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ON NORM ALMOST PERIODIC MEASURES

TIMO SPINDELER AND NICOLAE STRUNGARU

Abstract. In this paper, we study norm almost periodic measures on locally compact

Abelian groups. First, we show that the norm almost periodicity of µ is equivalent to the

equi-Bohr almost periodicity of µ ∗ g for all g in a fixed family of functions. Then, we

show that, for absolutely continuous measures, norm almost periodicity is equivalent to the

Stepanov almost periodicity of the Radon–Nikodym density.

1. Introduction

The discovery of quasicrystals in Nature [30] emphasised the need for a better understand-

ing of physical diffraction, especially for systems with pure point spectrum. Over the last

two decades, tremendous amount of work has been done in this direction, and the connec-

tion between pure point diffraction and almost periodicity has become clear (see for example

[5, 4, 8, 14, 15, 16, 17, 18, 21, 31, 32, 37, 39] to name a few).

Given a translation bounded measure ω, its diffraction is defined as the Fourier transform

γ̂ of the autocorrelation measure γ [12] (see the monographs [1, 2, 13] for general background

of mathematical diffraction theory). We say that ω is pure point diffractive if the diffraction

measure γ̂ is a pure point measure, and this is equivalent to the strong almost periodicity of

the autocorrelation measure γ [5, 10, 21]. For measures with Meyer set support, this is also

equivalent to the (simpler to check) norm almost periodicity of γ [5, 37]. This makes strong

and norm almost periodicity interesting for us.

While strong almost periodicity seems to be the natural concept to study due to the

direct connection with pure point diffraction, norm almost periodicity appeared in a natural

way in the study of measures coming from cut and project schemes [37], and diffraction

of measures with Meyer set support [38]. Because of this, a better understanding of norm

almost periodicity becomes important. It is known that norm almost periodicity is a stronger

concept than strong almost periodicity [5], and that for measures with Meyer set support the

two concepts are equivalent [5, 37]. This suggests that there is a deeper connection between

these two concepts, a connection which has not been investigated, yet. It is our goal in this

paper to look closer at the relation between these two forms of almost periodicity.

Recall that a translation bounded measure µ is called strongly almost periodic if, for each

compactly supported continuous function f , the convolution µ ∗ f is a Bohr almost periodic

function. In Theorem 4.7, we prove that a translation bounded measure µ is norm almost

periodic if and only if the set {µ ∗ f | f continuous, ‖f‖∞ 6 1, supp(f) ⊆ U}, where U is

a fixed but arbitrary precompact open set, is equi-Bohr almost periodic (meaning that, for
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each ε > 0, the set of common ε-almost periods of the entire family is relatively dense). To

achieve this characterisation, we provide in Corollary 3.2 and Proposition 3.3 new formulas for

‖µ‖U . We want to emphasise here that, while in the literature this norm is typically defined

using a compact set K with non-empty interior, our choice of working with precompact open

sets leads to simpler and more useful formulas (see Corollary 3.2 and Proposition 3.3), and

therefore it is, in our opinion, more useful. Moreover, any two precompact sets X,Y with

non-empty interior define equivalent norms ‖ · ‖X and ‖ · ‖Y , respectively, and therefore the

choice of a compact set K with non-empty interior or a precompact open set U is irrelevant

for the concept of norm almost periodicity.

The second goal of the paper is to study the norm almost periodicity of absolutely continu-

ous measures. We show that, given an absolutely continuous measure µ with density function

f ∈ L1
loc(G), the measure µ is norm almost periodic if and only if f is a Stepanov almost

periodic function. We also prove that if the density function is uniformly continuous and

bounded, then norm almost periodicity of µ is also equivalent to the Bohr almost periodicity

of f and to the strong almost periodicity of µ.

The paper is structured as follows. In Section 3, we provide in Corollary 3.2, Proposition 3.3

and Corollary 3.7 various estimates for the norm of a measure. We also prove that the

spaces of translation bounded pure point measures, translation bounded absolutely continuous

measures and translation bounded singularly continuous measures, respectively, are Banach

spaces with respect to this norm. We complete this section by showing that these spaces are

not closed with respect to the product topology.

In Section 4 we study the connection between norm and strong almost periodicity we

mentioned above. We prove one of the main results of the paper in the following Theorem.

Theorem 4.7. Let µ ∈ M∞(G), let U ⊆ G be an open precompact set, and let F ⊆ FU be

dense in (FU , ‖ · ‖∞). Then, µ is norm almost periodic if and only if GF := {µ ∗ g | g ∈ F}

is equi-Bohr almost periodic.

In particular, µ is norm almost periodic if and only if the family G := {µ ∗ g | g ∈ FU} is

equi-Bohr almost periodic.

Here and below, for a precompact open set U , the set FU is defined as

FU := {g ∈ Cc(G) | |g| 6 1U} = {g ∈ Cc(G) | supp(g) ⊆ U, ‖g‖∞ 6 1} .

After that we provide examples of measures µ ∈ SAP(G) for which µpp, µac and/or µsc are

not strongly almost periodic, see Section 5. This is interesting, since norm almost periodicity

carries throughout the Lebesgue decomposition by Corollary 3.15.

In Section 6, we take a closer look at norm almost periodic measures of spectral purity.

Of special interest to us are norm almost periodic absolutely continuous measures. Here we

prove the second main result in the paper.

Theorem 6.5. An absolutely continuous translation bounded measure µ = f θG is norm

almost periodic if and only if its density function f ∈ L1
loc(G) is L1-Stepanov almost periodic.
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The mapping f 7→ f θG is a norm preserving isomorphism between the Banach spaces

(S, ‖ · ‖U ) and (NAPac(G), ‖ · ‖U ), where

S := {f ∈ L1
loc(G) | f is L1-Stepanov almost periodic} .

We complete the paper by looking at some consequences of these results for the diffraction

of measures with Meyer set support.

2. Preliminaries

Throughout the paper, G denotes a second countable, locally compact (Hausdorff) Abelian

group. The metric on G can be chosen such that it is translation invariant and all the balls

are precompact [34], and we assume that this holds. The associated Haar measure is denoted

by | · | or θG.

We use the familiar symbols Cc(G) and Cu(G) for the spaces of compactly supported

continuous and bounded uniformly continuous functions, respectively, which map from G to

C. For any function g on G, the functions Ttg and g† are defined by

(Ttg)(x) := g(x− t) and g†(x) := g(−x).

