ∅. By Theorem 3.4, the dynamical system
(X,G,m) then has pure point spectrum and the set of its eigenvalues Eig(X,G,m) equals
Freq(p) for any p ∈ Bap(X,G,m). Set E := Eig(X,G,m).

Claim. Let D be a dense subset of C(X). Then, we have p ∈ Bap(X,G,m) if and only if
the following three points hold:

• A(fp) exists and equals
∫
X
f dm for all f ∈ D.

• A(fpξ) exists for all ξ ∈ E and f ∈ D.

• A(|fp|2) =
∑

ξ∈E |A(fpξ)|2 for all f ∈ D.

Proof of claim. Consider p ∈ Bap(X,G,m). Then, p is generic and the first point holds (even
for all f ∈ C(X)). In particular, A(|fp|2) exists. Now, the second and third point follow from
Proposition 3.2 as p is Besicovitch almost periodic with set of frequencies given by E.

Consider now a p ∈ X satisfying the three points above. By density of D in C(X) we then
easily infer that A(fp) =

∫
X
f dm holds for all f ∈ C(X) and A(fpξ) exists for all f ∈ C(X)

and ξ ∈ E. In particular, we have A(|fp|2) =
∫
|f |2 dm for all f ∈ C(X). Given this, we

can now follow the proof of Theorem 3.4 to conclude the existence of (pairwise orthogonal)
eigenfunctions eξ to ξ ∈ Eig(X,G,m) with ‖eξ‖ ≤ 1 and

∑

ξ∈E

∣∣∣∣
∫

X

f eξ dm

∣∣∣∣
2

=

∫

X

|f |2 dm

for all f ∈ D. As D is dense, this is only possible if ‖eξ‖ = 1 holds for all ξ ∈ E and the eξ,
ξ ∈ E, are an orthonormal basis. This finishes the proof of the claim.

Given the claim, the desired measurability follows easily: By compactness and metrizability
of X we can choose a countable dense subset D of C(X). Then, the claim gives that p ∈ X
belongs to Bap(X,G,m) if countably many conditions are satisfied. Clearly, each of these
conditions gives a measurable set. �

The following theorem can be seen as both a converse to Theorem 3.4 and an analogue to
Theorem 2.8.

Theorem 3.7 (Discrete spectrum via Besicovitch almost periodic points). Let (X,G,m) be an
ergodic dynamical system and (Bn) a Følner sequence along which Birkhoff’s ergodic theorem
holds. Then, the following assertions are equivalent:

(i) The dynamical system (X,G,m) has pure point spectrum.
(ii) m(Bap(X,G,m)) = 1.
(iii) Bap(X,G,m) 6= ∅.

If one of the equivalent conditions (i), (ii) and (iii) holds, then Eig(X,G,m) = Freq(x) for

every x ∈ Bap(X,G,m). Moreover, in this case, for any f ∈ C(X) and ξ ∈ Ĝ the function

ef,ξ : X −→ C, ef,ξ(x) :=

{
A(fxξ) : x ∈ Bap(X,G,m)

0 : else
,

satisfies Pξf = ef,ξ (in L2(X,m)), ef,ξ(tx) = ξ(t)ef,ξ(x) for all t ∈ G and x ∈ X and has
constant modulus on Bap(X,G,m).
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Remark. By Theorem 3.4, the existence of a generic Besicovitch almost periodic point entails
the ergodicity of m. For this reason the ergodicity assumption in the above theorem can not
be dropped.

Proof. The implication (ii)=⇒(iii) is clear. The implication (iii)=⇒(i) follows from Theorem
3.4. We now show (i)=⇒(ii). As the set of generic points has full measure, it suffices to show
that almost every x ∈ X is Besicovitch almost periodic. To do so, we denote the inner product
on L2(X,m) by 〈·, ·〉 and the associated norm by ‖ · ‖2. Let ξ1, ξ2, ξ3, . . . , be an enumeration
of Eig(X,G,m). Choose for any ξ ∈ E a normalized eigenfunction eξ : X −→ C. Without
loss of generality, we can assume

eξ(sx) = ξ(s) eξ(x)

for all s ∈ G and x ∈ X. (Otherwise we could replace eξ by ẽξ defined by

ẽξ(x) := lim
n→∞

1

|Bn|

∫

Bn

e(sx) ξ(s) ds

if the limit exists and ẽξ(x) = 0 else.) Moreover, for ξ = 1 we choose the constant function 1.
Consider now an arbitrary g ∈ C(X). By Birkhoff’s ergodic theorem, we can then find a

subset Xg of X of full measure such that

∫

X

∣∣∣∣∣∣
g −

k∑

j=1

〈g, eξj 〉eξj

∣∣∣∣∣∣
dm(x) = lim

n→∞

1

|Bn|

∫

Bn

∣∣∣∣∣∣
g(sx)−

k∑

j=1

〈g, eξj 〉eξj (sx)

∣∣∣∣∣∣
ds

for all x ∈ Xg and k ∈ N. Let D ⊂ C(X) be a countable dense subset. Define

X ′ :=
⋂

g∈D

Xg.

Then, X ′ has full measure and a short computation gives

∫

X

∣∣∣∣∣∣
f −

k∑

j=1

〈f, eξj 〉eξj

∣∣∣∣∣∣
dm(x) = lim

n→∞

1

|Bn|

∫

Bn

∣∣∣∣∣∣
f(sx)−

k∑

j=1

〈f, eξj 〉eξj (sx)

∣∣∣∣∣∣
ds
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for all f ∈ C(X), x ∈ X ′ and k ∈ N. This, in turn implies that any x ∈ X ′ is Besicovitch
almost periodic: Indeed, a short calculation invoking Birkhoff’s ergodic theorem and Cauchy–
Schwarz’ inequality shows

M(|f(·x)−
k∑

j=1

〈f, eξj 〉 eξj (x) ξj(·)|) = M(|f(·x)−
k∑

j=1

〈f, eξj 〉 eξj (·x)|)

(Birkhoff’s ergodic theorem) = lim
n→∞

1

|Bn|

∫

Bn

∣∣∣∣∣∣
f(sx)−

k∑

j=1

〈f, eξj 〉eξj (sx)

∣∣∣∣∣∣
ds

=

∫

X

∣∣∣∣∣∣
f −

k∑

j=1

〈f, eξj 〉eξj

∣∣∣∣∣∣
dm(x)

(Cauchy–Schwarz’ inequality) ≤ ‖f −
k∑

j=1

〈f, eξj 〉eξj‖2

→ 0, n→ ∞.

This gives the desired claim.

We now turn to the remaining statements. The equality Freq(x) = Eig(X,G,m) for an
element x ∈ Bap(X,G,m) directly follows from Theorem 3.4. As for ef,ξ we note that it is well-
defined and invariant (as Bap(X,G,m) is invariant). The equality Freq(x) = Eig(X,G,m) for

x ∈ Bap(X,G,m) rather directly gives that ef,ξ vanishes identically for ξ ∈ Ĝ \Eig(X,G,m).
In particular, it has constant modulus on Bap(X,G,m). Now, by Theorem 3.4, for each ξ ∈ E

and x ∈ Bap(X,G,m) there exists a normalized eigenfunction e
(x)
ξ with

ef,ξ(x) = A(fxξ) = 〈f, e(x)ξ 〉

As each eigenspace is one-dimensional the e
(x)
ξ arising for different x ∈ Bap(X,G,m) will only

differ by a factor of modulus one. This gives the statement on constancy of the modulus.
That ef,ξ is the projection onto the eigenspace of ξ follows from standard theory, see e.g.

[24] for recent discussion. �

4. Weyl almost periodic points, unique ergodicity and continuity of

eigenfunctions

In this section, we consider a strengthening of Besicovitch almost periodicity viz Weyl
almost periodicity. We show that Weyl almost periodicity extends from one point to its orbit
closure. This allows us to characterize transitive systems all of whose points are Weyl almost
periodic. These are exactly the uniquely ergodic dynamical systems with pure point spectrum
and continuous eigenfunctions. This ties in with various recent investigations (see below for
details).

Let (X,G) be a dynamical system. Whenever d is a metric on X generating the topology
and (Bn) is a Følner sequence, we define for each n ∈ N the map

Mn : B(G) −→ R, Mn(f) := sup
s∈G

1

|Bn|

∫

Bn+s
f(t) dt.
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This gives then rise to the functions

Dn := Dn,d : X ×X −→ [0,∞), Dn(x, y) :=Mn(s 7→ d(sx, sy)),

for each n ∈ N. Then, each Dn can easily be seen to be an invariant pseudometric. Moreover,
for each x ∈ X the function t 7→ Dn(x, tx) is uniformly continuous (by the argument used
in Section 1 to show uniform continuity of D). The function Dn is referred to as averaged
pseudometric on level n.

