Macewan Wîfi Analysis

Jimmy Prince, Alan Yong

At the end of 2013, there were more mobile devices than people on earth. - SAP

5

Wifi

Life

My wifi stopped working and so did I.
by Bangbangzeppelin July 03, 2014

y f >0

Smartphone users spend an average of 60 minutes a day. iPhone users average 90 minutes a day.

- Experian

THE ACCUSED

Blocks

- Time of Day (Morning, Noon, Evening)
- Day of the Week (Mon/Wed/Fri, Tues/Thurs)
- Device (Apple vs Android)
- Weeks (Nov. 16 - Nov.20, Nov. 23 - Nov.27)

Model Type

$y_{i j k l m}=\mu+T_{i}+\beta_{j}+\gamma_{k}+\alpha_{i}+\lambda_{m}+\varepsilon_{i j k l m}$
$\mathrm{T}_{\mathrm{i}}=$ Location, $\mathrm{i}=1,2,3,4,5,6$ ($62^{\text {nd }}$ floor, middle $2^{\text {nd }}$ floor, etc.)
$\beta_{j}=$ Time, $j=1,2,3$ (Morning (10), Noon(12), Afternoon(2))
$Y_{k}=$ Day of the Week, $k=1,2$ (Mon/Wed/Fri, Tues/Thurs)
$\alpha_{1}=$ Device/User, $I=1,2$ (Jimmy/Android, Alan/Apple)
$\lambda_{m}=$ Week, $m=1,2$

Downloads: Data Appropriate?

\author{
Levene' s Test for Homogeneity of Variance (center = medi an)
 Df F val ue $\operatorname{Pr}(>$ F)
 ```
group 5 0.784 0.5629

``` \\ 138
}

\section*{Additive Model - Results}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & Df & Sum Sq & Mean Sq & val ue & \(\operatorname{Pr}(>F)\) & \\
\hline  & 5 & 1461. 1 & 292. 23 & 2. 4234 & 0.038746 & \\
\hline time & 2 & 6035. 2 & 3017. 60 & 25.0247 & 5. 961e-10 & * \\
\hline day & 1 & 1164. 2 & 1164. 20 & 9. 6546 & 0.002310 & ** \\
\hline devi ce & 1 & 1933. 2 & 1933. 18 & 16.0317 & 0.000103 & \\
\hline week & 1 & 631. 2 & 631. 20 & 5. 2345 & 0.023721 & \\
\hline Resi dua & 133 & 16037.8 & 120. 58 & & & \\
\hline
\end{tabular}

We see that all Factors and blocks are significant.

\section*{Additive Model - Residuals}


- Variances alright
- Normality not bad
- Fits have slight funnel shape

All in all, no major violations

Will a log transformation help?

\section*{Log vs Original - Residuals}


\section*{Log vs Original - Normality}


Not significantly better, we'll stick with original

\section*{Additive - Design Plot}


\section*{Multiple Comparisons}

95\% Tukey-Kraner confi dence int erval s


\section*{Multiple Comparisons - Protected LSD}

\section*{95\% LSD confi dence intervals}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & LSD & Diff & & & on A & \\
\hline muF2 B6-muF2 B7 & 6. 26996 & 65 & 93496 & 3. 60496 & FTR HO & 2 \\
\hline muF2 B6-muF2 Md & 6. 26996 & 8. 83729 & -15. 10725 & 2. 56733 & Rej ect HO & 0. 00608 \\
\hline muF2 B7-mu2 Md & 6. 26996 & -6. 17229 & -12. 44225 & 0. 09767 & FTR HO & 0. 05362 \\
\hline F2 B6-muF3 B6 & 6. 26996 & -0. 54146 & -6. 81142 & 5. 7285 & FTR HO & 0. 86463 \\
\hline F2 B7-muF3 B6 & 6. 26996 & 2. 12354 & -4. 14642 & 8. 3935 & FTR HO & 0. 50408 \\
\hline 2 Md d-miF3 B6 & 6. 26996 & 8. 29583 & 2. 02587 & 14. 56579 & Rej ect HO & 0.0099 \\
\hline F2 B6-muF3 B7 & 6. 26996 & -6. 74125 & -13. 01121 & -0. 47129 & Rej ect HO & 0.0353 \\
\hline B7-muF3 B7 & 6. 26996 & -4. 07625 & -10. 34621 & 2. 19371 & FTR HO & 20071 \\
\hline F2 M d-muF3 B7 & 6. 26996 & 2. 09604 & -4. 17392 & 8. 366 & FTR HO & 0. 50961 \\
\hline muF3 B6-muF3 B7 & 6. 26996 & 6. 19979 & - 12. 46975 & 0. 07017 & FTR HO & 0. 05258 \\
\hline muF2 B6-muF3 Md & 6. 26996 & 2. 96854 & -9. 2385 & 3. 30142 & FTR HO & 0. 35073 \\
\hline mF2 B7-muF3 Md & 6. 26996 & 0. 30354 & -6. 5735 & 5. 96642 & FTR HO & 0. 92386 \\
\hline muF2 M d-muF3 M d & 6. 26996 & 5. 86875 & -0. 40121 & 12. 13871 & FTR HO & 0. 06633 \\
\hline FF3 B6-muF3 M d & 6. 26996 & 2. 42708 & -8. 69704 & 3. 84288 & FTR HO & 0. 44523 \\
\hline muF3 B7-muF3 Md & 6. 26996 & 3. 77271 & -2. 49725 & 10. 04267 & FTR HO & 0. 2361 \\
\hline
\end{tabular}

Although the protected LSD results show us this, the method is not very reliable and does not correct for multiple comparisons.