A measure µ on G is a linear functional on Cc(G) such that, for every compact subset

K ⊆ G, there is a constant aK > 0 with

|µ(g)| 6 aK ‖g‖∞

for all g ∈ Cc(G) with supp(g) ⊆ K. Here, ‖g‖∞ denotes the supremum norm of g. By the

Riesz Representation theorem [23, 24, 28], this definition is equivalent to the classical measure

theory concept of regular Radon measure.

For a measure µ on G, we define Ttµ and µ† by

(Ttµ)(g) := µ(T−tg) and µ†(g) := µ(g†).

Given a measure µ, there exists a positive measure |µ| such that, for all f ∈ Cc(G) with

f > 0, we have [22]

|µ| (f) = sup{|µ(g)| | g ∈ Cc(G), |g| 6 f} .

The measure |µ| is called the total variation of µ.

Recall that a measure µ on G is called translation bounded if supt∈G |µ|(t + K) < ∞

holds for every compact subset K ⊆ G. The space of all translation bounded measures on

G is denoted by M∞(G). We will denote by M∞
pp(G),M∞

ac(G) and M∞
sc (G) the spaces of

translation bounded pure point, translation bounded absolutely continuous and translation

bounded singular continuous measures, respectively.

Now, as mentioned in the Introduction, there are different notions of almost periodicity.

Definition 2.1. A function f ∈ Cu(G) is called strongly almost periodic if the closure of

{Ttf | t ∈ G} is compact in the Banach space (Cu(G), ‖ · ‖∞). The spaces of strongly almost

periodic functions on G is denoted by SAP(G).
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Remark 2.2. Note that a function f ∈ Cu(G) is strongly almost periodic if and only if it is

Bohr almost periodic, i.e. for each ε > 0, the set

{t ∈ G | ‖Ttf − f‖∞ < ε}

is relatively dense [2, Prop. 4.3.2]. ✸

Definition 2.1 carries over to measures.

Definition 2.3. A measure µ is called strongly almost periodic if, for all f ∈ Cc(G), the

function f ∗µ is a strongly almost periodic function. We will denote by SAP(G) the space of

all strongly almost periodic measures.

Later, we will compare this notion of almost periodicity with the following stronger version.

Definition 2.4. Let K ⊆ G be a compact subset with non-empty interior. A measure

µ ∈ M∞(G) is called norm almost periodic if, for all ε > 0, the set

PK
ε (µ) := {t ∈ G | ‖µ− Ttµ‖K < ε}

is relatively dense in G. The space of norm almost periodic measures will be denote by

NAP(G). Here, for a translation bounded measure ν ∈ M∞(G), its K-norm (see [5, 37] for

more details and properties of this) is defined as

‖ν‖K := sup
x∈G

|ν| (x+K) .

Last but not least, we need to define the convolution of two measures.

Definition 2.5. Let µ and ν be two measures on G. We say that µ and ν are convolvable

whenever their convolution

(µ ∗ ν)(f) =

∫

G

∫

G

f(x+ y) dµ(x) dν(y)

exists for all f ∈ Cc(G).

Definition 2.6. A sequence (An)n∈N of precompact open subsets of G is called a van Hove

sequence if, for each compact set K ⊆ G, we have

lim
n→∞

|∂KAn|

|An|
= 0 ,

where the K-boundary ∂KA of an open set A is defined as

∂KA :=
(
A+K \ A

)
∪
(
((G\A) −K) ∩A

)
.

Note that every σ-compact locally compact Abelian group G admits van Hove sequences

[29].

At the end of this section, let us review the standard notions of convergence for measures

which we will use below.

Definition 2.7. Let (µn)n∈N be a sequence of measures on G, and let µ ∈ M(G). Then, the

sequence (µn)n∈N converges to µ

• in the vague topology if limn→∞ µn(f) = µ(f) for all f ∈ Cc(G);
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• in the norm topology if limn→∞ ‖µn − µ‖K = 0 for some (fixed) non-empty and

compact set K ⊆ G which is the closure of its interior;

• in the product topology if limn→∞ ‖(µn − µ) ∗ g‖∞ = 0 for all g ∈ Cc(G).

These types of convergence are denoted by µn → µ, µn ⇒ µ, µn
π
−→ µ.

3. On the norm of measures

In this section, we give various estimates on the norm ‖µ‖U of a measure. Let us start with

the following lemma.

Lemma 3.1. Let U be an open precompact set, and let µ a measure on G. Then,

|µ| (U) = sup{|µ(g)| | g ∈ Cc(G), |g| 6 1U}.

Proof. >: First, for any such g, we have

|µ(g)| 6 |µ| (|g|) 6 |µ| (1U ) = |µ| (U) .

6: Let ε > 0 by arbitrary. By the inner regularity of |µ|, there exists a compact set K ⊆ U

such that

|µ| (U) 6 |µ| (K) +
ε

2
.

Next, we can find some f ∈ Cc(G) such that 1K 6 f 6 1U , and hence

|µ| (U) 6 |µ| (f) +
ε

2
.

Now, since f > 0, we have

|µ| (f) = sup{|µ(g)| | g ∈ Cc(G), |g| 6 f} .

Therefore, there exists a function g ∈ Cc(G) such that |g| 6 f and

|µ| (f) 6 |µ(g)| +
ε

2
.

Thus, one has

|µ(g)| > |µ| (f)−
ε

2
> |µ| (U)− ε ,

and |g| 6 f 6 1U . Since ε > 0 was arbitrary, this proves the claim. �

As we will often deal with functions of this type, we will use the following notation:

FU := {g ∈ Cc(G) | |g| 6 1U} = {g ∈ Cc(G) | supp(g) ⊆ U, ‖g‖∞ 6 1} .

As a consequence we get the following simple result, which will be important in our study of

norm almost periodicity.

Corollary 3.2. Let U ⊆ G be an open and precompact subset. Then, for all µ ∈ M∞(G),

we have

‖µ‖U = sup
t∈G

sup
g∈FU

|µ(Ttg)| = sup
(t,g)∈G×FU

|µ(Ttg)| = sup
g∈FU

sup
t∈G

|µ(Ttg)| .

Proof. The first equality follows from Lemma 3.1. The second and third equality follow from

standard properties of the supremum. �
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We next show that each measure µ induces an operator Tµ on the space of continuous

functions supported inside −U , and that ‖µ‖U is just the operator norm ‖Tµ‖. This enables

us to give alternate formulas for ‖µ‖U . For simplicity, we write

C(G : U) := {f ∈ Cc(G) | supp(f) ⊆ U} .