A bounded measurable function f : G −→ C is Weyl almost periodic if for each ε > 0 there

exist k ∈ N, ξ1, . . . , ξk ∈ Ĝ and c1, . . . , ck ∈ C with

lim sup
n→∞

Mn(|f −
k∑

j=1

cξjξj|) < ε.

As discussed in Appendix D, an equivalent alternative characterization is that for each ε > 0
there exist N ∈ N and a relatively dense set R ⊂ G with

MN (|f − f(· − t)|) < ε

for all t ∈ R. A crucial feature of Weyl almost periodic functions is the existence of the limits

lim
n→∞

1

|Bn|

∫

Bn+sn

f(t) ξ(t) dt

irrespective of (and uniform in) the chosen sequence (sn) ∈ G for each ξ ∈ Ĝ, see Appendix
D.

Definition 4.1 (Weyl almost periodic points). Let (X,G) be a dynamical system and d a
metric on X generating the topology and (Bn) a Følner sequence and Dn, n ∈ N, the associated
averaged metrics. Then, a point x ∈ X is called Weyl almost periodic with respect to d and
(Bn) if for every ε > 0 there exists an N ∈ N such that

{t ∈ G : DN (x, tx) < ε}
is relatively dense.

Remark. It follows from Proposition D.1 that an x ∈ X is Weyl almost periodic if and only if
for each ε > 0 there exists a relatively dense set R ⊂ G and an N0 ∈ N such that DN (x, tx) < ε
for all N ≥ N0 and t ∈ R.

Arguing as in Section 2 with M replaced by Mn we see that Weyl almost periodicity is
independent of the chosen metric and the following holds.

Lemma 4.2. Let (X,G) be a dynamical system and d a metric on X generating the topology
and (Bn) a Følner sequence and Dn, n ∈ N, the associated averaged metrics. Then, the
following assertions for x ∈ X are equivalent:

(i) The point x is Weyl almost periodic.
(ii) The algebra Ax consists of Weyl almost periodic functions.
(iii) The set {f ∈ C(X) : fx is Weyl almost periodic} separates the points of X.

(iv) For any s ∈ G the function d
(s)
x is Weyl almost periodic, where d(s) ∈ C(X) is defined

via d(s)(y) := d(sx, y).

The previous lemma implies in particular that any Weyl almost periodic point is Besicovitch
almost periodic. It is not hard to see by examples that the converse does not hold.

Weyl almost periodicity has a stability property.
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Lemma 4.3 (Stability of Weyl almost periodicity along orbit closures). Let (X,G) be a
dynamical system. Assume that x ∈ X is Weyl almost periodic. Then, any element in the
orbit closure of x is Weyl almost periodic.

Proof. The function DN is lower semicontinuous for each N ∈ N as it is a supremum over
continuous functions. From this and the invariance of DN we find

DN (y, ty) ≤ lim inf
n→∞

DN (snx, tsnx) = DN (x, tx)

whenever snx→ y for a sequence (sn) in G. This easily gives the desired statement. �

Proposition 4.4. Let (X,G) be a dynamical system with transitive element p ∈ X. Let
p be Weyl almost periodic. Then (X,G) is uniquely ergodic, has pure point spectrum, all
eigenfunctions are continuous and Freq(x) = Eig(X,G,m) holds for all x ∈ X. Moreover, for

any f ∈ C(X) and ξ ∈ Ĝ, the averages

An(fxξ) :=
1

Bn

∫

Bn

f(tx) ξ(t) dt

converge (uniformly in x) towards the projection of f onto the eigenspace of ξ.

Proof. It is well-known that unique ergodicity is equivalent to uniform (in y ∈ X) convergence
of the averages

1

|Bn|

∫

Bn

f(ty) dt

for each continuous f : X −→ C. Now, uniform existence of these averages on the orbit of x
is a direct consequence of Weyl almost periodicity. This easily gives uniform existence on the
orbit closure. As the orbit closure is X the desired statement on unique ergodicity follows.
Denote the unique invariant probability measure by m.

By the previous lemma and the transitivity assumption on p every x ∈ X is Weyl almost
periodic. In particular, every element is Besicovitch almost periodic. As (X,G) is uniquely
ergodic every x ∈ X is also generic with respect to m. Hence, X = Bap(X,G,m) follows. By
Theorem 3.7, this implies pure point spectrum as well as pointwise convergence of the averages

An(fxξ) to the projection of f onto the eigenspace of ξ for each f ∈ C(X) and ξ ∈ Ĝ. Now,
by Weyl almost periodicity these averages converge uniformly in x ∈ X. Hence, their limit is
continuous and continuity of the eigenfunctions follows. �

Theorem 4.5. Let (X,G) be a dynamical system with transitive point p ∈ X. Then, the
following assertions are equivalent:

(i) The dynamical system (X,G) is uniquely ergodic with pure point spectrum and contin-
uous eigenfunctions.

(ii) The point p is Weyl almost periodic.
(iii) Every x ∈ X is Weyl almost periodic.

In this case, we have Freq(x) = Eig(X,G,m) for all x ∈ X.

Proof. The implication (iii)=⇒(ii) is obvious while (ii)=⇒(iii) follows from Lemma 4.3.
The implication (ii)=⇒(i) and the last part of the theorem were shown in Proposition 4.4.

It remains to show the reverse implication (i)=⇒(ii): This follows by a variant of the proof of
the corresponding part in Theorem 3.7. We denote the unique invariant measure by m and
use the notation introduced in the proof of Theorem 3.7. Thus, we denote the inner product
on L2(X,m) by 〈·, ·〉 and the associated norm by ‖ · ‖2. As the spectrum is pure point, there
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exists an orthonormal basis eξ, ξ ∈ Eig(X,G,m), of L2(X,m) with eξ being an eigenfunction
to the eigenvalue ξ for each ξ ∈ Eig(X,G,m). By assumption each eξ, ξ ∈ E, can be chosen
continuous. By unique ergodicity we then find for any finite subset A ⊂ Eig(X,G,m) and any
y ∈ X:

lim sup
n→∞

Mn(|f(·y)−
∑

ξ∈A

〈eξ, f〉eξ(y)ξ(·)|) = lim sup
n→∞

Mn|f(·y)−
∑

ξ∈A

〈eξ, f〉eξ(·y)|

= lim
n→∞

1

|Bn|

∫

Bn

|f(ty)−
∑

ξ∈A

〈eξ, f〉eξ(ty)| dt

=

∫

X

|f(x)−
∑

ξ∈A

〈eξ , f〉eξ(x)| dm(x)

(Cauchy–Schwarz’ inequality) ≤ ‖f −
∑

ξ∈A

〈eξ, f〉eξ‖2.

As fξ, ξ ∈ E, is a basis of L2(X,m), the last term becomes arbitrarily small for suitable
A ⊂ E. This shows that t 7→ f(ty) is Weyl almost periodic for any y ∈ X. �

Remark. Recently, systems satisfying the equivalent conditions of the theorem have attracted
substantial interest:

(a) For G = Z various equivalent characterizations of (i) have been investigated in [10]. In
particular, it is shown there that (i) is equivalent to topological isomorphy of the system to
its maximal equicontinuous factor. The case of general amenable groups G has been studied
in [15]. In particular, it has been shown there that (i) is equivalent to the continuity of the
averaged metric D on X ×X. This continuity is known as mean equicontinuity of the system.
In this context our preceding result is remarkable as it does not assume control of D on the
whole of X × X but just on {(x, tx) : t ∈ G}. In this sense, we have found a pointwise
characterization of mean equicontinuity. Note, however, that we require a rather uniform
control on the orbit of this one point.

(b) A large class of examples satisfying the conditions of the theorem are weakly almost
periodic systems. A recent study of such systems is carried out in [29] to which we refer for a
precise definition and further references, see also subsequent Section 5.

