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A NOTE ON TEMPERED MEASURES

MICHAEL BAAKE AND NICOLAE STRUNGARU

Abstract. The relation between tempered distributions and measures is analysed and clar-

ified. While this is straightforward for positive measures, it is surprisingly subtle for signed

or complex measures.

1. Introduction

Tempered distributions are the objects of choice for many problems in harmonic analysis

on Rd, with manifold applications for instance in mathematical physics. Sometimes, however,

one has to deal with unbounded Radon measures in full generality. While the relations

between them are fairly straightforward for positive tempered measures, things become more

subtle for signed or complex measures.

Though this complication is well known in principle [1], it is a bit hidden in the literature

and continues to lead to some typical mistakes. This is our motivation for this little note,

which is meant to provide the general connection in full generality, stated as explicitly and

concretely as possible.

In fact, we begin with the general case in Section 2, where we treat the positive and the

general measures separately. For the critical statement that a signed or complex tempered

measure need not be slowly increasing, we provide constructive counterexamples in Section 3.

Finally, in Section 4, we consider the special situation of measures with uniformly discrete

support, which is of particular relevance in the spectral theory of aperiodic order [2, 3].

2. The general case

Throughout, S(Rd) denotes the space of Schwartz functions on Rd and S ′(Rd) the space of

tempered distributions, all in the sense of [15]. Clearly, S(Rd) contains C∞
c
(Rd), the space of

C∞-functions with compact support. For general background and results on Radon measures,

we refer to [6]. If µ is a positive measure on Rd, we write L1(µ) for L1(Rd, µ).

Definition 2.1. Let µ be a Radon measure on Rd. It is a tempered measure if there exists

some T ∈ S ′(Rd) such that µ(ϕ) = T (ϕ) holds for all ϕ ∈ C∞
c
(Rd).

Further, µ is called strongly tempered when, for all ψ ∈ S(Rd), we have |ψ| ∈ L1
(
|µ|

)

together with the property that ψ 7→
∫
Rd ψ(x) dµ(x) defines a tempered distribution.
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Here, the first part is the definition of [1, 15], while the second essentially is the definition

from [7], though some care has to be exercised when it comes to general Radon measures in

comparison to positive ones.

Definition 2.2. A Radon measure µ on Rd is called slowly increasing if
∫

Rd

d|µ|(x)
1 + |P (x)| < ∞

holds for some polynomial P ∈ C
[
x1, . . . , xd

]
.

The second notion in Definition 2.1 was originally introduced in [16] in a different way, by

saying that a measure is strongly tempered when it is slowly increasing. We shall later show

that these two definitions are equivalent.

Let us begin with a straightforward consequence of our definitions.

Lemma 2.3. Let µ be a Radon measure on Rd. If µ is slowly increasing, it is also strongly

tempered. Any strongly tempered measure is also tempered.

Proof. The first claim follows from the observation that

∣∣µ(ψ)
∣∣ 6

∫

Rd

|ψ(x)|d|µ|(x) =

∫

Rd

∣∣ψ(x)
∣∣(1 + |P (x)|

) d|µ|(x)
1 + |P (x)|

6
∥∥(1 + |P |

)
ψ
∥∥
∞

∫

Rd

d|µ|(x)
1 + |P (x)|

holds for any ψ ∈ S(Rd), where the last integral is a finite constant.

The second claim is obvious. Indeed, if µ is strongly tempered, ψ 7→ T (ψ) =
∫
Rd ψ(x) dµ(x)

defines a tempered distribution. Moreover, for any ϕ ∈ C∞
c
(Rd), we have T (ϕ) = µ(ϕ) by

definition. �

Let us continue with one result that looks technical, but is actually fundamental. Its proof

follows the arguments from [7, Thm. 2.1], but we present it in full detail here for improved

readability and because various of our deviations will become significant later. To increase

its readability, we split it into a preliminary lemma and the main result as Proposition 2.5.

For simplicity, for multi-indices α and β, we denote by ‖.‖α,β the Schwartz norm,

‖f‖α,β := sup
x∈Rd

∣∣xβDαf(x)
∣∣,

with xβ = xβ1

1 · · · xβd

d and Dα =
(

∂
∂x

1

)α
1 · · ·

(
∂

∂x
d

)α
d as usual.