Proposition 3.3. Let µ ∈ M∞(G), and let U be an open precompact set. Define the operator

Tµ by

Tµ : (C(G : −U), ‖ · ‖∞) → (Cu(G), ‖ · ‖∞), f 7→ µ ∗ f .

Then, one has

‖Tµ‖ = ‖µ‖U .

In particular, this gives

‖µ‖U = sup{‖µ ∗ f‖∞ | f ∈ C(G : −U), ‖f‖∞ = 1}

= sup{‖µ ∗ f‖∞ | f ∈ C(G : −U), ‖f‖∞ 6 1}

= sup{
‖µ ∗ f‖∞
‖f‖∞

| f ∈ C(G : −U), f 6≡ 0}

= inf{C | ‖µ ∗ f‖∞ 6 C ‖f‖∞ for all f ∈ C(G : −U)} .

Proof. First note that g 7→ g† defines an isometric isomorphism between C(G : −U) and

C(G : U). It follows immediately from Corollary 3.2 that

‖µ‖U = sup
g∈FU

sup
t∈G

∣∣µ(Ttg)
∣∣ = sup

g∈F−U

sup
t∈G

∣∣µ(Ttg
†)
∣∣ = sup

g∈F−U

sup
t∈G

∣∣(µ ∗ g)(t)
∣∣ = sup

g∈F−U

‖µ ∗ g‖∞ .

This yields

‖µ‖U = sup
g∈F−U

‖µ ∗ g‖∞ . (3.1)

Now, since µ ∈ M∞(G), we have µ ∗ g ∈ Cu(G) for all g ∈ Cc(G) [10, 21]. Therefore, Tµ is

well defined, and it is easy to see that Tµ is linear.

Next, we have

F−U = {g ∈ Cc(G) | supp(g) ⊆ −U, ‖g‖∞ 6 1} = {g ∈ C(G : −U) | ‖g‖∞ 6 1} .

Hence, F−U is the unit ball in the normed space (C(G : −U), ‖ · ‖∞). Therefore, by Eq. (3.1),

we get

‖µ‖U = sup{‖Tµ(f)‖∞ | f ∈ C(G : −U), ‖f‖∞ 6 1} = ‖Tµ‖ .

Finally, the last claim follows from standard equivalent definitions of the operator norm on

normed spaces. �

As an immediate consequence, we obtain the next result.

Corollary 3.4. Let U be an open precompact set, and let F ⊆ F−U be dense in (F−U , ‖·‖∞).

Then, one has

‖µ‖U = sup{‖µ ∗ f‖∞ | f ∈ F}



NORM ALMOST PERIODIC MEASURES 7

Proof. With the notation of Proposition 3.3, since F is dense in (F−U , ‖·‖∞) and (F−U , ‖·‖∞)

is the unit ball in (C(G : −U), ‖ · ‖∞), we get:

‖µ‖U = ‖Tµ‖ = sup
f∈F

‖Tµ(f)‖ = sup{‖µ ∗ f‖∞ | f ∈ F} . �

We next provide a similar estimate for the norm for compact sets, via approximations from

above. Let us start with a preliminary lemma.

Lemma 3.5. Let µ be a positive measure, and let B be a precompact Borel set. Then, we

have

µ(B) = inf{µ(f) | f ∈ Cc(G), f > 1B}.

Proof. On the one hand, we have

µ(B) = µ(1B) 6 µ(f)

for all f ∈ Cc(G) with f > 1B , since f ∈ Cc(G) and f > 1B imply f > 1B . Hence, we obtain

µ(B) 6 inf{µ(f) | f ∈ Cc(G), f > 1B}.

On the other hand, we have

µ(B) = inf{µ(U) | B ⊆ U, U open} = inf{µ(1U ) | B ⊆ U, U open}

> inf{µ(f) | B ⊆ U, U open, f ∈ Cc(G), 1U > f > 1B}

> inf{µ(f) | f ∈ Cc(G), f > 1B} .

Therefore, the claim follows. �

Consequently, we get the following estimates.

Corollary 3.6. Let µ be a positive measure, and let K ⊆ G be a compact set. Then, we have

µ(K) = inf{µ(f) | f ∈ Cc(G), f > 1K}.

The next corollary is an immediate consequence.

Corollary 3.7. Let µ be a measure on G, and let K ⊆ G be a compact set. Then, we have

‖µ‖K = sup
t∈G

inf
f∈Cc(G),
f>1K

|µ| (Ttf) .

In particular, if µ is positive, then we have

‖µ‖K = sup
t∈G

inf
f∈Cc(G),
f>1K

µ(Ttf) .

Proof. This follows from Corollary 3.6 because

‖µ‖K = sup
t∈G

|µ| (t+K) = sup
t∈G

inf
f∈Cc(G),
f>1t+K

|µ| (f) = sup
t∈G

inf
f∈Cc(G),
f>1K

|µ| (Ttf) . �
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Remark 3.8. When working with precompact open sets, the formula of Corollary 3.2 in-

volves two suprema, which can be interchanged. In contrast, the supremum and infimum in

Corollary 3.7 cannot be interchanged. Because of this, it is much easier to work with open

precompact sets when estimating ‖µ‖U than with compact sets, and this is why we make this

choice below. ✸

Let us emphasise that our choice of open precompact sets does not matter when working

with the norm topology. The following result is proved in [5] for compact sets and the same

proof works for precompact sets.

Lemma 3.9. Let A,B be precompact sets with non-empty interior. Then ‖ · ‖A and ‖ · ‖B
are equivalent norms on M∞(G).

Proof. It is obvious that ‖ · ‖A defines a semi-norm, and since it has non-empty interior it is

a norm.

Now, since A and B are precompact and have non-empty interior, each set can be covered

by finitely many translates of the other. Let N be the number of translates needed for both

coverings. Then, it is straightforward to see that

1

N
‖ · ‖A 6 ‖ · ‖B 6 N ‖ · ‖A . �

We complete the section by looking at the completion of various spaces of translation

bounded measures with respect to norm and product topologies. First, let us recall the

following result.

Theorem 3.10. [27] Let K ⊆ G be any compact set with non-empty interior. Then, the pair

(M∞(G), ‖ · ‖K) is a Banach space.

Now, Lemma 3.9 and Theorem 3.10 imply the next corollary.

Corollary 3.11. Let U ⊆ G be any open precompact set. Then, (M∞(G), ‖·‖U ) is a Banach

space.

We next show that the spaces of translation bounded measures of spectral purity are closed

in (M∞(G), ‖ ‖U ) and hence Banach spaces. Let us start with the following result.