(c) A most important class of examples for the theorem are dynamical systems arising
from regular cut and project schemes. Such systems are at the core of the study of aperiodic
order (see [2]). They belong to the special class of dynamical systems known as translation
bounded measure dynamical system (TMDS), see Section 6 for details. In fact, a huge bulk
of material in the theory of aperiodic order deals with TMDS satisfying (i) of the theorem.
A characterization of such systems via an almost periodicity property of its points had been
missing for a long time. It was only given recently in [28]. The preceding theorem is a
generalization of the corresponding result of [28] in that it is not restricted to TMDS but
rather applies to general dynamical systems.

If a system is minimal every point is transitive and we can note the following immediate
consequence of the preceding theorem.

Corollary 4.6. Let (X,G) be a minimal dynamical system. Then, the following assertions
are equivalent:

(i) Every point in X is Weyl almost periodic.
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(ii) There exists a Weyl almost periodic point in X.
(iii) The dynamical system (X,G) is uniquely ergodic with pure point spectrum and contin-

uous eigenfunctions.

Remark. A system can well be Weyl almost periodic without being minimal. Consider for
example the orbit closure in the subshift ({0, 1}Z,Z) of the element ω defined with ω0 = 1
and ωn = 0 for n 6= 0.

5. Weakly and Bohr almost periodic dynamical systems

In the preceding section, we have met Weyl almost periodic points. In this section, we
introduce two special classes of Weyl almost periodic points, viz Bohr almost periodic points
and weakly almost periodic points. This allows us to reanalyze and characterize weakly almost
periodic dynamical system and Bohr almost periodic dynamical system via the new approach
in this paper. Specifically, the main result of this section shows that a (transitive) dynamical
system is weakly almost periodic (Bohr almost periodic) if and only if every of its points is
weakly almost periodic (Bohr almost periodic). We refer to [30] for a recent discussion of Bohr
and weakly almost periodic systems including relevance, background and further references.

Let G be a σ-compact locally compact abelian group and denote the set of uniformly
continuous and bounded functions on G by Cu(G). This space is a Banach space when
equipped with the supremum norm ‖ · ‖∞. An f ∈ Cu(G) is called weakly almost periodic if
the set {f(· − t) : t ∈ G} is relatively compact in Cu(G) with respect to the weak topology
of the Banach space (Cu(G), ‖ · ‖∞). Clearly, any Bohr almost periodic f ∈ Cu(G) is weakly
almost periodic (as Bohr almost periodicity means by definition that the set {f(·− t) : t ∈ G}
is relatively compact in the original topology). In fact, a main result on weakly almost periodic
functions, see e.g. [1] or [12, 30], gives that any weakly almost periodic f can be (uniquely)
decomposed into f = g + h with g ∈ Cu(G) Bohr almost periodic and h ∈ Cu(G) satisfying

lim
n→∞

sup
s∈G

1

|Bn|

∫

Bn

|h(s + t)| dt = 0

for any F ølner sequence (Bn). The existence of this decomposition is [31, Theorem 4.7.11],
while the uniqueness follows immediately from [31, Lemma 4.6.8].

When combined with (♥) in Appendix A this easily gives that any weakly almost periodic
function is Weyl almost periodic.

Definition 5.1 (Weakly and Bohr almost periodic points). Let (X,G) be a dynamical system.
(a) A point x ∈ X is called weakly almost periodic if Ax consists only of weakly almost

periodic functions.
(b) A point x ∈ X is called Bohr almost periodic if Ax consists only of Bohr almost periodic

functions.

Remark. By the discussion preceding the definition, any Bohr almost periodic point is weakly
almost periodic and any weakly almost periodic point is Weyl almost periodic.

In the subsequent discussion, the weakly almost periodic case and the Bohr almost periodic
case can be mostly treated in parallel. To facilitate the reading, we then give statements for
the weakly almost periodic case and mention the Bohr almost periodic case in brackets only.

With essentially the same proof as Lemma 2.7, we obtain the following statement.
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Lemma 5.2. Let (X,G) be a dynamical system and let x ∈ X be given. Then, the following
assertions are equivalent:

(i) The point x is weakly (Bohr) almost periodic.
(ii) The weakly (Bohr) almost periodic functions in Ax are dense in (Ax, ‖ · ‖∞).
(iii) The set {f ∈ C(X) : fx is weakly (Bohr) almost periodic } separates the points of X.

(iv) For any s ∈ G the function d
(s)
x is weakly (Bohr) almost periodic, where d(s) ∈ C(X)

is defined via d(s)(y) := d(sx, y).

Whenever (X,G) is a dynamical system, any f ∈ C(X) gives rise to a function on the
product G×X, viz

Pf : G×X −→ C, (t, x) 7→ f(tx) .

Roughly speaking one can say that the preceding discussion was concerned with almost peri-
odicity properties of the functions fx = Pf (·, x) for x ∈ X. It is natural to consider almost
periodicity properties of restrictions of the Pf to X as well for fixed t ∈ G. This leads to
the notion of weakly (Bohr) almost periodic dynamical system. For f ∈ C(X) and t ∈ G we
define

ft : X −→ C, ft(x) = f(tx) = Pf (t, ·) .
Definition 5.3 (Weakly and Bohr almost periodic dynamical systems). The dynamical system
(X,G) is called weakly almost periodic and Bohr almost periodic1 respectively if for any f ∈
C(X) the family {ft : t ∈ G} has compact closure in the weak topology and the Banach space
topology of (C(X), ‖ · ‖∞) respectively.

The next lemma relates weakly (Bohr) almost periodic dynamical systems to weakly (Bohr)
almost periodic points.

Lemma 5.4. Let (X,G) be a dynamical system.
(a) If (X,G) is weakly (Bohr) almost periodic then every x ∈ X is a weakly (Bohr) almost

periodic.
(b) If x ∈ X is transitive and weakly (Bohr) almost periodic then (X,G) is a weakly (Bohr)

almost periodic dynamical system.

Proof. Fix an arbitrary x ∈ X. Define F : C(X) → Cu(G) via

F (f)(t) = fx .

(a) It is easy to see that F is well defined and ‖F‖ ≤ 1. It follows that F is continuous,
and hence also weakly continuous [31, Lemma. 4.4.2]. Therefore, the image of a compact,
respectively weak compact set, is compact, respectively weak compact. Since F commutes
with the group action, the claim follows.

(b) We know that F is continuous. Moreover, since x has dense orbit, it follows immediately
that for all f ∈ C(X) we have

‖F (f)‖∞ = ‖f‖∞ .

Therefore, F is an isometry and hence it induces an isomorphic isometry F : C(X) → Im(F ).
In particular, Im(F ) is closed in Cu(G) and the mapping

F−1 : Im(F ) → C(X) ,

1In some papers this is called almost periodic dynamical system, or strongly almost periodic dynamical
system.
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is a continuous operator, and hence is also weakly continuous [31, Lemma. 4.4.2]. Therefore,
F−1 maps compact and weakly compact sets, respectively, into compact and weakly compact
sets respectively. This easily gives the desired statement. �

We obtain the following immediate consequence of the preceding lemma.

Theorem 5.5. Let (X,G) be a dynamical system with transitive p ∈ X. Then, the following
assertions are equivalent:

(i) (X,G) is weakly almost periodic.
(ii) Every x ∈ X is weakly almost periodic.
(iii) The point p ∈ X is weakly almost periodic.

We also note the following consequence of the theorem.

Corollary 5.6. Let (X,G) be a dynamical system with transitive p ∈ X. For s, t ∈ G define
gs,t : X → C via

gs,t(x) = d(sp, tx) .

Then, p ∈ X is weakly almost periodic if and only if for each s ∈ G the set {gs,t : t ∈ G} has
compact closure in the weak topology of (C(X), ‖ · ‖∞).

Proof. Indeed, the only if part of the statement is immediate from the definition of weak
almost periodicity and the preceding theorem. To show the if part we will denote (in line with
[30])

WAP(X) := {f ∈ C(X) : {ft : t ∈ G} has compact closure in the weak topology} .
Then, by [30, Prop. 3.3,Prop 3.4] WAP(X) is a closed algebra of (C(X), ‖·‖∞), which contains
the constant function 1. Moreover, we have gt,1 ∈ WAP(X) for all t ∈ G. We next show that
the functions gt,1 separate the points of X. Let x 6= y ∈ X be arbitrary, and let r = d(x, y).

Since p is a transitive point, there exists some t ∈ G such that d(tp, x) < r
3 . Then,

gt,1(x) = d(tp, x) <
r

3
and gt,1(y) = d(tp, y) ≥ d(x, y) − d(tp, x) >

2r

3
.