Lemma 2.4. Let kn ∈ N and cn ∈ (0,∞) define two sequences with the following properties,

(1) k1 > 4 and kn+1 > kn + 4 for all n > 1,

(2) for all N ∈ N, the sequence
(
cn2

(kn−3)N
)
n∈N

is bounded.

Then, there exists some non-negative ψ ∈ S(Rd) such that ψ(x) = cn holds for all n ∈ N and

all x with 2kn−1 6 |x|2 6 2kn+1, where |.|2 refers to the Euclidean norm on Rd.
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Proof. Select a non-negative function ϕ ∈ C∞
c
(Rd) with ϕ(x) = 1 for all 4 6 |x|2 6 16 and

with supp(ϕ) ⊂ {x : 2 < |x|2 < 32}, and set ϕn(x) = ϕ
(
x/2kn−3

)
for each n, which all are

non-negative functions. Also, one has ϕn(x) = 1 for all 2kn−1 6 |x|2 6 2kn+1 together with

supp(ϕn) ⊂
{
x : 2kn−2 < |x|2 < 2kn+2

}
.

In particular, the functions ϕn have pairwise disjoint supports. Next, consider the non-

negative function ψ :=
∑∞

n=1 cnϕn which satisfies the properties guaranteed by Lemma 2.4.

Therefore, if we show that ψ ∈ S(Rd), we are done.

Let α and β be arbitrary multi-indices, and set N = |β| − |α|, where |β| = β1 + . . .+ βd as

usual. By (2), there exist constants Cα,β = Cα,β(N) such that

cn2
(kn−3)N 6 Cα,β holds for all n ∈ N.

For arbitrary but fixed x ∈ Rd, one of the following two cases applies.

Case 1. There is no n ∈ N such that 2kn−2 6 |x|2 6 2kn+2. Then, we have ψ ≡ 0 in a

neighbourhood of x by construction, and hence

∣∣xβDαψ(x)
∣∣ = 0.

Case 2. There is some n ∈ N such that 2kn−2 6 |x|2 6 2kn+2. Then, since kj+1 > kj + 4

for all j, this n is unique. The pairwise disjoint supports of the functions ϕn then imply that

ψ = cnϕn holds in a neighbourhood of x. Therefore, we get

∣∣xβDαψ(x)
∣∣ =

∣∣xβDαcnϕn(x)
∣∣ = cn

∣∣xβDα
(
ϕ
(
x/2kn−3

))∣∣ = cn|xβ|
2(kn−3)|α|

∣∣(Dαϕ
)(
x/2kn−3

)∣∣.

With x = 2kn−3y, this gives

∣∣xβDαψ(x)
∣∣ =

cn2
(kn−3)|β| |yβ|
2(kn−3)|α|

∣∣(Dαϕ
)
(y)

∣∣ = cn2
(kn−3)(|β|−|α|)

∣∣yβ
(
Dαϕ

)
(y)

∣∣

6 cn2
(kn−3)(|β|−|α|)‖ϕ‖α,β 6 Cα,β‖ϕ‖α,β .

For any x ∈ Rd, one of the two cases applies, and we thus always obtain the estimate∣∣xβDαψ(x)
∣∣ 6 Cα,β‖ϕ‖α,β and hence also

‖ψ‖α,β 6 Cα,β‖ϕ‖α,β .

Since the multi-indices α and β were arbitrary, this estimate shows that ψ ∈ S(Rd), thus

completing the proof. �

As a consequence, we obtain the following result, which is the key to relating our notions

to the class of positive Radon measures.

Proposition 2.5. Let µ be a positive Radon measure on Rd such that all ϕ ∈ S(Rd) with

ϕ > 0 satisfy ϕ ∈ L1(µ). Then, µ is slowly increasing.
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Proof. Set A0 = {x ∈ Rd : |x|2 6 1}, and Aj = {x ∈ Rd : 2j−1 6 |x|2 6 2j} for j ∈ N. We

now show that there are constants c > 0 and a > 0 such that

(1) µ(Aj) 6 c 2aj holds for all j > 0.

Assume this to be false. Then, for all c > 0 and a > 0, there is some j = j(c, a) with

µ(Aj) > c 2aj . Setting c = 1, we get, for all ℓ ∈ N0, some kℓ ∈ N0 such that

(2) µ(Akℓ
) > 2ℓkℓ .