\section*{Conclusions}

As far as downloads go, the test we conducted does not show the six points we chose in the library are significantly different from each other.

\section*{UPLOADS}


\section*{Data Appropriate?}
```

Levene's Test for Homogeneity of Vari ance (center = medi an)
Df F val ue Pr(>F)
group }\begin{array}{c}{5}
{5}
{138}

```

\section*{Additive Model - Results}

Response: upl oad
\begin{tabular}{|c|c|c|c|c|c|}
\hline & 5 & um Sq & ean Sq & val ue & \(\operatorname{Pr}(>\times\) ) \\
\hline 1 oc & 5 & 10663 & 2132.6 & 6. 2766 & 2. 923e- 05 \\
\hline time & 2 & 3247 & 1623. 3 & 4. 7777 & 0. 009913 \\
\hline day & 1 & 228 & 228. 4 & 0. 6721 & 0. 413785 \\
\hline devi ce & 1 & 30234 & 30234. 2 & 88. 9853 & < 2. 2e-16 \\
\hline week & 1 & 1980 & 1980. 3 & 5. 8285 & 0.017129 \\
\hline Resi & & 4518 & & & \\
\hline
\end{tabular}

We see that Location, time, device, and week are
significant.

\section*{Additive Model - Residuals}


\(c\) (device)


c (week)


fits

- Variances alright
- Normality great
- Fits have slight funnel shape

All in all, no major violations

Will a log transformation help?

\section*{Log vs Original - Residuals}


\section*{Log vs Original - Normality}


While fitted residuals look slightly better, normality gets wrecked. We'll stick with original

\section*{Additive - Design Plot}


\section*{Multiple Comparisons}

\section*{95\% Tukey- Kramer confi dence i nt er val s}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & Diff & Lower & Upper & Deci si on & Adj . \(p\)-val ue & \\
\hline muF2 B6-muF2 B7 & 0.01537 & -0. 43455 & 0. 46529 & FTR HO & 0.999999 & \\
\hline muF2 B6-muF2 M d & -0. 4151 & -0. 86502 & 0. 03482 & FTR H0 & 0.088715 & Significant differences between: \\
\hline muF2 B7-muF2 M d & -0.43047 & -0. 88039 & 0. 01945 & FTR H0 & 0.069334 &  \\
\hline muF2 B6-muF3 B6 & 0. 28459 & -0. 16533 & 0. 73451 & FTR H0 & 0. 450778 & \(\mathrm{Mid}^{2}-6^{3}\) \\
\hline muF2 B7-muF3 B6 & 0. 26922 & -0. 1807 & 0. 71914 & FTR HO & 0. 514398 & \(6^{3}-7^{3}\) \\
\hline muF2 M d-muF3 B6 & 0. 69969 & 0. 24977 & 1. 14961 & Rej ect H0 & 0. 000212 & 6-7 \\
\hline muF2 B6-muF3 B7 & -0. 20318 & -0. 0531 & 0. 24674 & FTR H0 & 0. 781352 & \\
\hline muF2 B7-muF3 B7 & -0. 21856 & -0.66848 & 0. 23137 & FTR H0 & 0. 724155 & \\
\hline muF2 M d-muF3 B7 & 0. 21192 & -0. 23801 & 0. 66184 & FTR H0 & 0. 749483 & \\
\hline muF3 B6-muF3 B7 & -0.48777 & -0.9377 & -0.03785 & Rej ect H0 & 0. 025269 & \\
\hline muF2 B6-mF3 M d & 0.02339 & -0. 42653 & 0. 47331 & FTR H0 & 0. 999989 & \\
\hline muF2 B7-muF3 M d & 0.00802 & -0. 4419 & 0. 45794 & FTR H0 & & \\
\hline muF2 M d-muF3 M d & 0. 43849 & -0.01143 & 0. 88841 & FTR H0 & 0. 060714 & \\
\hline muF3 B6-muF3 M d & -0. 2612 & -0.71112 & 0. 18872 & FTR H0 & 0. 548198 & \\
\hline muF3 B7-muF3 M d & 0. 22657 & -0. 22335 & 0.6765 & FTR H0 & 0. 692505 & \\
\hline
\end{tabular}
\begin{tabular}{llllll}
\(6^{3}\) & \(M^{3 d}\) & \(7^{3}\) & \(7^{2}\) & \(6^{2}\) & \(7^{3}\)
\end{tabular}\(M^{M i d^{2}}\)

\section*{Conclusions}
-As far as uploads go, the test we conducted shows the only difference supported by the data is in between \(\mathrm{Mid}^{2}-6^{3}, 6^{3}-7^{3}\).

\section*{THE VERDICT}

\section*{Mostly not guilty}

Maybe some community service```