Lemma 3.12. For all α ∈ {pp, ac, sc} and all µ ∈ M∞(G) we have

‖µα‖U 6 ‖µ‖U 6 ‖µpp‖U + ‖µac‖U + ‖µsc‖U .

Proof. We follow the idea of [38, Cor. 8.4]. By [11, Thm. 14.22], we have

|µ| = |µpp|+ |µac|+ |µsc| .

The claim follows immediately from this. �

The following statements are immediate consequences of Lemma 3.12

Corollary 3.13. One has

M∞(G) = M∞
pp(G)⊕M∞

ac(G)⊕M∞
sc (G) .
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Corollary 3.14. Let µ, µn ∈ M∞(G), for all n ∈ N. Then, limn→∞ ‖µ − µn‖U = 0 if and

only if

lim
n→∞

‖ (µ− µn)α ‖U = 0 for all α ∈ {pp, ac, sc} .

Corollary 3.15. Let µ ∈ NAP(G). Then µpp, µac, µsc ∈ NAP(G).

We can now prove the following result.

Proposition 3.16. The spaces M∞
pp(G), M∞

ac(G) and M∞
sc (G) are closed in (M∞(G), ‖·‖U ).

In particular, (M∞
pp(G), ‖ · ‖U ), (M

∞
ac(G), ‖ · ‖U ) and (M∞

sc (G), ‖ · ‖U ) are Banach spaces.

Proof. Let α ∈ {pp, ac, sc}, and let (µn)n∈N be a sequence in M∞
α (G). Assuming that µn → µ

in M∞(G), we need to show that µ ∈ M∞
α (G).

Now, if β ∈ {pp, ac, sc} and β 6= α, we have (µn)β = 0. Therefore, by Corollary 3.14, we get

‖µβ‖U = 0 and hence µβ = 0. As µβ = 0 for all β 6= α, β ∈ {pp, ac, sc}, we get µ ∈ M∞
α (G),

as claimed. �

We complete this section by showing that the spaces of pure point, absolutely continuous

and singular continuous measures, respectively, are not closed in the product topology. To

do so, we first provide a simple lemma which simplifies some of our computations below.

Lemma 3.17. Let µn, µ ∈ M∞(G), for all n ∈ N, such that µn
π
−→ µ. If ν has compact

support, we have

µn ∗ ν
π
−→ µ ∗ ν .

Proof. Let g ∈ Cc(G). Since ν has compact support, we have f := g ∗ ν ∈ Cc(G). As µn → µ

in the product topology and f ∈ Cc(G), we get

lim
n→∞

‖µn ∗ f − µ ∗ f‖∞ = 0 .

Therefore, we have

lim
n→∞

‖(µn ∗ ν) ∗ g − (µ ∗ ν) ∗ g‖∞ = 0 .

As g ∈ Cc(G) is arbitrary, the claim follows. �

Now, we look at some examples.

Example 3.18. Let µn = 1
n

∑n
k=1 δ k

n
, for all n ∈ N. Then, µn

π
−→ λλ[0,1].

Proof. Let f ∈ Cc(G). Each such f is uniformly continuous. Fix ε > 0. Then, there is N ∈ N

such that

∣∣(f ∗ λλ|[0,1])(x)− (f ∗ µn)(x)
∣∣ =

∣∣∣∣∣

∫ 1

0
f(x− y) dy −

1

n

n∑

k=1

f
(
x−

k

n

)
∣∣∣∣∣

=

∣∣∣∣∣

n∑

k=1

∫ k
n

k−1

n

f(x− y) dy −
n∑

k=1

∫ k
n

k−1

n

f
(
x−

k

n

)
dy

∣∣∣∣∣

6

n∑

k=1

∫ k
n

k−1

n

∣∣∣∣f(x− y)− f
(
x−

k

n

)∣∣∣∣dy
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<

n∑

k=1

∫ k
n

k−1

n

ε dy = ε

holds independently of x, for all n > N , due to the uniform continuity of f . Therefore, for

all n > N , we have

‖f ∗ λλ|[0,1] − f ∗ µn‖∞ 6 ε . �

Example 3.19. Let ν be any singular continuous measure of compact support. Then, with µn

as in Example 3.18, the measures µn ∗ν are singular continuous, and the sequence (µn ∗ν)n∈N
converges in the product topology to the absolutely continuous measure ν ∗ λλ[0,1].

Proof. It is easy to see that µn ∗ ν is a finite sum of singular continuous measures, which is

again singular continuous.

Next, ν ∗ λλ|[0,1] is an absolutely continuous measure because

(ν ∗ λλ|[0,1])(φ) =

∫

R

∫

R

φ(x+ y) 1[0,1](x) dλλ(x) dν(y)

=

∫

R

∫

R

φ(x) 1[0,1](x− y) dλλ(x) dν(y)

=

∫

R

∫

R

1[0,1](x− y) dν(y) φ(x) dλλ(x)

=

∫

R

h(x)φ(x) dλλ(x),

where h(x) := (1[0,1] ∗ ν)(x).

Finally, by Lemma 3.17, the sequence (µn ∗ ν)n∈N converges in the product topology to

ν ∗ λλ[0,1]. ✸

Example 3.20. Consider the following measures on R
2:

µn =
1

n

n∑

k=1

δ( k
n
,0), n ∈ N .

Then, exactly as in Example 3.18, it can be shown that (µn)n∈N converges in the product

topology to the singular continuous measure

λ(f) =

∫ 1

0
f(x, 0) dx

for all f ∈ Cc(R
2). ✸

Example 3.21. Let (fα)α be an approximate identity for (Cu(G), ‖ · ‖∞). Then, the net

(µα)α, with µα = fα θG, converges in the product topology to δ0.

Proof. Since µα ∗ f = fα ∗ f and δ0 ∗ f = f for all f ∈ Cc(G), the claim follows from [9, Thm.

1.2.19(b)]. ✸

Example 3.22. Let ν be any singular continuous measure of compact support. Then, with

fα as in Example 3.21, the measures µα ∗ν are absolutely continuous, and (µα ∗ν)α converges

in the product topology to the singular continuous measure ν.
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Proof. It is obvious that µα ∗ ν are absolutely continuous, and by Lemma 3.17, we have

lim
α

µα ∗ ν = δ0 ∗ ν = ν

in the product topology. ✸

Next, we provide a slight generalisation of Example 3.21.

Lemma 3.23. Let (µn)n∈N be a sequence of probability measures such that, for each ε > 0,

there exists some N ∈ N such that, for all n > N , we have supp(µn) ⊆ Bε(0). Then, we have

lim
n→∞

µn = δ0

in the product topology.