In fact, for each ℓ ∈ N0, there must be infinitely many such kℓ. Indeed, assume to the contrary

that there is some ℓ0 for which

(3) µ(Ak) > 2ℓ0k

holds only for finitely many k, say for k1, . . . , kj . Then, for each 1 6 i 6 j, we can find some

ℓi with µ(Ai) < 2ℓiki . Consequently, for ℓ > max{ℓ0, ℓ1, . . . , ℓj}, one has

µ(Aki) < 2ℓiki < 2ℓki

for 1 6 i 6 j together with µ(Ak) < 2ℓ0k < 2ℓk for all k 6∈ {k1, . . . , kj}. This shows that (2)
holds for infinitely many integers k.

Consequently, for all ℓ ∈ N0, there are infinitely many k with µ(Ak) > 2kℓ. We can then

construct a sequence 4 < k1 < k2 < · · · such that kj+1 > kj + 4 holds for all j ∈ N together

with µ(Akj ) > 2jkj .

Setting cj = 1/µ(Akj ), we see that cj < 2−jkj and hence, for all N ∈ N, we have

lim sup
n→∞

cn2
(kn−3)N 6 lim sup

n→∞
2(kn−3)N−nkn = 0.

In particular, cn2
(kn−3)N is bounded for all N ∈ N. It follows that kn and cn satisfy the

conditions of Lemma 2.4. Consequently, there exists some non-negative function ψ ∈ S(Rd)

with ψ(x) = 1/µ(Akn) for all x ∈ Akn
. Since the sets Akn are pairwise disjoint, it follows

that, for any N ∈ N, we have

µ(ψ) >

∫
⋃N

n=1
A

kn

ψ(x) dµ(x) =

N∑

n=1

∫

Akn

ψ(x) dµ(x) =

N∑

n=1

∫

A
kn

dµ(x)

µ(Akn
)
= N,

which contradicts the fact that ψ ∈ L1(µ). So, our assumption is wrong. This shows that

there are some constants c > 0 and a > 0 such that (1) holds for all j > 0. Also, after possibly

replacing a by a larger number, we may assume a ∈ N without loss of generality.

Then, since we have Rd =
⋃∞

j=0Aj, where the Aj have disjoint interior but some common

boundary for consecutive values of j, we also have

∫

Rd

dµ(x)

1 + |x|a+1
2

6

∫

A
0

dµ(x)

1 + |x|a+1
2

+

∞∑

j=1

∫

Aj

dµ(x)

1 + |x|a+1
2

.
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Since A0 is compact, we clearly have

I0 :=

∫

A
0

dµ(x)

1 + |x|a+1
2

6 µ(A0) < ∞.

Next, for all j > 1, we get

Ij :=

∫

Aj

dµ(x)

1 + |x|a+1
2

=

∫

2j−16|x|
2
62j+1

dµ(x)

1 + |x|a+1
2

6
µ(Aj)

1 + 2(j−1)(a+1)
6

c 2aj

2(j−1)(a+1)
= c 2−j2a+1.

This shows that
∫

Rd

dµ(x)

1 + |x|a+1
2

6 I0 + c 2a+1
∞∑

j=1

2−j = I0 + c 2a+1 < ∞,

which completes the proof. �

At this point, we get the following result.

Theorem 2.6. For a positive Radon measure µ on Rd, the following properties are equivalent:

(1) µ is slowly increasing;

(2) µ is strongly tempered;

(3) one has |ψ| ∈ L1(µ) for all ψ ∈ S(Rd);

(4) one has ψ ∈ L1(µ) for all ψ ∈ S(Rd) with ψ > 0;

(5) µ is tempered.

Proof. (1) ⇒ (2) is the first claim of Lemma 2.3, while (2) ⇒ (3) follows from Definition 2.1

and (3) ⇒ (4) is obvious. Further, (4) ⇒ (1) is Proposition 2.5, while (2) ⇒ (5) is the second

claim of Lemma 2.3.

