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UNITARY DILATION OF FREELY INDEPENDENT

CONTRACTIONS

SCOTT ATKINSON AND CHRISTOPHER RAMSEY

Abstract. Inspired by the Sz.-Nagy-Foias dilation theorem we show that n

freely independent contractions dilate to n freely independent unitaries.

1. Introduction

The Sz.-Nagy-Foias dilation theorem is a celebrated result in classical dilation
theory. It says that n doubly commuting contractions can be simultaneously di-
lated to n doubly commuting unitaries. This was the original multivariable dilation
theory context proven by Brehmer and Sz.-Nagy [7, 25, 26] until Andô [1] proved
that one can do this for just commuting and not doubly commuting contractions
when n = 2. However, it was subsequently shown in [20] and [27] that there are
three commuting contractions which do not dilate to three commuting unitaries.
This obstruction spurred on dilation theories in other contexts [2, 8, 11, 14, 23]
and many other generalizations. One recent usage of dilations of doubly commut-
ing contractions is the dilation of Nica covariant representations of lattice-ordered
semigroups [15, 17].

Doubly commuting is one of two ingredients in the notion of tensor independence
(or classical independence). It is natural then to ask whether n tensor independent
contractions can be dilated to n tensor independent unitaries. The answer is yes
(Theorem 2.2) and begs the question whether this can be done with other notions
of non-commutative probability, namely free probability.

Stemming from the notion of reduced free product [3, 28] Voiculescu developed
the theory of free probability in the 1980’s with the goal of solving the free group
factor problem. While this still remains unsolved, free probability has become a
very important field of mathematical research. For further reading see [16, 19].

This paper culminates in Theorem 3.2, that n freely independent contractions
do indeed dilate to n freely independent unitaries. In a dilation theory context this
has been done by Boca in [5] where he gives the most general unitary dilation of
n contractions. The only free probability dilation result we know of is the unitary
dilation of L-free sets of contractions of Popa and Vaes [22].
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2. Dilation theory of tensor independence

We first turn to the classical setting for inspiration. There are many great proofs
of the Sz.-Nagy-Foias dilation theorem and the following constructive method is
probably quite old but the authors have only seen it written down in [10, Example
2.5.13]. Recall that two operators S, T ∈ B(H) doubly commute if ST = TS and
S∗T = TS∗. This is equivalent to requiring that C∗(1, S) and C∗(1, T ) commute.
Note that this does not require that S and T are normal.

Theorem 2.1 (Sz.-Nagy-Foias). Let T1, . . . , Tn be doubly commuting contractions
in B(H). Then there exists a Hilbert space K containing H and doubly commuting
unitaries U1, . . . , Un ∈ B(K) such that

T1(k1) · · ·Tn(kn) = PHU
k1

1 · · ·Ukn

n |H, where T (k) =

{

T k, k ≥ 0
T ∗−k, k < 0

.

Furthermore, this dilation is unique up to unitary equivalence when K is minimal,
meaning that it is the smallest reducing subspace of U1, . . . , Un containing H.

Proof. As mentioned above, this can also be found in [10, Example 2.5.13]. Let
H1 = ℓ2(Z) ⊗H and set

T
(1)
1 =



























. . .

. . . 0
I 0

DT∗

1
T1

−T ∗
1 DT1

0
I 0

. . .
. . .



























and T
(1)
j = Iℓ2(Z) ⊗ Tj, 2 ≤ j ≤ n.

Note that T
(1)
1 is the classic Schäffer form of the Sz.-Nagy dilation of T1 and so is

a unitary [24]. Since T1, . . . , Tn doubly commute then so do T
(1)
1 , . . . , T

(1)
n , this is

immediate after noticing that the defect operators DT1
= (I − T ∗

1 T1)
1/2 and DT∗

1

are in C∗(1, T1).

In the second step, let H2 = ℓ2(Z) ⊗H1, T
(2)
2 be the Schäffer-Sz.-Nagy dilation

of T
(1)
2 and T

(2)
j = Iℓ2(Z) ⊗ T

(1)
j for j 6= 2. Then T

(2)
1 and T

(2)
2 are unitaries and

T
(2)
1 , . . . , T

(2)
n are doubly commuting.

Continuing in this way one arrives at the nth step with doubly commuting uni-

taries T
(n)
1 , . . . , T

(n)
n ∈ B(Hn) that are easily seen to satisfy the joint power dilation

condition.