Proof. First note that every second countable locally compact Abelian group is metrisable.

Let f ∈ Cc(G) be arbitrary, and fix ε > 0. Since f is uniformly continuous, there exists some

δ > 0 such that, for all x, y ∈ G with d(x, y) < δ, we have |f(x)− f(y)| < ε. By the condition

on the support, there exists some N ∈ N such that, for all n > N , we have supp(µn) ⊆ Bδ(0).

Then, since each µn is a probability measure, for all n > N and all x ∈ G, we have

|(µn ∗ f)(x)− (δ0 ∗ f)(x)| =

∣∣∣∣
∫

G

f(x− y) dµn(y)− f(x)

∣∣∣∣

=

∣∣∣∣
∫

G

f(x− y) dµn(y)−

∫

G

f(x) dµn(y)

∣∣∣∣

6

∫

G

|f(x− y)− f(x)| dµn(y)

=

∫

Bδ(0)
|f(x− y)− f(x)|dµn(y)

where we used supp(µn) ⊆ Bδ(0) in the last step. Now, since y ∈ Bδ(0), we get d(y, 0) < δ

and hence, since the metric is translation invariant, d(x−y, y) < δ. By the uniform continuity

of f , this gives |f(x− y)− f(x)| < ε and thus

|(µn ∗ f)(x)− (δ0 ∗ f)(x)| < ε

for all x ∈ G and n > N , which implies the claim. �

Remark 3.24. (i) In Lemma 3.23, the condition that each µn is a probability measure

can be weakened to µn(G) = 1 and there exists some C > 0 such that |µn| (G) < C,

for all n ∈ N.

(ii) Let G be an arbitrary LCAG, which is not necessarily metrisable, and let (µα)α
be a net of probability measures such that, for each open set 0 ∈ V ⊆ G, there

exists some β such that, for all α > β, we have supp(µα) ⊆ V . Then, exactly as

in the proof of Lemma 3.23, it can be shown that (µα)α converges in the product

topology to δ0.

✸

Now, we provide two examples of singular continuous measures which converge to pure

point measures.
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Example 3.25. For all n ∈ N, let µn be the normalised line integral over the circle x2+ y2 =
1
n2 in R

2, that is

µn(f) =
1

2π

∫ 2π

0
f
(cos(t)

n
,
sin(t)

n

)
dt .

Then, every µn is a singular continuous measure, and by Lemma 3.23, the sequence (µn)n∈N
converges in the product topology to δ0. ✸

Example 3.26. Let µ be any singular continuous probability measure on R supported inside

[0, 1]. Define µn, for all n ∈ N, by

µn(f) =

∫

R

f(nx) dµ(x) .

Then, each µn is a singular continuous probability measures supported inside [0, 1
n
], and

therefore, by Lemma 3.23, (µn)n∈N converges in the product topology to δ0. ✸

4. Strong versus norm almost periodicity

The purpose of this section is to show that norm almost periodicity is a uniform version of

strong almost periodicity.

Recall that, for a measure µ, we can define

PU
ε (µ) := {t ∈ G | ‖Ttµ− µ‖U 6 ε} .

Similarly, for a f ∈ Cu(G), we can define

Pε(f) := {t ∈ G | ‖Ttf − f‖∞ 6 ε} .

Remark 4.1. (i) Sometimes the set of ε-almost periods is defined with strict inequal-

ity. It is easy to see that the notion of almost periodicity is independent of the

choice of 6 or <.

(ii) Usually, the norm ‖ · ‖K and norm almost periodicity are defined using compact

sets K. Working with open precompact sets makes our computations below much

simpler.

✸

Let us start with the following lemma.

Lemma 4.2. Let U ⊆ G be an open precompact set, and let F ⊆ FU be any set which is

dense in (FU , ‖ · ‖U ). Then, we have

PU
ε (µ) = {t ∈ G | ‖Tt(µ ∗ g†)− µ ∗ g†‖∞ 6 ε for all g ∈ F} =

⋂

g ∈F

Pε(µ ∗ g†) .

In particular

PU
ε (µ) = {t ∈ G | ‖Tt(µ ∗ g†)− µ ∗ g†‖∞ 6 ε for all g ∈ FU} =

⋂

g ∈FU

Pε(µ ∗ g†) .
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Proof. Let

Bε := {t ∈ G | ‖Tt(µ ∗ g†)− µ ∗ g†‖∞ 6 ε for all g ∈ F} ,

Cε :=
⋂

g∈F

Pε(µ ∗ g†) .

The equality PU
ε (µ) = Bε is an immediate consequence of Corollary 3.4 because

‖Ttµ− µ‖U = sup
(x,g)∈G×F

|(Ttµ− µ)(Txg)| = sup
(x,g)∈G×F

|µ(Tx−tg)− µ(Txg)|

= sup
(x,g)∈G×F

∣∣∣
(
Tt(µ ∗ g†)

)
(x)− (µ ∗ g†)(x)

∣∣∣

= sup
g∈F

sup
x∈G

∣∣∣
(
Tt(µ ∗ g†)

)
(x)− (µ ∗ g†)(x)

∣∣∣ = sup
g∈F

‖Tt(µ ∗ g†)− µ ∗ g†‖∞ .

Therefore, we have

t ∈ PU
ε (µ) ⇐⇒ ‖Ttµ− µ‖U 6 ε

⇐⇒ sup
g∈F

‖Tt(µ ∗ g†)− µ ∗ g†‖∞ 6 ε

⇐⇒ ‖Tt(µ ∗ g†)− µ ∗ g†‖∞ 6 ε for all g ∈ FU

⇐⇒ t ∈ Bε.

The equality Bε = Cε follows immediately from the definition of Pε(µ ∗ g†). �

Remark 4.3. If U is symmetric, i.e. −U = U , we can replace g† by g. Since we are

interested in norm almost periodicity, which by Lemma 3.9 does not depend on the choice of

U , one can assume without loss of generality that U = −U , to make the computations below

slightly simpler. Since this assumption doesn’t simplify the formulas too much, and in future

applications one may need to work without this extra assumption, we don’t assume below

that U is symmetric. ✸

Next, we show that to check that a measure is strongly almost periodic, it suffices to use

FU as the set of test functions.

Proposition 4.4. Let µ ∈ M∞(G). Then, µ ∈ SAP(G) if and only if µ ∗ g ∈ SAP(G) for

all g ∈ FU .