To complete the proof, we could infer [15, p. 242] to obtain (5) ⇒ (1), but we prefer to show

(5) ⇒ (4) as follows. Let ψ be any fixed, non-negative Schwartz function. Then, invoking

a minor variant of the C∞ partitions of unity [10, p. 299], there is a sequence of functions

ϕn ∈ C∞
c
(Rd) with ϕ1 6 ϕ2 6 . . . such that ϕn = 1 on {|x| 6 n} and ϕnψ

n→∞−−−→ ψ in S(Rd).

Since µ is tempered, there is some T ∈ S ′(Rd) such that T (ϕ) = µ(ϕ) holds for all

ϕ ∈ C∞
c
(Rd). Then, by the monotone convergence theorem [10, Thm. 5.5], we have

µ(ψ) = lim
n→∞

µ(ϕnψ) = lim
n→∞

T (ϕnψ) = T (ψ) < ∞,

which completes the argument. �

For the general situation, we now get the following result.

Theorem 2.7. Let µ be a general Radon measure on Rd. Then, the following properties are

equivalent:

(1) µ is slowly increasing;

(2) |µ| is strongly tempered;
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(3) |µ| is tempered;

(4) |ψ| ∈ L1
(
|µ|

)
holds for all ψ ∈ S(Rd);

(5) µ is strongly tempered.

Further, if µ is strongly tempered, it is tempered, while the converse need not hold.

Proof. The equivalences of the first four condintions follow immediately from Theorem 2.6,

while the implications

µ slowly increasing =⇒ µ strongly tempered =⇒ µ tempered

are the result of Lemma 2.3.

Finally, the fact that µ is strongly tempered implies |ψ| ∈ L1
(
|µ|

)
for all ψ ∈ S(Rd) follows

directly from the definition.

[1, Prop. 7.1] provides an example of a Radon measure µ that is tempered, though |µ| is
not. In particular, µ is not slowly increasing. �

Let us now spell out the implication (4) =⇒ (5) in Theorem 2.7 more explicitly as follows.

Corollary 2.8. Let µ be a measure on Rd, and assume that |ψ| ∈ L1
(
|µ|

)
holds for all

ψ ∈ S(Rd). Then, ψ 7→
∫
Rd ψ(t) dµ(t) defines a tempered distribution. �

Let us complete the section by another characterisation when a measure is slowly increasing.

Lemma 2.9. A Radon measure µ is slowly increasing if and only if it is a linear combination

of positive tempered measures.

Proof. The direction ⇐ is obvious. For the converse, consider the standard Hahn–Jordan

decomposition [10, Cor. 3.6] of µ = ν + iσ with ν = Re(µ) and σ = Im(µ), that is

µ =
(
ν+ − ν−

)
+ i

(
σ+ − σ−

)
,

where ν± = 1
2

(
|ν| ± ν

)
are supported on disjoint sets, and analogously for σ±. Then, one has

|̺| 6 |µ| for all ̺ ∈
{
ν+, ν−, σ+, σ−

}
.

Since µ is slowly increasing, so are the four components. �

Since the Example in [1, Prop. 7.1] is so crucial, but important details are skipped, let us

next construct some examples of that type more explicitly.

3. Some tempered measures that are not slowly increasing

All the examples in this section fall into the class of tempered distributions with Fourier

transforms in the sense of measures, which was studied in detail in [20]. Let us begin with an

important technical step, which we present in all details for clarity and self-containedness.

Proposition 3.1. For every A > 0, there exists a function g ∈ Cc(R) with the following

three properties: supp(g) ⊆ [−2, 2], ‖g‖1 > A, and ‖ĝ‖∞ 6 1.
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Proof. Define the non-negative functions f = 1[−1,1] and fn = n
2 1[− 1

n
, 1
n
], the latter for n ∈ N.

Clearly, for any x ∈ R, one has

0 6
(
f ∗ fn

)
(x) =

∫ 1

−1
fn(x− y) dy 6

∫

R
fn(x− y) dy = 1,

which implies ‖f ∗ fn‖∞ 6 1. Also, since f̂n(t) = sinc
(
2πt
n

)
with sinc(z) = sin(z)

z
, one clearly

has pointwise convergence f̂n
n→∞−−−→ 1 on R.

For any B > 0, there is an n ∈ N such that

(4)
∥∥f̂n ∗f

∥∥
1
=

∥∥f̂n f̂
∥∥
1
> B.