This shows that gt,1(x) 6= gt,1(y). Therefore, WAP(X) is a closed algebra of (C(X), ‖ · ‖∞)
which is separating the points, and hence, by Stone–Weierstraß’ theorem, WAP(X) = C(X).
This gives the desired statement. �

The preceding theorem allows us to recapture a main result of [30].

Corollary 5.7. Let (X,G) be a transitive weakly almost periodic dynamical system. Then,
(X,G) is uniquely ergodic with pure point spectrum and continuous eigenfunctions.

Proof. Let p be a transitive point. Then, by Theorem 5.5, p is weakly almost periodic. Hence,
p is Weyl almost periodic as well and the claim follows from Theorem 4.5. �

As should be clear from the preceding discussion, the analogue of Theorem 5.5 with ‘weakly
almost periodic’ replaced by ‘Bohr almost periodic’ holds as well (and similarly for Corollary
5.6). In fact, a somewhat stronger statement is true for Bohr almost periodic points. To state
this properly, we introduce the following notation when dealing with an dynamical system
(X,G) with metric d. For f ∈ C(X) we consider the mapping

πf : X −→ Cu(G), πf (x) := fx ,
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and, when an x ∈ X is fixed, we set

Y (f, x) := {ftx : t ∈ G} ,
where the closure is taken in Cu(G) with the (usual) supremum norm. We also define

d : X ×X −→ [0,∞), d(x, y) := sup
s∈G

d(sx, sy) .

Clearly, d is a metric.

Theorem 5.8. Let (X,G) be a dynamical system. For x ∈ X the following assertions are
equivalent:

(i) The element x ∈ X is Bohr almost periodic.
(ii) For any f ∈ C(X) the map πf : Gx −→ Cu(G), y 7→ fy, is continuous with range

given by Y (f, x).
(iii) There exists a G-invariant metric on Gx generating the topology.
(iv) The function d is continuous on Gx.
(v) The orbit closure Gx admits a structure of a locally compact group such that G −→ Gx,

t 7→ tx, becomes a continuous group homomorphism.

In particular, the orbit closure of any Bohr almost periodic point is minimal.

Proof. (i)=⇒(ii): Clearly, πf (tx) = ftx = fx(·+t) for any t ∈ G. Thus, it suffices to show that

fy belongs indeed to Y (f, x) for any y ∈ Gx and πf is continuous on Y (f, x). It is enough to

show that πf (yn) converges to πf (y) whenever (yn) is a sequence in Gx converging to y ∈ Gx
such that πf (yn) belong to Y (f, x). Now, it is not hard to see that the functions πf (yn)
converge pointwise to πf (y). Moreover, by (i), the set Y (f, x) is compact and, hence, πf (yn)
has a uniform convergent subsequence. Now, any such subsequence must converge to πf (y)
(as uniform convergence implies pointwise convergence). This gives the desired convergence
statement.

(ii)=⇒(iii): By (ii) the map df with df (y, z) := ‖πf (y) − πf (z)‖∞ is a continuous pseu-

dometric on Gx. It is clearly invariant. Now, choose a countable dense subset D ⊂ C(X)
separating the points of Gx. Assume without loss of generality that any element of D is
normalized, and choose for any f ∈ D a cf > 0 with

∑
f∈D cf < ∞. Then,

∑
f∈D cfdf is a

continuous invariant metric on Gx. As Gx is compact any continuous metric determines its
topology.

(iii)=⇒(iv): Let d
′
be a continuous invariant metric on Gx. Let ε > 0 be arbitrary. As d

′

is a continuous metric on Gx there exists a δ > 0 with d(y1, y2) ≤ ε for y1, y2 ∈ Gx whenever

d
′
(y1, y2) ≤ δ. As d

′
is invariant, we obtain then d(ty1, ty2) ≤ ε for all t ∈ G and, hence,

d(y1, y2) ≤ ε whenever d
′
(y1, y2) ≤ δ for y1, y2 ∈ Gx. This is the desired statement.

(iv)=⇒(v): Using the invariant metric d it is not hard to see that there is a group structure
on Gx with tx+ sx = (t+ s)x. Here, we show only that this is well-defined. The remaining
statements then follow easily. Assume tx = t′x and sx = s′x. Then triangle inequality and
invariance of the metric gives

d((t+s)x, (t′+s′)x) ≤ d((t+s)x, (t+s′)x)+d((t+s′)x, (t′+s′)x) ≤ d(sx, s′x)+d(tx, t′x) = 0.

This shows well-definedness.

(v)=⇒(i): This is standard. We include some details for convenience of the reader. Let f
be a continuous function on X. We have to show that the set S := {fx(t + ·) : t ∈ G} =
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{ftx : t ∈ G} has compact closure in Cu(G) with respect to the supremum norm. From (iv)
we easily see that πf : Gx −→ Cu(G), y 7→ fy, is continuous. Hence, πf (Gx) is compact and,
as it clearly contains S, the desired statement follows.

The minimality statement follows directly from (iii). �

The preceding result shows that Bohr almost periodic points give rise to minimal orbit
closures. In fact, within the weakly almost periodic points one can even characterize the Bohr
almost periodic points by minimality of their orbit closures:

Proposition 5.9. Let (X,G) be a dynamical system and x ∈ X be weakly almost periodic.
Then, x is Bohr almost periodic if and only if its orbit closure Gx is minimal.

Proof. We have just seen in Theorem 5.8 that the orbit closure of a Bohr almost periodic point
is minimal. So, consider now a weakly almost periodic point x ∈ X with minimal orbit closure
Gx. Then, clearly (Gx,G) is weakly almost periodic by (b) of Lemma 5.4 and it is minimal
(by assumption). Now, as is well known (see e.g. Prop. 3.7 of [30]) any minimal component
of a weakly almost periodic system is Bohr almost periodic. Now, the desired claim follows
from (a) of Lemma 5.4 �

Remark. We note that a Bohr almost periodic dynamical system does not need to be minimal
as can easily be seen by considering the ‘disjoint union’ of two Bohr almost periodic systems.

It is possible to characterize Bohr almost periodic points by almost periodicity properties
of the metric d.

Theorem 5.10. Let (X,G) be a dynamical system with metric d. Then the following asser-
tions are equivalent for a point p ∈ X:

(i) The point p is Bohr almost periodic.
(iii) The function G 7→ [0,∞), t 7→ d(p, tp), is Bohr almost periodic.

Proof. We show that (i) implies (ii): By (i) and Theorem 5.8, the orbit closure of p is minimal
and the function d is a continuous metric on Gp. Let ε > 0 be given. As d is continuous
and every Bohr almost periodic point has a minimal orbit, there exists a relatively dense set
R ⊂ G with d(sp, p) < ε for all s ∈ R. As d is invariant, this gives

|d(p, (t+ s)p)− d(p, tp)| ≤ d((t+ s)p, tp)) ≤ d(sp, p) < ε

for all t ∈ G and s ∈ R. As ε > 0 was arbitrary this gives (ii).

We now show that (ii) implies that p is Bohr almost periodic: It is not hard to see that (ii)
implies that t 7→ d(sp, (t + s), p) is Bohr almost periodic for any s ∈ G. This easily implies
that (iv) of Lemma 5.2 holds and (i) follows from that lemma. �

6. Application to measure dynamical systems

In this section, we use our results to shed a light on recent investigations of aperiodic order.
A fundamental issue in the study of aperiodic order is pure point diffraction, see e.g. [3] for
a recent survey. Indeed, understanding of pure point diffraction has been a driving force in
the field, see e.g. the survey article [22]. Recently, a complete understanding of pure point
diffraction via mean almost periodicity has been provided in [28]. That article mostly deals
with single measures. However, it also includes results on pure point spectrum of certain
dynamical systems viz measure dynamical systems. Here, we discuss how our results allow
one to provide a different approach to these results.
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We start with a discussion of translation bounded measure dynamical systems. Such dy-
namical systems were brought forward in [4] to provide a systematic framework to study
aperiodic order. In our exposition we follow [4] to which we refer for further details, proofs
and references.