Proof. By definition, the given property is necessary for µ to be a strongly almost periodic

measure. It is also sufficient. If f ∈ Cc(G) it is easy to show that there exist elements

c1, . . . , cm ∈ C, t1, . . . , tm ∈ G and g1, . . . , gm ∈ FU such that

f =

m∑

j=1

cjTtjgj . (4.1)

Indeed, since supp(f) is finite, we can find a finite open cover supp(f) ⊆
⋃m

j=1(−tj+U). By a

standard partition of unity argument, we can find h1, .., hm ∈ Cc(G) such that
∑m

j=1 hj(x) = 1

for all x ∈ supp(f). Then cj = ‖fhj‖∞ and gj =
1
cj
f · (T−tjhj) for all j such that cj 6= 0 gives

Eq. (4.1). The claim is now obvious. �
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We now introduce the concept of equi-Bohr almost periodicity.

Definition 4.5. Let G ⊆ SAP(G) be any family of functions. We say that G is equi-Bohr

almost periodic if, for each ε > 0, the set

Pε(G) = {t ∈ G | ‖Ttf − f‖∞ 6 ε for all f ∈ G}

is relatively dense.

Remark 4.6. It is easy to see that Pε(G) =
⋂

f ∈G Pε(f). ✸

We can now prove the main result in this section.

Theorem 4.7. Let µ ∈ M∞(G), let U ⊆ G be an open precompact set, and let F ⊆ FU be

dense in (FU , ‖ · ‖∞). Then, µ is norm almost periodic if and only if GF := {µ ∗ g | g ∈ F}

is equi-Bohr almost periodic.

In particular, µ is norm almost periodic if and only if the family G := {µ ∗ g | g ∈ FU} is

equi-Bohr almost periodic.

Proof. This is an immediate consequence of Lemma 4.2. Indeed, we have

Pε(GF ) =
⋂

g∈F

Pε(µ ∗ g) = P−U
ε (µ) . �

Remark 4.8. By combining Proposition 4.4 and Theorem 4.7, the following are true for a

measure µ ∈ M∞(G).

(i) The measure µ is strongly almost periodic iff, for all ε > 0, the set Pε(µ ∗ g) is

relatively dense in G for all g ∈ FU .

(ii) The measure µ is norm almost periodic iff, for all ε > 0, the set
⋂

g ∈FU
Pε(µ ∗ g) is

relatively dense in G.

✸

We next use the results from this section to give simpler proofs for [38, Prop. 6.2] and [16,

Prop. 5.6].

Proposition 4.9. [38, Prop. 6.2] Let µ be a norm almost periodic measure and ν a finite

measure. Then, µ ∗ ν is norm almost periodic.

Proof. Let ε > 0. Since µ is norm almost periodic, there is a relatively dense set S such that

‖f ∗ µ− Tt(f ∗ µ)‖∞ < ε
|ν|(G)+1 for all t ∈ S and f ∈ FU . Hence, for all f ∈ FU we have

‖f ∗ (µ ∗ ν)− Ttf ∗ (µ ∗ ν)‖∞ = ‖(f ∗ µ− Tt(f ∗ µ)) ∗ ν‖∞

= sup
x∈G

∣∣∣∣
∫

G

(f ∗ µ− Tt(f ∗ µ))(x− y) dν(y)

∣∣∣∣

6 sup
x∈G

∫

G

∣∣(f ∗ µ− Tt(f ∗ µ))(x− y)
∣∣ d|ν|(y)

6 ‖f ∗ µ− Tt(f ∗ µ)‖∞ |ν|(G) < ε .

Consequently, µ ∗ ν is norm almost periodic. �
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Next, we give an alternate proof for the following result.

Proposition 4.10. [16] Let µ, ν ∈ M∞(G), and let A = (An)n∈N be a van Hove sequence

such that µ⊛A ν exists1. If µ is norm almost periodic, then µ⊛A ν is norm almost periodic.

Proof. By [29, Lem. 1.1], there is a constant c > 0 such that, for all g ∈ FU , we have

‖ (µ⊛A ν − Tt(µ⊛A ν)) ∗ g‖∞

6 sup
x∈G

lim sup
n→∞

1

|An|

∫

An

∣∣(µ ∗ g − Tt(µ ∗ g)
)
(x− t)

∣∣ d|ν|(t)

6 ‖µ ∗ g − Tt(µ ∗ g)‖∞ sup
{ |ν|(An)

|An|

∣∣∣ n ∈ N

}

6 c ‖µ − Ttµ‖∞ .

Now, this and Corollary 3.2 imply

‖µ⊛A ν − Tt(µ ⊛A ν)‖U = sup
g∈FU

sup
s∈G

∣∣(µ⊛A ν − Tt(µ⊛A ν)
)
(Tsg)

∣∣

= sup
g∈FU

sup
s∈G

∣∣∣
((
µ⊛A ν − Tt(µ ⊛A ν)

)
∗ g†

)
(s)
∣∣∣

6 c ‖µ − Ttµ‖∞ ,

which finishes the proof. �

We next look at the completeness of NAP(G).

Proposition 4.11. NAP(G) is closed in (M∞(G), ‖ · ‖U ). In particular, (NAP(G), ‖ · ‖U )

is complete.

Proof. Let (µn)n∈N be a sequence in NAP(G), and let µ ∈ M∞(G) be such that µn → µ

in ‖ · ‖U . Let ε > 0. Then, there exists some n ∈ N such that ‖µ − µn‖U < ε
3 . Since

µn ∈ NAP(G) the set P := {t ∈ G | ‖µn − µ‖U < ε
3} is relatively dense. Moreover, for all

t ∈ P we have

‖Ttµ− µ‖U = ‖Ttµ− Ttµn‖U + ‖Ttµn − µn‖U + ‖µn − µ‖U

<
ε

3
+

ε

3
+

ε

3
= ε . �

However, note that NAP(G) is not a Banach space because it is not closed under addition.

Since the intersection of two closed subsets of a topological space is also closed, we get the

following consequence.

Corollary 4.12. For each α ∈ {pp, ac, sc} the set

NAPα(G) := NAP(G) ∩M∞
α (G)

is closed in (M∞(G), ‖ · ‖U ).

1Recall that µ⊛A ν is defined as the vague limit of { 1

|An|
µ|An

∗ νAn
}, if the limit exists. Given a van Hove

sequence, the limit always exists along a subsequence [16].
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5. Strong almost periodicity and Lebesgue decomposition

Recall that, by Corollary 3.15, given a measure µ ∈ NAP(G) we have µpp, µac, µsc ∈

NAP(G). In this section, we show that the same does not hold for strong almost peri-

odic measures. First, we will prove the following lemma, which will be our main tool for

constructing examples.