Uniqueness when the dilation is minimal follows in the same way as in the one
variable setting. It is proven by way of the uniqueness of the minimal Stinespring
representation. �

This can be rephrased into a non-commutative probability context. Recall that a
non-commutative C∗-probability space (A, ϕ) is a C∗-algebra A along with a state
ϕ ∈ S(A). We say that the operators T1, . . . , Tn ∈ A are tensor (or classically)
independent in (A, ϕ) (or with respect to ϕ) if C∗(1, T1), . . . , C∗(1, Tn) pairwise
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commute and given ai ∈ C∗(1, Ti) we have the following factorization

ϕ

(

n
∏

i=1

ai

)

=
n
∏

i=1

ϕ(ai).

Theorem 2.2. Let T1, . . . , Tn ∈ B(H) be tensor independent contractions in the
non-commutative probability space (B(H), ϕ). Then there exists a Hilbert space K
containing H and unitaries U1, . . . , Un ∈ B(K) that are tensor independent with
respect to the state ψ = ϕ ◦ adPH

such that

T1(k1) · · ·Tn(kn) = PHU
k1

1 · · ·Ukn

n |H, where T (k) =

{

T k, k ≥ 0
T ∗−k, k < 0

.

Furthermore, this dilation is unique up to unitary equivalence when K is minimal,
meaning that it is the smallest reducing subspace of U1, . . . , Un.

Proof. All that needs to be shown is that the unitaries arising from Theorem 2.1
are tensor independent with respect to ψ. To this end first assume that K = Hn

and Uj = T
(n)
j as in the proof of Theorem 2.1.

Let ai ∈ C∗(1, T
(1)
i ), 1 ≤ i ≤ n. This implies that PHai|H ∈ C∗(1, Ti) for

1 ≤ i ≤ n, and PH and ai commute for 2 ≤ i ≤ n since H is a reducing subspace

for each C∗(1, T
(1)
i ), 2 ≤ i ≤ n. Hence,

ϕ

(

PH

n
∏

i=1

aiPH

)

= ϕ

(

n
∏

i=1

(PHaiPH)

)

=

n
∏

i=1

ϕ(PHaiPH).

Thus, T
(1)
1 , . . . , T

(1)
n are tensor independent with respect to ϕ ◦ adPH

. Continuing

in this fashion one gets that T
(n)
1 , . . . , T

(n)
n are tensor independent with respect to

ϕ ◦ adPH
◦ adPH1

◦ · · · ◦ adPHn−1
= ϕ ◦ adPH

= ψ where the last copy of H is in Hn.

Uniqueness of this dilation is given by Theorem 2.1. �

3. Dilation theory of free independence

In this section we will prove a theorem very similar to Theorem 2.2 in another
non-commutative probability context. Recall that the operators T1, . . . , Tn ∈ A are
freely independent (or ∗-free) in (A, ϕ) if their C∗-algebras C∗(1, T1), . . . , C

∗(1, Tn)
are freely independent. That is, whenever aj ∈ C∗(1, Tij ) such that ϕ(aj) = 0 for
1 ≤ ij ≤ n and ij 6= ij−1 for 1 < j ≤ m then

ϕ(a1a2 · · ·am) = 0.

Another proof of the Sz.-Nagy-Foias Theorem (Theorem 2.1 above) can be found
in Paulsen [21, Theorem 12.10]. Here one gets ucp maps θi : C(T) → C∗(1, Ti)
given by dilation theory. Now one can extend this to the ucp map θ1 ⊗ · · · ⊗ θn on
C(T) ⊗max · · · ⊗max C(T) ≃ C(Tn). By taking the Stinespring representation of θ
one gets the desired doubly commuting unitaries that jointly dilate T1, . . . , Tn.

This provides a roadmap for an attempt to prove the free analogue of Theorem
2.2. Namely, by using the free product of ucp maps and then taking the Stinespring
representation of this map it will be shown that one gets unitaries that jointly dilate
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T1, . . . , Tn. One then hopes that these unitaries will be ∗-free with respect to a
natural state.

This approach, minus the free probability is exactly what Boca [5] uses to es-
tablish his unitary dilation result, in fact proving a more general statement about
normal rational dilations.