We denote by Cc(G) the vector space of continuous complex valued functions on G with
compact support. This space is equipped with the inductive limit topology of the injections

CK(G) −→ Cc(G), ϕ 7→ ϕ,

for K ⊂ G compact. Here, CK(G) denotes the subspace of Cc(G) consisting of functions with
support in K. The measures on G are the elements of the dual space of Cc(G). The total
variation |µ| of a measure µ is the smallest positive measure with

|µ(ϕ)| ≤ |µ|(ϕ)
for all ϕ ∈ Cc(G) with ϕ ≥ 0. A measure µ on G is called translation bounded if its total
variation |µ| satisfies

‖µ‖K := sup |µ|(t+ U) <∞
for one (all) relatively compact open U in G. We denote that set of all translation bounded

measures by M∞(G) and equip it with the vague topology. Then, G admits a natural action
on M∞(G) by translations. More specifically, for t ∈ G and µ ∈ M∞(G) the measure tµ is
defined by

tµ(ϕ) = µ(ϕ(·+ t))

for all ϕ ∈ Cc(G).
A subset Ω ⊂ M∞(G) which is invariant under the translation action is compact if and

only if it is vaguely closed and there exists a constant C such that [34, Thm. A.8]

‖µ‖U ≤ C for all µ ∈ Ω .

Whenever Ω is a compact subset of M∞(G), which is invariant under the translation action
to and m is an invariant probability measure on X, we call (X,G,m) a dynamical system of
translation bounded measures or just TMDS for short. If G is second countable than any
TMDS is metrizable. Hence, the theory developed above applies to TMDS whenever G is
second countable. Consider now an arbitrary TMDS (Ω,G,m) and define for any ϕ ∈ Cc(G)
the function

Nϕ : Ω −→ C, Nϕ(ω) = ω(ϕ).

Then, Nϕ belongs to C(Ω). Also, there exists a unique translation bounded measure γ = γm

on (X,G,m) with

γ(ϕ ∗ ψ̃) = 〈Nϕ, Nψ〉
for all ϕ,ψ ∈ Cc(G) and all t ∈ G.2 The measure γ is called the autocorrelation of the TMDS.

This measure allows for a Fourier transform γ̂ which is a (positive) measure on Ĝ. It is known
as diffraction of the TMDS. Of particular interest in this theory are now those TMDS whose
diffraction is a pure point measure. By a main result of [4] (see references there as well for
earlier results) the diffraction of a TMDS is pure point if and only if the TMDS has pure point
spectrum. So, for this reason, TMDS with pure point spectrum are of utmost relevance in the

2Note that [4] uses a different sign in the definition of N (called f there) as well as has the inner product linear
in the second argument. This results in a different display of the formula for γ, viz. (γ ∗ ϕ̃ ∗ ψ)(0) = 〈fϕ, fψ〉.
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field of aperiodic order. One particular question is the calculation of the atoms of γ̂. Here,
the basic idea is that

γ̂({ξ}) = lim
n→∞

∣∣∣∣
1

|Bn|

∫

Bn

ξ(t) dω(t)

∣∣∣∣
2

(with (Bn) being a Følner sequence). Validity of this formula is often discussed under the
heading of Bombieri–Taylor conjecture.

Having provided the framework of TMDS, we now discuss how the theory developed in the
previous section can be used in the study of aperiodic order.

A translation bounded measure ω is called mean almost periodic (Besicovitch almost peri-
odic, Weyl almost periodic respectively) if for any ϕ ∈ Cc(G) the function

ω ∗ ϕ : G −→ C, (ω ∗ ϕ)(t) =
∫
ϕ(t− s) dω(s),

is mean almost periodic (Besicovitch almost periodic, Weyl almost periodic respectively).

Proposition 6.1. Let (Ω,G,m) be a TMDS and (Bn) a Følner sequence. Then, for ω ∈ Ω
the following assertions are equivalent:

(i) The measure ω is mean almost periodic (Besicovitch almost periodic, Weyl almost
periodic, Weak almost periodic, Bohr almost periodic).

(ii) The function t 7→ Nϕ(tω) is mean almost periodic (Besicovitch almost periodic, Weyl
almost periodic, Weak almost periodic, Bohr almost periodic) for any ϕ ∈ Cc(G).

(iii) The point ω ∈ Ω is mean almost periodic (Besicovitch almost periodic, Weyl almost
periodic, Weak almost periodic, Bohr almost periodic).

Proof. We only discuss mean almost periodicity. The remaining statements follow analogously.
(i)⇐⇒(ii): A short computation shows

Nϕ(tω) = (ω ∗ ϕ̃)(t),
where ϕ̃ : G −→ C, t 7→ ϕ(−t). This gives that ω is mean almost periodic if and only if
t 7→ Nϕ(tω), ϕ ∈ Cc(G), is mean almost periodic and the equivalence between (i) and (ii)
follows.

(iii)=⇒(ii): This follows easily as any Nϕ, ϕ ∈ Cc(G), is a continuous function on Ω.
(ii)=⇒(iii): It is not hard to see that the set of Nϕ, ϕ ∈ Cc(G), separates the points of Ω

and is closed under complex conjugation. Hence, the algebra generated by the Nϕ is dense
in the continuous functions on Ω with respect to the supremum norm (see e.g. [3] for further
discussion of this type of argument). This gives that (ii) implies (iii). �

When dealing with TMDS (Ω, G,m) we can now use the previous proposition to replace the
assumption that ω ∈ Ω is mean almost periodic as element of the dynamical system (Ω, G,m)
by the assumption that ω is a mean almost periodic measure (and, similarly, with mean almost
periodic replaced by Besicovitch almost periodic, Weyl almost periodic, weak almost periodic,
Bohr almost periodic). This allows then for reformulations of our main results. We only state
one of the applications and leave the remaining ones to the reader.

Theorem 6.2. Let (Ω,G,m) be an ergodic TMDS. Assume that G is second countable and that
(Bn) is a Følner sequence along which Birkhoff’s ergodic theorem holds. Then, the following
assertions are equivalent:

(i) (Ω,G,m) has pure point spectrum.
(ii) Almost every ω ∈ Ω is a mean almost periodic measure.
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Remark. The previous theorem was first shown in [28]. Here, we have provided a different
proof.

7. Abstract generalisations

When closing the article, it may be instructive to stop a moment to have a look at the
overall theme of this article from a more abstract point of view. The general approach in this
article may be described as follows: We consider a dynamical system (X,G) and say that a
point x ∈ X is (∗) almost periodic if Ax consists of (∗) almost periodic functions only. Then,
the preceding sections have been devoted to a thorough study of consequences of existence of
(∗) almost periodic points for (∗) being replaced by Bohr, weak, Weyl, Besicovitch and Mean
(and in this order these are increasingly weaker notions of almost periodicity). Now, of course,
any other concept of almost periodicity for a function could also be taken as the starting point
of the theory. Then, some of our considerations will easily carry over. This is discussed in this
section.

Let Cu(G) be the set of uniformly continuous bounded functions on G and consider a
dynamical system (X,G). Whenever we are given an A ⊂ Cu(G) we can define for p ∈ X

Ap := {f ∈ C(X) : fp ∈ A}
Then, Ap inherits various properties of A. In particular, if A is an algebra, then so is Ap and
if 1 ∈ A then Ap contains the constant function 1. Moreover, if A is closed in (Cu(G), ‖ · ‖∞)
then Ap is closed in (C(X), ‖ ·‖∞). Then, as abstraction of Lemma 2.7 (with the same proof),
we obtain the following lemma.

Lemma 7.1. Let A be a closed subalgebra of Cu(G) containing the constant function 1. Then,
the following assertions are equivalent for p ∈ X:

(i) Ap ⊆ A.
(ii) Ap = C(X).

(iii) Ap separates the points of Gp.

(iv) For each s ∈ G the function d(s) ∈ C(X) with d(s)(y) := d(sp, y) belongs to Ap.

A particular way to obtain a closed algebra A is by suitable seminorms. This is discussed
next: Call a seminorm N on Cu(G) admissible if it is G-invariant and satisfies

• N(f) ≤ N(g) whenever |f | ≤ g
• N(1) = 1

Note that any admissible seminorm N satisfies N ≤ ‖ · ‖∞ (as |f | ≤ ‖f‖∞ · 1).
Remark (Examples). It is not hard to see that ‖ · ‖∞ and M ◦ | · | as well as

N(f) := lim sup
n→∞

sup
t∈G

1

|Bn|

∫

t+Bn

|f(t)| dt

are admissible seminorms on Cu(G).

Definition 7.2. (a) We say that an f ∈ Cu(G) is N -almost periodic if for any ε > 0 the set

{t ∈ G : N(|f − f(· − t)|) < ε}
is relatively dense in G.