Lemma 5.1. Let µn, µ be measures on R supported inside [0, 1], for all n ∈ N, such that

µn
π
−→ µ. Define

ω := µ+

∞∑

j=1

(
δ2j+(2j+1Z)

)
∗ µj .

Then, ω ∈ SAP(R).

Proof. Let f ∈ Cc(R), and let ε > 0. Let M ∈ N be such that supp(f) ⊆ [−M,M ]. Since the

sequence (µj)j∈N converges in the product topology to µ, there exists some N ∈ N such that,

for all j > N , we have

‖µj ∗ f − µ ∗ f‖∞ <
ε

4M + 2
. (5.1)

In particular, for all j,m > N , we have

‖µj ∗ f − µm ∗ f‖∞ <
ε

2M + 1
. (5.2)

Next, we show that every element of 2N+1
Z is an ε-almost period for ω ∗ f .

Define

ωN :=
N∑

j=1

δ2j+(2j+1Z) ∗ µj .

Then, ωN is 2N+1
Z periodic. Therefore, to show that 2N+1

Z are ε-almost periods for ω ∗ f ,

it suffices to show that 2N+1
Z are ε-almost periods for (ω − ωN ) ∗ f . Now,

ω − ωN = µ+
∞∑

j=N+1

δ2j+(2j+1Z) ∗ µj .

Next, if we define

ωn :=

{
µv2(n), if n ∈ Z \ {0},

µ, if n = 0,

where v2(n) is the 2-adic valuation of n, we can write

ω − ωN =
∑

n∈Z

δ2N+1·n ∗ ωn .

Then, for all k ∈ Z, we have

(ω − ωN ) ∗ f − T2N+1·k ((ω − ωN ) ∗ f) =
∑

n∈Z

δ2N+1·n ∗ ωn ∗ f − T2N+1·k

(
∑

n∈Z

δ2N+1·n ∗ ωn ∗ f

)

=
∑

n∈Z

δ2N+1·n ∗ (ωn ∗ f − ωn−k ∗ f)
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Now, by Eqs. (5.1) and (5.2), we have

‖ωn ∗ f − ωn−k ∗ f‖∞ <
ε

2M + 1
.

Using the fact that supp(f) ⊆ [−M,M ], we immediately get

‖(ω − ωN) ∗ f − T2N ·k ((ω − ωN ) ∗ f) ‖∞ < ε .

This completes the proof. �

Now, Examples 3.18, 3.21, 3.22, 3.25 and Example 3.26 yield the following example of

strongly almost periodic measures for which the components of the Lebesgue decomposition

are not strongly almost periodic.

Example 5.2. Let

µ := λλ[0,1] +
∞∑

j=1

(
δ2j+(2j+1Z) ∗

(1
j

j−1∑

k=0

δk
j

)
)

Then, µ ∈ SAP(R). ✸

Example 5.3. Let ν be a singular continuous measure supported inside [0, 1]. Define

µ(f) : =

∫ 1

0
f(2x) d(ν ∗ λλ[0,1])(x) ,

µn(f) : =

∫ 1

0
f(2x) d

(
ν ∗ (

1

n

n∑

k=1

δ k
n
)
)
(x) .

Then, (µn)n∈N is a sequence of singular continuous measures supported inside [0, 1] which, by

Example 3.21, converge in the product topology to the absolutely continuous measure µ. As

supp(µ) ⊆ [0, 1], it follows that

ω := µ+

∞∑

j=1

δ2j+(2j+1Z) ∗ µj ∈ SAP(R) .

✸

Example 5.4. For all n ∈ N, let

fn(x) := max{n− n2 |x|, 0} and µn := fn λλ .

Then, it is trivial to see that (fn)n∈N is an approximate identity for the convolution on R.

Therefore, by Example 3.21, we have

µ = δ0 +
∞∑

j=1

δ2j+(2j+1Z) ∗ µj ∈ SAP(R) .

This is a measure with non trivial pure point and absolutely continuous components, and

trivial singular continuous component. Since µpp = δ0, neither µpp note µac is strongly

almost periodic. ✸
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Example 5.5. Let ν be a singular continuous measure supported inside [0, 1], and let fn be

as in Example 5.4. Define

µ(f) : =

∫ 1

0
f(2x) dν(x) ,

µn(f) : =

∫ 1

0
f(2x) d(ν ∗ fn)(x) .

Then, (µn)n∈N is a sequence of absolutely continuous measures supported inside [0, 1] which,

by Example 3.22, converges in the product topology to the singular continuous measure ν.

As supp(ν) ⊆ [0, 12 ] ⊆ [0, 1], it follows that

ω := µ+

∞∑

j=1

δ2j+(2j+1Z) ∗ µj ∈ SAP(R) .

✸

Example 5.6. Let µ be any singular continuous probability measure on R supported inside

[0, 1]. Define µn by

µn(f) =

∫

R

f(nx) dµ(x) ,

for all n ∈ N. Then, µn is a singular continuous probability measure supported inside [0, 1
n
],

and by Example 3.26

ω := δ0 +

∞∑

j=1

δ2j+(2j+1Z) ∗ µj ∈ SAP(R) .

✸

Example 5.7. Let µ be the measure from Example 5.2 and ω be the measure from Exam-

ple 5.3. Define

ν := µ+ ω .

Then ν ∈ SAP(G) but it follows from Examples 5.2, 5.3 that neither νpp nor νsc are strongly

almost periodic. Moreover, νac has compact support, and hence it is not strongly almost

periodic either. ✸

6. Norm almost periodic measures of spectral purity

Here, we briefly look at each of the sets NAPpp(G), NAPac(G) and NAPsc(G).

6.1. On absolutely continuous norm almost periodic measures. First, we give a char-

acterisation of norm almost periodicity for absolutely continuous measures in terms of L1-

Stepanov almost periodicity.

Let us first recall that a function f ∈ L1
loc(R) is called Stepanov almost periodic if, for

each ε > 0, the set {
t ∈ R

∣∣ sup
x∈R

∫ x+1

x

|f(s)− f(s− t)| ds 6 ε
}

is relatively dense. It is well known that working over intervals of arbitrary length does not

change the class of Stepanov almost periodic functions [6].
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Let us first extend this definition to arbitrary locally compact Abelian groups.

Definition 6.1. Let G be a LCAG, and let U ⊆ G be any non-empty precompact open set.