Recall now, that the unital universal free product of unital C∗-algebras A1, . . . ,An

is the universal C∗-algebra amalgamated over C generated by A1, . . . ,An and is
denoted ∗̌ni=1Ai. In particular, whenever one has a unital C∗-algebra B and uni-
tal ∗-homomorphisms πi : Ai → B then there exists a unital ∗-homomorphism
π : ∗̌ni=1Ai → B.

Suppose there are unital completely positive maps θi : Ai → B and states
ϕi ∈ S(Ai). In [5], Boca proves that there exists a ucp map ∗ni=1θi = θ1 ∗ · · · ∗ θn :
∗̌ni=1Ai → B such that ∗ni=1θ|Ai

= θi. This is defined on reduced words with respect
to the ϕi. Namely, when aj ∈ Aij with ϕij (aj) = 0 and ij 6= ij−1 then

∗ni=1θ(a1 · · ·am) = θi1(a1) · · · θim(am).

This completely determines ∗ni=1θ as (reduced words + C1) is dense in ∗̌ni=1Ai.

Lemma 3.1. Suppose T1, . . . , Tn ∈ B(H) and V1, . . . , Vn ∈ B(K) are contractions
and θi : C∗(1, Vi) → C∗(1, Ti) such that p(Vi) 7→ p(Ti) are ucp maps (p a polyno-
mial). If ψi ∈ S(C∗(1, Vi)) then the free product ucp map with respect to the ψi,
∗ni=1θi, is a homomorphism on the subalgebra Alg{1, V1, . . . , Vn} of ∗̌ni=1C

∗(Vi).

Proof. The result can be established by induction. By definition each θi is already
a homomorphism on Alg{1, Vi} ⊆ C∗(Vi). Now for m ≥ 1 assume that for all

1 ≤ k ≤ m and for any bj ∈ Alg{1, Vij}, 1 ≤ j ≤ k we have that ∗ni=1θi

(

∏k
j=1 bj

)

=
∏k

j=1 θij (bj).

Suppose now we have aj ∈ Alg{1, Vij}, 1 ≤ j ≤ m + 1. If a pair of neighboring
terms belongs to the same algebra, say ij = ij−1, by the inductive hypothesis and
since θij is a homomorphism we have

∗ni=1θi(a1 · · · aj−1aj · · · am+1) = θi1(a1) · · · θij (aj−1aj) · · · θim+1
(am+1)

= θi1(a1) · · · θij−1
(aj−1)θij (aj) · · · θim+1

(am+1).

Otherwise assume that ij−1 6= ij for 1 < j ≤ m+ 1 and then we have

∗ni=1θi





m+1
∏

j=1

aj



 = ∗ni=1 θi





m+1
∏

j=1

(aj − ψ(aj))



+

∗ni=1 θi



ψ(a1)

m+1
∏

j=2

(aj − ψ(aj))



+

∗ni=1 θi



a1ψ(a2)

m+1
∏

j=3

(aj − ψ(aj))



 + · · ·+

∗ni=1 θi (a1 · · · amψ(am+1))

=

m+1
∏

j=1

θij (aj − ψ(aj)) +
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ψ(a1)

m+1
∏

j=2

θij (aj − ψ(aj)) +

θi1(a1)ψ(a2)

m+1
∏

j=3

θij (aj − ψ(aj)) + · · ·+

θi1(a1) · · · θim(am)ψ(am+1)

=

m+1
∏

j=1

θij (aj)

by the definition of ∗ni=1θi and the inductive hypothesis.
The result follows as it is a simple matter now to show that ∗ni=1θi(ab) =

∗ni=1θi(a) ∗ni=1 θi(b) for all a, b ∈ Alg{1, V1, . . . , Vn}. �

Theorem 3.2. Let T1, . . . , Tn ∈ B(H) be freely independent contractions in the
non-commutative probability space (B(H), ϕ). Then there exists a Hilbert space K
containing H and unitaries U1, . . . , Un ∈ B(K) that are freely independent with
respect to ϕ ◦ adPH such that

T k1

i1
· · ·T kn

im
= PHU

k1

i1
· · ·Ukn

im
|H, 1 ≤ ij ≤ n and kj ∈ N ∪ {0}.

Furthermore, this dilation is unique up to unitary equivalence when K is minimal.