(b) We say that an f ∈ Cu(G) is N -trig almost periodic if for any ε > 0, there exists some
trigonometric polynomial P such that N(|f − P |) < ε.
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Lemma 7.3. Let N be an admissible seminorm. Then,

A
N := {f ∈ Cu(G) : f is N − almost periodic }

and
A
T := {f ∈ Cu(G) : f is N − trig almost periodic }

are closed subalgebras of Cu(G). Both subalgebras contain the Bohr almost periodic functions
and A

T ⊆ A
N holds.

In particular 1 ∈ A
N .

Proof. The statement on A
N is an abstraction of Theorem B.3 in our context. It can be shown

by replacing M ◦ | · | with N in the proof of this theorem. Similarly, the statement on A
T is

an abstraction of Lemma C.2 in our context and can be shown by mimicking the proof of that
lemma. This also gives the last statement. �

Definition 7.4 (N -almost periodic points). Let (X,G) be a dynamical system and N an
admissible seminorm on Cu(G). We say, that an x ∈ X is N -almost periodic if fx is N -
almost periodic for any f ∈ C(X), i.e. if ANx = C(X) holds.

For a continuous metric d on X and x ∈ X we define the

dN,x : G −→ [0,∞), dN,x(t) := N((s 7→ d(sx, (t+ s)x) .

Reasoning as in Section 2, we can infer that for any continuous metric d the function dN,x is
uniformly continuous. Having set up things, we can now discuss the following abstraction of
the results in Section 2 (where we include some details for the convenience of the reader).

Analogously to Lemma 2.2 we find the following.

Lemma 7.5. Let (X,G) be a dynamical system. Let N be admissible. Let d be a continuous
metric on X. Then, the following assertions for x ∈ X are equivalent:

(i) For any ε > 0 the set
{t ∈ G : dN,x(t) < ε}

is relatively dense.
(ii) The function dN,x is Bohr almost periodic.

The following is an abstraction of both the equivalence between (i) and (ii) in Lemma 2.7
(with N =M ◦ | · |) and Theorem 5.10 (with N = ‖ · ‖∞).

Theorem 7.6. Let (X,G) be a dynamical system. Let N be admissible. Then, for x ∈ X the
following assertions are equivalent:

(i) The point x is N -almost periodic.
(ii) There exists a continuous metric d on X such that dN,x is Bohr almost periodic.
(iii) For every continuous metric d on X the function dN,x is Bohr almost periodic.

Remark. As X is a compact metric space, a metric on X is continuous if and only if it
generates the topology.

Proof. (iii)=⇒(ii): This is clear.

(ii)=⇒(iii): This is the analogue of Lemma 2.4 in our context. It can be shown by a variant
of the proof of that lemma. Some extra effort is needed as N is not defined on measurable
bounded functions but only on Cu(G). This is tackled by means of Urysohn lemma. As every
locally compact group is a normal space this lemma allows one to separate arbitrary closed
disjoint sets by continuous functions and this is what we will use. Here are the details:
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Let e be any metric on X such that eN,x is almost periodic and let d be any other metric
on X, such that d, e generate the topology. Without loss of generality we can assume that
d, e ≤ 1. Let ε > 0 be arbitrary. By Lemma 7.5 it suffices to show that the set of t ∈ G with
dN,x(t) ≤ ε is relatively dense.

Choose δ′ > 0 with d(y, z) < ε
2 whenever e(y, z) < δ′. Set

δ :=
ε

4δ′
.

Let t ∈ G be so that eN,x(t) < δ. By Lemma 7.5 the set of such t ∈ G is relatively dense.
Thus, it remains to show dN,x(t) < ε for any such t ∈ G. Define et,x and dt,x on G by
et,x(s) := e(sx, (t+ s)x) and dt,x(s) := d(sx, (t+ s)x). Set

A := {s : et,x ≥ δ′} ; B := {s : et,x ≤ δ′

2
} .

Then, by Urysohn’s Lemma, there exists some continuous function f : G → [0, 1] such that

f(x) = 1 for all x ∈ A and f(x) = 0 for all x ∈ B. Set g := 1− f . Then, et,x ≥ δ′

2 f and hence,
δ′

2N(f) ≤ N(et,x) ≤ δ, showing

N(f) ≤ 2δ

δ′
=
ε

2
.

Moreover, dt,x(s)g(s) ≤ ε
2 . Indeed, if s ∈ A then g(s) = 0 by definition of g and if s /∈ A then

dt,x(s) ≤ ε
2 by our choice of δ′. This shows

N(dt,x) ≤
ε

2
.

Therefore, using d ≤ 1 we obtain

dN,x(t) = N(dt,x) ≤ N(dt,xf) +N(dt,xg) ≤ N(f) +N(dt,xg) ≤
ε

2
+
ε

2
= ε.

(i)=⇒(ii): This can be shown as (ii)=⇒(i) in Lemma 2.7.

(ii)=⇒(i): As in the proof of (i)=⇒(iv) of Lemma 2.7 we infer from (ii) that dzx is N -almost
periodic for any z ∈ X. Now, (i) follows from Lemma 7.1. �

Corollary 7.7. Let (X,G,m) be a dynamical system with metric d. Let N be an admissible
seminorm and x ∈ X be N -almost periodic. If∫

X

f(y) dm(y) ≤ N(fx)

holds for all f ∈ C(X), then (X,G,m) has pure point spectrum.

Remark. Note that the assumption holds whenever there exists a F ølner sequence (Bn)
along which Birkhoff’s ergodic theorem holds and N satisfies M ◦ | · | ≤ N and x is generic
with respect to m.

Proof. As x is N -almost periodic the preceding theorem (combined with Lemma 7.5) gives
that for any ε > 0 the set of t ∈ G with dN,x(t) < ε is relatively dense. By using the
assumption on N with f(y) = d(y, ty) (for t ∈ G fixed), we furthermore find for the function

d : G −→ [0,∞), d(t) =

∫

X

d(y, ty) dm(y),

the inequality
d(t) ≤ dN,x(t)
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for all t ∈ G. Hence, for any ε > 0 the set of t ∈ G with d(t) < ε is relatively dense as well.
This gives that d is Bohr almost periodic and the desired statement on pure point spectrum
follows from the main result of [25] (compare proof of Theorem 2.8 as well). �

Appendix A. Bohr almost periodic functions

In this section, we briefly present some background on Bohr almost periodic function. This
is completely standard and can be found in many places. We include a discussion here in
order to be self-contained and to set the perspective on the weaker (and less known) notions
of almost periodicity underlying our considerations. For more details we refer the reader to
[8, 31].

Let G be a locally compact abelian group. Recall from Section 1 that a continuous function
f : G −→ C is called Bohr almost periodic if for any ε > 0 the set of t ∈ G with

‖f − f(· − t)‖∞ < ε (♠)

is relatively dense. Any such t ∈ G is then called an ε-almost period of f . It turns out that
a continuous f : G −→ C is Bohr almost periodic if and only if {f(· − t) : t ∈ G} is compact,
where the closure is taken with respect to the supremum norm. It is not hard to see that
any Bohr almost periodic function is bounded and uniformly continuous. Moreover, the Bohr
almost periodic functions form a closed subalgebra of the algebra of all uniformly continuous
bounded functions on G. The main structural result on Bohr almost periodic functions is
that a function f is Bohr almost periodic if and only if for any ε > 0 there exist k ∈ N,

ξ1, . . . , ξk ∈ Ĝ and c1, . . . , ck ∈ C with

‖f −
k∑

j=1

cjξj‖∞ < ε. (♥)

The basic idea of the weaker concepts of almost periodicity discussed in the subsequent sections
is to replace the supremum norm ‖ · ‖∞ in (♠) and (♥) by suitable (semi)norms arising by
averaging procedures.

Appendix B. Mean almost periodic functions

The main result of this appendix shows that the bounded uniformly continuous mean almost
periodic functions form a closed subalgebra of the algebra of bounded uniformly continuous
functions on G. This is certainly well-known and a proof can be given by standard means.
For the convenience of the reader and in order to keep this article self contained we include a
discussion below. As our article deals with abelian groups we assume that the group G below
is abelian. Note, however, that this is not used in the proofs.

We start with a general result on discrete geometry of groups.

Proposition B.1. Let G be a locally compact abelian group. Let D and E be relatively dense
subsets of G and V a relatively compact open neighborhood of the neutral element. Then,
((D −D) + V ) ∩ ((E − E) + V ) is relatively dense.