To see this, observe that f̂(t) = 2 sinc(2πt) is locally integrable, but gives
∥∥f̂

∥∥
1
= ∞ because,

for any N ∈ N, one has

∫ ∞

0
|sinc(2πt)|dt >

N∑

n=0

∫ n+1

2

n
2

|sin(2πt)|
2πt

dt >

N∑

n=0

1
π(n+1)

∫ n+1

2

n
2

|sin(2πt)|dt = 1
π2

N∑

n=0

1
n+1

where the last term is the divergent harmonic series. In particular, we have
∫ α

−α

∣∣f̂(t)
∣∣ dt > 2B

for a suitable α > 0.

Now, recall that f̂(t)f̂n(t)
n→∞−−−→ f̂(t) holds for any t ∈ R, where we also have

∣∣f̂n
∣∣ 6 1.

Thus, we have ∣∣1[−α,α]f̂n f̂
∣∣ pointwise−−−−−−→

n→∞

∣∣1[−α,α]f̂
∣∣

where
∣∣1[−α,α]f̂n f̂

∣∣ is dominated by 1[−α,α]

∣∣f̂
∣∣ ∈ L1(R). By the dominated convergence

theorem [10, Thm. 5.8], we thus get

lim
n→∞

∫ α

−α

∣∣f̂n(t)f̂(t)
∣∣ dt =

∫ α

−α

∣∣f̂(t)
∣∣ dt > 2B.

Consequently, there exists an n ∈ N with
∫ α

−α

∣∣f̂n(t)f̂(t)
∣∣dt > B, which implies

∥∥f̂n f̂
∥∥
1
> B

and thus (4).

Next, let A > 0 be fixed, and C > 0 some number that we shall specify later. If we choose

some B > AC, there exists an n ∈ N such that h = f̂n f̂ satisfies ‖h‖1 > B > AC. Then, for

a suitable a > 0, we have
∫ a

−a
|h(t)|dt > AC. With h1(t) := ah(at), we get

∫ 1

−1
|h1(t)|dt =

∫ a

−a

|h(u)|du > AC,

together with ĥ1(t) = ĥ(t/a) =
(
fn ∗ f

)
(−t/a), which also gives

∥∥ĥ1
∥∥
∞

6 1.

Fix some ϕ ∈ C∞
c
(R) with ϕ ≡ 1 on [−1, 1] and supp(ϕ) ⊆ [−2, 2], and set C := ‖ϕ̂‖1,

which clearly satisfies C <∞. Now, set g := C−1ϕh1, where g ∈ Cc(R) is clear. Then,

‖g‖1 = 1
C

∫

R
|ϕ(t)h1(t)|dt >

1
C

∫ 1

−1
|ϕ(t)h1(t)|dt = 1

C

∫ 1

−1
|h1(t)|dt > A.

This shows ‖g‖1 > A, and we also have supp(g) ⊆ supp(ϕ) ⊆ [−2, 2].
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Finally, we have

‖ĝ‖∞ = C−1
∥∥ϕ̂ · h1

∥∥
∞

= C−1
∥∥ϕ̂ ∗ ĥ1

∥∥
∞

6 C−1
∥∥ϕ̂

∥∥
1

∥∥ĥ1
∥∥
∞

=
∥∥ĥ1

∥∥
∞

6 1,

which proves the claim. �

Remark 3.2. It is important to note that the function g, once A is large enough, cannot be

a positive function. If it were, we would get ĝ(0) = ‖g‖1 > A, in contradiction to ‖ĝ‖∞ 6 1.

The analogous comment also applies to the function h1 constructed in the proof. ♦

This has the following consequence, which is also part of [1, Prop. 7.1].

Corollary 3.3. There is a sequence (gn)n∈N of functions gn ∈ Cc(R) with the following three

properties: supp(gn) ⊆
[
− 1

n+1 ,
1

n+1

]
, ‖gn‖1 > (n2 + 1)n, and ‖ĝn‖∞ 6 2−n.