A function f ∈ L1
loc(G) is called L1-Stepanov almost periodic (with respect to U) if, for

each ε > 0, the set
{
t ∈ G

∣∣ sup
x∈G

1

|U |

∫

x+U

|f(s)− f(s− t)| ds 6 ε
}

is relatively dense.

Remark 6.2. Each non-empty precompact open set U defines a norm ‖ · ‖U on the space

BL1
loc(G) := L1

loc(G) ∩M∞(G) via

‖f‖U := sup
x∈G

1

|U |

∫

x+U

|f(s)| ds .

An immediate computation shows that BL1
loc(G) = {f ∈ L1

loc(G) | ‖f‖U < ∞}. Moreover,

any L1-Stepanov almost periodic function belongs to BL1
loc(G), see [33].

It is easy to see that different precompact open sets define equivalent norms, and that a

function f ∈ BL1
loc(G) is L1-Stepanov almost periodic if and only if, for each ε > 0, the set

{t ∈ G | ‖f − Ttf‖U 6 ε}

is relatively dense.

Also, we will see below that the norm ‖f‖U we defined here is just the measure norm

‖f θG‖U .

For more details on Stepanov almost periodic functions on LCAG see [33]. ✸

Lemma 6.3. [7, Sec. 13.16.3] Let f ∈ L1
loc(G) be arbitrary. Then, one has

|f θG| = |f | θG .

In particular, we obtain

‖f θG‖U = sup
x∈G

∫

x+U

|f(s)| ds .

The following is an immediate consequence of Proposition 3.16.

Lemma 6.4. The mapping f 7→ fθG is an homomorphism between (BL1
loc(G), ‖ · ‖U ) and

(M∞
ac(G), ‖ · ‖U ). Moreover, one has

‖f θG‖U = |U | ‖f‖U .

In particular, (BL1
loc(G), ‖ · ‖U ) is a Banach space.

As an immediate consequence, we get the following result.

Theorem 6.5. An absolutely continuous translation bounded measure µ = f θG is norm

almost periodic if and only if its density function f ∈ L1
loc(G) is L1-Stepanov almost periodic.

The mapping f 7→ fθG is an isomorphism between the Banach spaces (S, ‖ · ‖U ) and

(NAPac(G), ‖ · ‖U ), where

S := {f ∈ L1
loc(G) | f is L1-Stepanov almost periodic} .
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Proof. First, let us note that S is a vector space by [33].

It is easy to see that the above mapping is linear and onto, and therefore NAPac(G) is a

vector space, which is complete by Corollary 4.12. The rest of the claims are now obvious. �

Finally, for measures with uniformly continuous and bounded Radon–Nikodym density, we

get the following simple characterisation.

Proposition 6.6. Let f ∈ Cu(G), and let µ := f θG. Then, the following statements are

equivalent:

(i) µ is norm almost periodic,

(ii) µ is strongly almost periodic,

(iii) f is Bohr almost periodic,

(iv) f is Stepanov almost periodic.

Proof. (i) ⇐⇒ (iv): This is Theorem 6.5.

(ii) ⇐⇒ (iii): This follows from [21, Prop. 4.10.5 (i)].

(i) ⇐⇒ (iii): This follows from [37, Prop. 5.4.6]. �

6.2. Pure point norm almost periodic measures. The pure point norm almost periodic

measures are well understood due to the following characterisation.

Theorem 6.7. [37, 38]

(i) Let µ be a pure point norm almost periodic measure. Then, there exists a CPS

(G,H,L) and a continuous function h ∈ C0(H) such that

µ =
∑

(x,x⋆)∈L

h(x⋆) δx =: ωh .

(ii) Let (G,Rd,L) be a CPS and h ∈ S(Rd). Then, ωh is a norm almost periodic

measure.

This allows us to construct many examples of such measures.

6.3. Singular continuous norm almost periodic measures. Unfortunately, we don’t

have a good understanding of norm almost periodic singular continuous measures.

It is easy to construct examples of such measures. Indeed, pick any pure point norm almost

periodic measure ω, which can be constructed by the method of Theorem 6.7. Let ν be any

finite singular continuous measure. Then ω∗ν is a singular continuous measure which is norm

almost periodic by Proposition 4.9.

If ω is positive and has dense support, which can easily be assured, and ν is positive, then

ω ∗ ν has dense support.

One another hand, picking ω = δZ and ν a singular continuous measure with Cantor set

support, then ω ∗ ν does not have dense support.

Recall that if the sets of norm almost periods of µ are locally finite, for ε small enough,

then they are model sets in the same CPS. While this seems to be the case for many norm

almost periodic singular continuous measures, it is not always true. Indeed, δZ ⊗ λ is norm

almost periodic and singular continuous, but the sets of almost periods contain Z× R.
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7. Diffraction of measures with Meyer set support

In this section, we look at the consequences of the previous sections for the diffraction of

measures with Meyer set support. For an overview of cut and project schemes and Meyer

sets, and their properties, we recommend the monographs [1, 2] as well as [15, 19, 20, 25, 26,

35, 36, 37, 38].

Let us start by recalling the following result.

Theorem 7.1. [38] Let µ be any Fourier transformable measure supported inside a Meyer

set. Then, each of (µ̂)pp, (µ̂)ac, (µ̂)sc is a norm almost periodic measure.

As a consequence, we can state the next corollary.

Corollary 7.2. Let µ be any Fourier transformable measure supported inside a Meyer set.

(i) There exists some CPS (Ĝ,H,L) and some h ∈ C0(H) such that

(µ̂)pp = ωh .

(ii) There exists an L1-Stepanov almost periodic function f such that

(µ̂)ac = f θ
Ĝ
.

Remark 7.3. It follows from [38] that there exists a CPS (Ĝ,H,L) and some function

h ∈ C0(H) such that

f = ωh ∗ f1 and (µ̂)sc = ωh ∗ ν

where f is the Radon–Nikodym density of the absolutely continuous part (µ̂)ac, f1 ∈ L1(Ĝ)

and ν is a finite singular continuous measure. ✸

Remark 7.4. Each of the examples of compatible random substitutions in one dimension

covered in [3] is a Meyer set with mixed pure point and absolutely continuous spectrum.

It follows from the general theory that there exists some CPS (R̂,H,L), some h ∈ C0(H)

and an L1-Stepanov almost periodic function f such that

γ̂ = ωh︸︷︷︸
pp

+ f λλ︸︷︷︸
ac

.

Explicit formulas for both parts are provided in [3]. ✸
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