Proof. As both D and E are relatively dense, we can choose an open relatively compact set
U ⊂ G with the property that any translate of U intersects both D and E. As addition is
continuous on G, we can choose furthermore a relatively compact open neighborhood W with
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W = −W and W +W ⊂ V . As U is relatively compact, there exist N ∈ N and z1, . . . zN ∈ G
with

U =

N⋃

n=1

(zn +W ) ∩ U.

Consider now an arbitrary t ∈ D. Then, there exists an s ∈ E with t− s ∈ U . Hence, for
any t ∈ D we can find st ∈ E and nt ∈ {1, . . . , N} with

(t− st) ∈ znt +W.

Fix now for each n ∈ {1, . . . , N} elements tn ∈ D and sn ∈ E with

(tn − sn) ∈ zn +W.

(If some of the n does not admit elements, we just remove this n from our list.) Then, for
any t ∈ D we can find st ∈ E and n ∈ {1, . . . , N} such that both t− st and tn − sn belong to
zn +W . Hence, we find

t− st + w = tn − sn + w′

for suitable w,w′ ∈W . This gives

t− tn = st − sn + v

with v = w′−w ∈W −W ⊂ V . Now, we clearly have t− tn ∈ (D−D)+V and (st−sn)+v ∈
(E − E) + V. Moreover, the set of all t− tn is relatively dense as t is an arbitrary element of
the relatively dense D and there are only finitely many tn. This finishes the proof. �

Let G be a σ-compact locally compact abelian group and (Bn) a Følner sequence on G.
Let f be a uniformly continuous bounded function on G. Let ε > 0 be given. As usual we say
that a t ∈ G is an ε-almost period of f if

M(|f − f(· − t)|) < ε.

Denote the set of all ε-almost periods of f by AP(f, ε). Then, it is not hard to see that

AP(f, ε)− AP(f, ε) ⊂ AP(f, 2ε).

A uniformly continuous bounded f : G −→ C is mean almost periodic if for any ε > 0 the set
AP(f, ε) is relatively dense.

Lemma B.2. Let G be a σ-compact locally compact abelian group and (Bn) a Følner se-
quence on G. Let a natural number n and uniformly continuous bounded mean almost periodic
functions f1, . . . , fn on G be given. Then, the set

n⋂

k=1

AP(fk, ε)

is relatively dense in G for any ε > 0.

Proof. This will be shown by induction in n. The case n = 1 is clear. So, assume now the
statement holds for a chosen n. Let ε > 0 and uniformly continuous functions f1, . . . , fn+1

be given. Then, the set D :=
⋂n
k=1 AP(fk, ε/3) is relatively dense by assumption. As the

functions fk, k = 1, . . . , n+1, are uniformly continuous we can find an open relatively compact
neighborhood V of the neutral element such that

‖fk − fk(· − s)‖∞ <
ε

3
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for all s ∈ V and k = 1, . . . , n + 1. Set E := AP(fn+1, ε/3). Then, the previous proposition
gives that

((D −D) + V ) ∩ ((E − E) + V )

is relatively dense. On the other hand it is not hard to see that

(D −D) + V ⊂ AP(fk, ε), k = 1, . . . , n and (E − E) + V ⊂ AP(fn+1, ε).

This finishes the proof. �

Theorem B.3. Let G be a σ-compact locally compact abelian group and (Bn) a Følner
sequence on G. Then, the set of all uniformly continuous bounded mean almost periodic
functions is invariant under taking complex conjugates and a closed subalgebra of the uniformly
continuous bounded functions on G equipped with ‖ · ‖∞.

Proof. We have to show that the set in question is closed under complex conjugation, sums,
products, multiplication by scalars and uniform convergence.

It is not hard to see that the set in question is closed under complex conjugation, uniform
convergence and multiplication by scalars.

We next show that it is closed under sums: Let f, g be mean almost periodic uniformly
continuous bounded functions. Then, the previous lemma easily gives that f + g is also mean
almost periodic.

Finally, we deal with products: Let f, g be mean almost periodic uniformly continuous
bounded functions. Then, a short computation gives for any t ∈ G

|f(s)g(s)− f(s− t)g(s − t)| ≤ |f(s)g(s)− f(s)g(s − t)|+ |f(s)g(s − t)− f(s− t)g(s − t)|
≤ ‖f‖∞|g(s) − g(s − t)|+ ‖g‖∞|f(s)− f(s− t)|

From this we easily obtain

M(|fg − (fg)(· − t)|) ≤ ‖f‖∞M(|g − g(· − t)|) + ‖g‖∞M(|f − f(· − t)|).
Now, the desired statement follows easily from the preceding lemma.

The last statement is clear. �

For later use we also note the following proposition.

Proposition B.4. Let (fn) be a sequence of uniformly continuous bounded mean almost pe-
riodic functions on G with ‖fn‖ ≤ 1 for all n. Let cn > 0 with

∑∞
n=1 cn <∞ be given. Then,

there exists for any ε > 0 a relatively dense set D in G with

M(

∞∑

n=1

cn|f − f(· − t)|) < ε

for all t ∈ D.

Proof. Choose n0 large enough so that
∑∞

k=n0+1 ck < ε/4. Then,
∑∞

n=n0+1 cn‖f−f(·−t)‖∞ <
ε/2 by assumption on the fn and the cn. By Lemma B.2 there exists a relatively dense set D
in G with M(|fk − fk(· − t)|) < ε

2n0
for k = 1, . . . , n0. Now, the statement follows easily. �

Remark. The considerations of this section carry over whenM◦|·| is replaced by any invariant
seminorm N on the algebra of bounded uniformly continuous functions on G satisfying

• N(f) ≤ N(g) whenever |f | ≤ g,
• N(1) = 1.

This point is taken up in Section 7.
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Appendix C. Besicovitch almost periodic functions and existence of means

We consider a σ-compact locally compact abelian group G together with a Følner sequence
(Bn). Our aim is to study the set of uniformly continuous bounded functions f : G −→ C,
which are Besicovitch almost periodic i.e. satisfy that for any ε > 0 there exist k ∈ N,

ξ1, . . . , ξk ∈ Ĝ and c1, . . . , ck ∈ C with

M(|f −
k∑

j=1

cξjξj |) < ε.

For further details and a more in depth study of these functions we refer to [28].

Proposition C.1. Let G be a σ-compact locally compact abelian group and (Bn) a Følner
sequence on G. Then, any uniformly continuous bounded Besicovitch almost periodic function
is mean almost periodic.

Proof. Let ε > 0 be given. Choose c1, . . . , ck ∈ C and ξ1, . . . , ξk ∈ Ĝ such that P :=
∑k

j=1 cjξj
satisfies

M(|f − P |) < ε.

As M is invariant this inequality will then continue to hold if f is replaced by f(· − t) and P
is replaced by P (· − t) for any t ∈ G. Now, clearly P is Bohr almost periodic. Hence, there
exists a relatively dense set R ⊂ G with ‖P − P (· − t)‖∞ < ε for all t ∈ R. This easily gives

M(|f − f(· − t)|) ≤M(|f − P |) +M(|P − P (· − t)|) +M (|P (· − t)− f(· − t)|) < 3ε

for all t ∈ R. �

From the definition and simple algebraic manipulations we infer the following.

Lemma C.2. Let G be a σ-compact locally compact abelian group and (Bn) a Følner se-
quence on G. Then, the set of all uniformly continuous bounded Besicovitch almost periodic
functions is invariant under taking complex conjugates and a closed subalgebra of the uniformly
continuous bounded functions on G equipped with ‖ · ‖∞. It contains all Bohr almost periodic
functions and is contained in the algebra of mean almost periodic functions.

Proof. The set is clearly closed under taking limits with respect to ‖ · ‖∞ as well as under ad-
dition and taking complex conjugates. To show that it is closed under multiplication consider
f, g in this set and let ǫ > 0 be arbitrary. Let P,Q be trigonometric polynomials so that

M(|f − P |) < ε

2‖g‖∞ + 4
and M(|g −Q|) < ε

4‖f‖∞ + 1
.

Define

Q′(x) :=

{
Q(x) if |Q(x)| ≤ ‖g‖∞ + 1
Q(x)
|Q(x)| (‖g‖∞ + 1) otherwise

.

Then, Q′ is a Bohr almost periodic function and |g−Q′| ≤ |g−Q|, which gives M(|g−Q′|) ≤
M(|g −Q|).