Proof. Let A > 0 and g be as in Proposition 3.1, and let β, γ > 0 be arbitrary. If we set

hβ,γ(x) :=
1
β
g(γx), we get supp(hβ,γ) ⊆

[
− 2

γ
, 2
γ

]
together with

∥∥hβ,γ
∥∥
1
= β−1

∫

R
|g(γx)|dx =

‖g‖1
βγ

>
A
βγ

and ĥβ,γ(t) =
1
βγ
ĝ(t/γ), hence

∥∥ĥβ,γ
∥∥
∞

6 1
βγ

. Choosing γ = 2(n+ 1) and β = 2n−1/(n+ 1),

the claim follows with gn = hβ,γ and A = 2n(n2 + 1)n. �

Let us next prove a result that is the key to go beyond the example of [1, Prop. 7.1]. First,

let us recall that a sequence (µn)n∈N of measures is said to converge vaguely to a measure µ

if, for all ϕ ∈ Cc(R
d), we have µn(ϕ)

n→∞−−−−→ µ(ϕ).

Lemma 3.4. Let A > 0 and let (νn)n∈N be a sequence of finite measures on Rd with the

following three properties: supp(νn) ⊆ [−A,A]d, |νn|(Rd) > (n2 + 1)n, and ‖ν̂n‖∞ 6 2−n.

Set v = (4A, 0, . . . , 0) and define

µn =

n∑

m=1

δmv ∗ νm .

Then, (µn)n∈N converges vaguely to a measure µ that is tempered but not slowly increasing.

Proof. Let Cu(R
d) denote the space of bounded, uniformly continuous functions on Rd and

consider Hn = µ̂n as defined by

µ̂n(x) =
n∑

m=1

e−2πimv·x ν̂m(x),

where v · x = 4Ax1, which clearly satisfies Hn ∈ Cu(R
d). As ‖ν̂n‖∞ < 2−n, the sequence

(Hn)n∈N converges, in
(
Cu(R

d), ‖.‖∞
)
, to some H ∈ Cu(R

d).

To continue, it follows immediately from the definition of µn that, for any ϕ ∈ Cc(R
d),

there is an integer N = N(ϕ) such that µN (ϕ) = µN+k(ϕ) holds for all k > 1. Consequently,
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(µn)n∈N is vaguely Cauchy, and hence vaguely convergent so some Radon measure µ on Rd.

Moreover, for any ϕ ∈ Cc(R
d), one has

µ(ϕ) = µn(ϕ) for all n > N(ϕ),

with the N(ϕ) from above. Next,

Tn(ψ) :=

∫

Rd

ψ(−t)Hn(t) dt and T (ψ) :=

∫

Rd

ψ(−t)H(t) dt

define tempered distributions, with Tn
n→∞−−−→ T in S ′(R).

Further, by [13, Lemma 4.9.14] and [1, Prop. 3.1], we have

µn(ϕ) =

∫

Rd

qϕ(t) dµ̂n(t) = Tn(ϕ̂)

for all ϕ ∈ C∞
c
(Rd). This gives

T̂ (ϕ) = T (ϕ̂) = lim
n→∞

Tn(ϕ̂) = lim
n→∞

µn(ϕ) = µ(ϕ),

which shows that µ is indeed tempered.

Finally, let n > 3 and let ϕ ∈ Cc(R
d) satisfy supp(ϕ) ⊆ nv +

[
−A,A

]d
. Then, due to our

construction, we have

µm(ϕ) =

∫

Rd

ϕ(x) d
(
δnv∗ νn

)
(x) for all m > n,

and thus also µ(ϕ) =
∫
Rd ϕ(x) d

(
δnv∗ νn

)
(x). This shows that

µ
∣∣
nv+[−A,A]d

= δnv∗ νn .

In particular, for any fixed P ∈ R[x1, . . . , xd], we get
∫

Rd

d|µ|(x)
1 + |P (x)| >

∫

[−A,A]d

d|νn|(x1, . . . , xd)
1 + |P (x1 − 4An, x2, . . . , xd)|

n→∞−−−−→ ∞,

where the last claim follows immediately from |νn|
(
[−A,A]d

)
> (n2 + 1)n. This shows that

µ cannot be slowly increasing. �

Remark 3.5. By construction, the measures µn and µ from Lemma 3.4 satisfy the following

simple property. For each compact set K ⊂ Rd, there exists some integer N = N(K) such

that, for all n > N , we have µ|K = µn|K , where µ|K denotes the restriction of µ to K. ♦

Now, setting νn = gnλL with gn as in Corollary 3.3 and λL denoting Lebesgue measure,

Proposition 3.4 gives the following concrete version of [1, Prop. 7.1].