Proof. For each 1 ≤ i ≤ n, let Vi ∈ B(Ki) with H ⊂ Ki be the minimal unitary dila-
tion of Ti and θi : C∗(Vi) → C∗(1, Ti) given by θi = adPH, a unital completely pos-
itive map. Thus, ψi := ϕ◦θi is a state on C∗(Vi) such that ψi(V

n
i ) = ϕ(T n

i ), ∀n ≥ 0.
Consider now, the free product ucp map ∗ni=1θi : ∗̌ni=1C

∗(Vi) → C∗(1, T1, . . . , Tn)
relative to the states ψi. Let (π,K) be the Stinespring representation of ∗ni=1θi with
H ⊂ K which gives ∗ni=1θi(a) = PHπ(a)|H. Define unitaries Ui := π(Vi) and note
that for m ≥ 1 and ki ≥ 0 then

PHU
k1

i1
· · ·Ukm

im
|H = PHπ(V k1

i1
· · ·V km

im
)|H

= ∗ni=1θi(V
k1

i1
· · ·V km

im
)

= T k1

i1
· · ·T km

im
by Lemma 3.1.

Furthermore, for aj ∈ C∗(Uij ) with ϕ ◦ adPH(aj) = 0 and ij 6= ij−1 we have that
∃bj ∈ C∗(Vij ) such that π(bj) = aj , θij (bj) ∈ C∗(1, Tij ) and

0 = ϕ ◦ adPH(aj) = ϕ ◦ adPH ◦ π(bj) = ϕ(θij (bj)).

Hence,

ϕ ◦ adPH(a1 · · ·am) = ϕ ◦ adPH ◦ π(b1 · · · bm)

= ϕ ◦ ∗ni=1θi(b1 · · · bm)

= ϕ(θi1 (b1) · · · θim(bm))

= 0.

Therefore, U1, . . . , Un are ∗-free with respect to ϕ ◦ adPH.
An argument to show that the minimal unitary dilation is unique is given in

[5, Section 4] following from a classic remark of Durszt and Sz.-Nagy [12]. In
particular, given two minimal unitary dilations U1, . . . , Un and U ′

1, . . . , U
′
n on K

and K′ respectively, there is a unitary Θ : K → K′ fixing the subspace H such that
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ΘUi = U ′
iΘ. From this it is easy to see that the states ϕ ◦ adPH are equal by way

of Θ since a state is completely determined by the values

ϕ ◦ adPH(Uk
i ) = ϕ(T k

i ) = ϕ ◦ adPH((Ui)
′)k), ∀k ∈ N

because U1, . . . , Un and U ′
1, . . . , U

′
n are collections of ∗-free unitaries [19, Lemma

5.13]. �

Remark 3.3. It should be noted, by [29, Proposition 2.5.3], ϕ ◦ adPH is a tracial
state on C∗(U1, . . . , Un) since U1, . . . , Un are ∗-free and ϕ◦ adPH is a trace on each
C∗(Ui) (the algebra is commutative).

One of the purposes of doing the previous arguments carefully is that we can
now say what happens when the state ϕ is faithful.

Lemma 3.4. Let T ∈ B(H) be a contraction and ϕ be a faithful state on C∗(1, T ).
If U ∈ B(K) with H ⊂ K is the minimal unitary dilation of T then ϕ ◦ adPH is a
faithful state on C∗(U).

Proof. Let (π,K′, ξ) be the GNS representation of (C∗(U), ϕ◦adPH). Then π(U) is
still a unitary, ϕ◦adPH(a) = 〈π(a)ξ, ξ〉 and 〈·ξ, ξ〉 is a faithful state on π(C∗(U)) =
C∗(π(U)).

Suppose a is a positive element in kerπ. Then 0 = 〈π(a)ξ, ξ〉 = ϕ ◦ adPH(a)
which implies that adPH(a) = 0 since compression to H is a completely positive
map and ϕ is faithful. Since kerπ is a C∗-algebra (so every element of kerπ can
be written as a linear combination of at most four positive elements from kerπ),
we can conclude that kerπ ⊂ ker adPH. Thus there exists a well-defined ucp map
θ : C∗(π(U)) → C∗(1, T ) given by sending π(a) 7→ PHa|H. Notably, we have
θ(π(U)n) = T n, n ≥ 0.