Since Q′ is Bohr almost periodic, there exists a trigonometric polynomial R such that
‖Q′ −R‖∞ < min{ ε

4‖f‖∞+1 , 1}. In particular,

‖R‖∞ ≤ ‖Q′‖∞ + 1 ≤ ‖g‖∞ + 2 .
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Then,

M(|fg − PR|) ≤M(|fg − fR|) +M(|fR− PR|)
≤ ‖f‖∞M(|g −R|) + ‖R‖∞M(|f − P |)

≤ ‖f‖∞
(
M(|g −Q′|) +M (|Q′ −R|)

)
+
ε

2

≤ ‖f‖∞
(
M(|g −Q′|) + ‖Q′ −R‖∞

)
+
ε

2
< ε .

This shows that the set in question is closed under multiplication. It clearly contains all Bohr
almost periodic functions and is contained in the set of mean almost periodic functions. �

Remark. The functions referred to as Besicovitch almost periodic were introduced by Besi-
covitch in [7] for G = R. A corresponding class of functions was then studied by Følner for
general locally compact abelian groups [13]. This class, however, does not coincide with the
Besicovitch class for G = R. Another approach to Besicovitch almost periodic functions is
developed by Davis in [9]. An account of these developments with a focus on aperiodic order
is given in Lagarias survey [22]. Here, we have taken a ‘shortcut’: We have not defined Besi-
covitch almost periodic functions by some intrinsic features. Instead we have defined them by
what would be a main result in a proper theory starting with an intrinsic definition.

A crucial feature of Besicovitch almost periodic function is existence of means in the fol-
lowing sense.

Lemma C.3. Let G be a σ-compact locally compact abelian group and (Bn) a Følner sequence
on G. Let f : G −→ C be a uniformly continuous, bounded Besicovitch almost periodic
function. Then, the limit

A(f) = lim
n→∞

1

|Bn|

∫

Bn

f(s) ds

exists.

Proof. The statement is well-known for functions of the form f =
∑k

j=1 cjξj with ξ1, . . . , ξk ∈
Ĝ, c1, . . . , ck ∈ C. It then follows by a limiting procedure for Besicovitch almost periodic
functions. �

In fact, existence of means together with a Parseval type equality is a characterizing feature
of Besicovitch almost periodic functions.

Proposition C.4. Let G be a σ-compact locally compact abelian group and (Bn) a Følner
sequence on G. Let f : G −→ C be a uniformly continuous and bounded. Then, f is Besicovitch

almost periodic if and only if there exists a countable set F ⊂ Ĝ such that the following three
statements hold:

• The limit A(|f |2) = limn→∞
1

|Bn|

∫
Bn

|f(t)|2 dt exists.

• For any ξ ∈ F the limit

A(fξ) = lim
n→∞

1

|Bn|

∫

Bn

f(t) ξ(t) dt

exists.
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• The equality

A(|f |2) =
∑

ξ∈F

|A(fξ)|2

holds.

In this case A(fξ) = 0 holds for all ξ ∈ Ĝ \ F .

Proof. Let f be Besicovitch almost periodic. Clearly, any ξ ∈ Ĝ is Bohr almost periodic
and hence Besicovitch almost periodic. Thus, fξ is Besicovitch almost periodic as product

of Besicovitch almost periodic functions. Hence, the second point holds (even for all ξ ∈ Ĝ).
Similarly, |f |2 is Besicovitch almost periodic. Given this, the first point follows. The last
point is contained in [28].

Now, consider f satisfying the three points above. Let ξ1, ξ2, . . . be an enumeration of the
ξ ∈ F . A computation involving Cauchy–Schwarz’ inequality in the first step, M(1) = 1 in
the second step and existence of averages A in the third step gives

M (|f −
N∑

j=1

A(fξj)ξj|)2

≤ M(|f −
N∑

j=1

A(fξj)ξj|2)M (1)

= M


|f |2 − f

N∑

j=1

A(fξj)ξj − f

N∑

j=1

A(fξj)ξj +

N∑

j,k=1

A(fξj)A(fξk)ξjξk




= A(|f |2)−A(f

N∑

j=1

A(fξj)ξj)−A(f

N∑

j=1

A(fξj)ξj) + A(

N∑

j=1,k

A(fξj)A(fξk)ξjξk)

= A(|f |2)−
N∑

j=1

|A(fξ)|2

→ 0

for N → ∞. Here, the penultimate step is a direct computation invoking that A is linear

with A(η) = 0 for 0 6= η ∈ Ĝ. Indeed, this shows that f can be approximated in mean by a
trigonometric polynomial arbitrarily well. This finishes the proof. �

Remark. The considerations of this appendix easily carry over to bounded measurable func-
tions (instead of uniformly continuous bounded functions). As the article is concerned with
continuous functions we do not elaborate on this but rather leave the details to the reader.

Appendix D. Weyl almost periodic functions and uniform means

In this appendix, we consider a uniform type of mean.

Let (Bn) be a Følner sequence in G and define for bounded f : G −→ R and n ∈ N

Mn(f) := sup
r∈G

1

|Bn|

∫

Bn+r
f(t) dt.
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Proposition D.1. For a bounded measurable function f : G −→ R and ε > 0 the following
assertions are equivalent:

(i) There exists an N ∈ N with MN (f) < ε.
(ii) There exists an N0 ∈ N with MN (f) < ε for all N ≥ N0.

Proof. (ii)=⇒(i): This is clear.

(i)=⇒(ii): Consider n ∈ N. Define for r ∈ G

Cr :=
1

|BN |

∫

BN

(∫
1

|Bn|

∫

Bn+r
f(s+ t) ds

)
dt.

Fubinis theorem and the assumption (i) directly give

Cr =
1

|Bn|

∫

Bn+r

(
1

|BN |

∫

BN

f(s+ t) dt

)
ds ≤ 1

|Bn|

∫

Bn+r
MN (f) ds =MN (f).

On the other hand we can easily see that (for large n) the additional averaging over BN
does not play a role. More specifically, we can compute as follows:

∣∣∣∣Cr −
1

|Bn|

∫

Bn+r
f(s) ds

∣∣∣∣ =

∣∣∣∣Cr −
1

|BN |

∫

BN

(
1

|Bn|

∫

Bn+r
f(s) ds

)
dt

∣∣∣∣

=

∣∣∣∣
1

|BN |

∫

BN

(
1

|Bn|

∫

Bn+r
(f(s+ t)− f(s)) ds

)
dt

∣∣∣∣

≤ 1

|BN |

∫

BN

2‖f‖∞
|(Bn + t)△Bn|

|Bn|
dt.

Now, due to the Følner condition the integrand in the last term can easily be seen to go
pointwise to 0 for n → ∞. As BN is compact, we find convergence to zero of the integral for
each fixed N . As there is no dependence on r ∈ G this convergence is independent of r ∈ G.
This easily gives the desired statement. �

A bounded f : G −→ C is Weyl almost periodic if for all ε > 0 there exist k ∈ N,

ξ1, . . . , ξk ∈ Ĝ and c1, . . . , ck ∈ C with

lim sup
n→∞

Mn(|f −
k∑

j=1

cξjξj|) < ε.

By the preceding proposition it is possible to replace this condition by the requirement that

for each ε > 0 there exists an N ∈ N , k ∈ N, ξ1, . . . , ξk ∈ Ĝ and c1, . . . , ck ∈ C with

MN (|f −
k∑

j=1

cξjξj|) < ε.

As usual it is also possible to characterize this by relative denseness of ε-almost periods.
More specifically, as discussed in [33] a measurable bounded f : G −→ C is Weyl almost
periodic if and only if for each ε > 0 there exists a relatively dense set D ⊂ G and an N0 ∈ N

with

Mn(|f − f(· − t)|) < ε

for all t ∈ D and n ≥ N0. By the preceding proposition validity for all n ≥ N0 can be replaced
by validity for one n.
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Clearly, the set of Weyl almost periodic functions forms an algebra, is closed under uniform
limits and under multiplication with Bohr almost periodic functions. Moreover, a crucial
feature of Weyl mean almost periodic functions is uniform existence of means.

Lemma D.2. Let G be a locally compact abelian group and (Bn) a Følner sequence on G.
Let f : G −→ C be a bounded Weyl almost periodic function. Then, for any sequence (rn) in
G the limit

lim
n→∞

1

|Bn|

∫

Bn+rn

f(s) ds

exists and is independent of the sequence. In particular, the convergence is uniform in the
chosen sequence.

The proof follows the same lines as the proof of the corresponding statement for Besicovitch
almost periodic functions in the preceding section. For this reason we leave it to the reader.
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