Proposition 3.6. Let gn be as in Corollary 3.3 and consider the measures defined by

µn(ϕ) :=

n∑

j=1

∫

R
ϕ(x) gj(x+ j) dx.

Then, the sequence (µn)n∈N converges vaguely to a signed Radon measure µ that is tempered

but not slowly increasing. �
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Later, in Example 4.7, we shall provide an example of a tempered measure with locally

finite support that is not slowly increasing. Before we can do this, we need to discuss the case

of measures with uniformly discrete support more generally.

4. Radon measures with uniformly discrete support

Here, we consider the important special case of measures with uniformly discrete support,

for which the three key notions turn out to be equivalent. This class is particularly relevant

in the theory of aperiodic order, with several applications to mathematical quasicrystals and

Meyer sets; see [4, 8, 11, 12, 14, 18, 17] and references therein.

Note first that, if µ is tempered, strongly tempered, or slowly increasing, the same property

holds for µ. This has the following immediate consequence.

Fact 4.1. If µ is a Radon measure on Rd, one has

(1) µ is tempered ⇐⇒ Re(µ) and Im(µ) are tempered;

(2) µ is slowly increasing ⇐⇒ Re(µ) and Im(µ) are slowly increasing. �

To continue, we need a simple separation result as follows.

Lemma 4.2. Let U, V ⊂ Rd be such that U ∪V is uniformly discrete and U ∩V = ∅. Then,

there exists a function f ∈ C∞(Rd) such that f and all its derivatives are bounded, together

with f(x) = 1 for all x ∈ U and f(y) = 0 for all y ∈ V .

Proof. Let r > 0 be such that, for all x, y ∈ U ∪ V with x 6= y, we have Br(x) ∩ Br(y) = ∅.

Let ϕ ∈ C∞
c
(Rd) be so that ϕ(0) = 1 together with supp(ϕ) ⊆ Br(0) and ϕ(x) ∈ [0, 1] for all

x, which exists by standard arguments.

Define f =
∑

u∈U Tuϕ, where
(
Tuϕ

)
(x) = ϕ(x − u). Since supp(Tuϕ) ⊆ Br(u), where the

Br(u) are pairwise disjoint open sets, it is immediate that f has the desired properties. �

Next, let us recall the following standard result, which we prove for convenience.

Fact 4.3. Let f ∈ C∞(Rd) and T ∈ S ′(Rd). If f and all its derivatives are bounded, the

mapping ϕ 7→
(
fT

)
(ϕ) := T (fϕ) defines a tempered distribution.

Proof. Define F : S(Rd) −−→ Cu(R
d) via

F (ϕ) := fϕ .

Let α, β be arbitrary multi-indices, with ordering defined componentwise, and set

(
α

β

)
=

d∏

i=1

(
αi

βi

)
.
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Then, via the multivariate derivation formula of Leibniz, we have

∣∣xβDα(fϕ)
∣∣ =

∣∣∣∣xβ
∑

γ6α

(
α

γ

)
(Dγf) (Dα−γϕ)

∣∣∣∣ 6
∑

γ6α

(
α

γ

)∣∣(Dγf)xβ(Dα−γϕ)
∣∣

6
∑

γ6α

(
α

γ

)
‖Dγf‖∞ ‖ϕ‖β,α−γ

for every x ∈ Rd. This shows that F
(
S(Rd)

)
⊆ S(Rd) and that F : S(Rd) −−→ S(Rd) is

continuous with respect to the Schwartz topology. In particular, fT = T ◦F ∈ S ′(Rd). �

The equivalence of the key notions in this case can now be stated as follows.

Theorem 4.4. Let µ be a Radon measure on Rd with uniformly discrete support. If µ is

tempered, it is also slowly increasing.

Proof. Since µ is a tempered measure with uniformly discrete support, so are Re(µ) and

Im(µ). If we show the latter to be slowly increasing, µ is slowly increasing by Facy 4.1. Thus,

without loss of generality, we may assume µ to be a signed measure. Define

Λ± = {x ∈ Rd : µ({x}) ≷ 0}.

Then, the set Λ = {x ∈ Rd : µ({x}) 6= 0}, which is the support of µ and uniformly discrete

by assumption, satisfies Λ = Λ+ ∪ Λ− together with Λ+ ∩ Λ− = ∅.