Let (π̃,K′′) with H ⊂ K′′ be the minimal Stinespring representation of θ. That is,
π̃ : C∗(π(U)) → B(K′′) is a ∗-homomorphism (in fact a ∗-isomorphism) such that
θ(a) = PHπ̃(a)|H and K′′ is the closed linear span of π̃(C∗(π(U)))H by minimality.
Define V := π̃(π(U)) a unitary and note that PHV

n|H = θ(π(Un)) = T n. Thus,
because of this and the minimality of the Stinespring representation we have that
V is a minimal unitary dilation of T .

Consider now the state ψ := ϕ ◦ adPH on C∗(V ). Now

ψ ◦ π̃

(

n
∑

i=−n

αiπ(U)n

)

= ψ

(

n
∑

i=−n

αiV
n

)

= ϕ

(

n
∑

i=−n

αiT (n)

)

= ϕ ◦ adPH

(

n
∑

i=−n

αiU
n

)

=

〈(

n
∑

i=−n

αiπ(U)n

)

ξ, ξ

〉

.

Hence, ψ ◦ π̃(·) = 〈·ξ, ξ〉 is a faithful state on C∗(π(U)) and so ψ is a faithful state
on C∗(V ).

By minimality of the dilations there exists a unitary W : K → K′′ such that
Wh = h for all h ∈ H and WUW ∗ = V . This implies that ϕ ◦ adPH on C∗(U)
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is equal to ψ ◦ adW which is faithful. Therefore, ϕ ◦ adPH was a faithful state on
C∗(U) all along. �

One last ingredient before presenting Theorem 3.5 is the reduced free product
of C∗-probability spaces (Ai, ϕi), denoted (A, ϕ) with A = ∗ni=1Ai. As mentioned
in the introduction this was introduced by both Avitzour [3] and Voiculescu [28] in
the 1980’s.

In correspondence with Boca’s result on free products of ucp maps there is the
reduced free product of ucp maps given by Choda-Blanchard-Dykema [9, 4] and
the operator-valued conditionally free product of M lotkowski [18] based on the
conditionally free product of Bożejko, Leinert and Speicher [6].

Now we can present the following theorem.

Theorem 3.5. Let T1, . . . , Tn ∈ B(H) be freely independent contractions in the
non-commutative probability space (B(H), ϕ) with ϕ faithful. If U1, . . . , Un ∈ B(K)
is the minimal free unitary dilation then ϕ◦adPH is faithful. In particular, when ϕ
is faithful, the minimal free unitary dilation of T1, . . . , Tn, ϕ arises from the reduced
free product of their minimal unitary dilations.

Proof. Because of the faithfulness of ϕ, C∗(1, T1, . . . , Tn) is in fact ∗-isomorphic to
∗ni=1(C∗(1, Ti), ϕ) [13, Lemma 1.3]. Let Vi ∈ B(Ki) be the minimal unitary dilation
of Ti and again let θi : C∗(Vi) → C∗(1, Ti) be the ucp map given by θi(V

k
i ) = T k

i .
By Lemma 3.4 ϕ ◦ θi is a faithful state.

As mentioned, Choda [9] showed that there is a reduced free product of ucp
maps, though with a gap in the proof that was filled by Blanchard-Dykema [4].
Thus, there exists a ucp map

θ : (∗ni=1C
∗(Vi), ∗

n
i=1ϕ ◦ θi) → (∗ni=1C

∗(1, Ti), ϕ)

extending each of the θi. By [19, Theorem 7.9] ∗ni=1ϕ ◦ θi = ϕ ◦ θ is a faithful state.
Lemma 3.1 applies equally well in the reduced free product case to give that θ acts
homomorphically on Alg{1, V1, . . . , Vn}.

As in Theorem 3.2, let (π,K) be the minimal Stinespring dilation of θ and
Ui = π(Vi). Then, U1, . . . , Un, ϕ ◦ adPH is the minimal free unitary dilation of
T1, . . . , Tn, ϕ with ϕ ◦ adPH faithful.

In fact, we can say a little more. Because ϕ◦ θ is faithful then π, the Stinespring
representation of θ, has to be faithful, i.e. injective. Hence, again by [13, Lemma
1.3] (C∗(U1, . . . , Un), ϕ ◦ adPH) ≃ ∗ni=1(C∗(Vi), ϕ ◦ θi). Therefore, the minimal
free unitary dilation of T1, . . . , Tn, ϕ when ϕ is faithful arises from the reduced free
product of their minimal unitary dilations. �
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