If µ is tempered, there is a T ∈ S ′(Rd) such that µ(ϕ) = T (ϕ) holds for all ϕ ∈ C∞
c
(Rd). Let

f ∈ C∞(Rd) be a function such that f and all its derivatives are bounded with f |Λ+
≡ 1 and

f |Λ
−

≡ 0, which is guaranteed to exist by Lemma 4.2, and set g = 1− f , so also g ∈ C∞(Rd)

and g and all its derivatives are bounded.

Setting µ+ = f · µ and µ− = (−g) · µ, we get µ = µ+ − µ− where µ+ and µ− are positive

Radon measures by construction. Further, for all ϕ ∈ C∞
c
(Rd), we have

µ+(ϕ) =
(
fµ

)
(ϕ) = µ(fϕ) = T (fϕ) =

(
fT

)
(ϕ).

Since T ∈ S ′(Rd) with f ∈ C∞(Rd) and f and all its derivatives are bounded, we have

fT ∈ S ′(Rd) by Fact 4.3. Therefore, µ+ is a positive, tempered measure, hence also slowly

increasing.

In the same way, one gets µ−(ϕ) = (gT )(ϕ), hence µ− is slowly increasing as well. �

Explicitly, we can summarise the situation as follows.

Corollary 4.5. Let µ be a Radon measure on Rd with uniformly discrete support. Then, the

following properties are equivalent:

(1) µ is slowly increasing;

(2) µ is strongly tempered;

(3) one has |ψ| ∈ L1(µ) for all ψ ∈ S(Rd);

(4) one has ψ ∈ L1
(
|µ|

)
for all ψ ∈ S(Rd) with ψ > 0;

(5) µ is tempered. �
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Remark 4.6. If U ∪ V is locally finite, looking at the the proof of Lemma 4.2, we can still

select radii ru > 0 for the points u ∈ U such that Bru(u)∩(U ∪V ) = {u}. Further, we can find

functions ϕu ∈ C∞
c
(Rd) so that ϕu(u) = 1 together with supp(ϕu) ⊆ Br(u) and ϕu(x) ∈ [0, 1]

for all x. Then, via f =
∑

u∈U ϕu, we get a function f ∈ C∞(Rd) that is bounded.

However, if U ∪ V is locally finite but not uniformly discrete, the radii ru get arbitrarily

close to zero. This forces the derivatives of f to become unbounded. Consequently, in the

proof of Theorem 4.4, fT is a distribution that need no longer be tempered. This shows that

our proof of Theorem 4.4 cannot be extended to general measures with locally finite support.

In fact, we shall see in the next example that there exist tempered pure point measures with

locally finite support that are not slowly increasing. ♦

Employing the construction of [9], we now show that Theorem 4.4 does not hold for mea-

sures with locally finite support.

Example 4.7. For distinct, positive numbers a, b ∈ R, consider µa,b := δ0 + δa + δb − δa+b .

Then, as observed in [9], we have ‖µa,b‖ = 4 and

(5) ‖µ̂a,b‖ 6 2
√
2,

because a simple calculation with z = e−2πia·x and w = e−2πib·x shows that

‖µ̂a,b‖2 = (1 + z + w − zw)(1 + z + w − zw) = 4− zw + zw + wz − zw,

which is a positive number, so we get ‖µ̂a,b‖2 6 8 via the triangle inequality.

Next, for each n, select numbers a1, . . . , an, b1, . . . , bn ∈ (0, 1] that are linearly independent

over Q. Then, the elements k1a1+ . . .+knan+ ℓ1b1+ . . .+ ℓnbn are distinct for all 22n choices

of k1, . . . , kn and ℓ1, . . . , ℓn in {0, 1}.
Now, consider

νn :=
n∗

i=1

µai,bi .

A simple computation shows that νn has the form

(6) νn =
∑

k
1
,...,kn,ℓ1,...,ℓn∈{0,1}

s(k1, . . . , kn, ℓ1, . . . , ℓn) δk1a1+...+knan+ℓ1b1+...+ℓnbn

with

s(k1, . . . , kn, ℓ1, . . . , ℓn) = (−1)card{i:16i6n,ki=ℓi=1} = ±1.

Since the Dirac measures on the RHS of (6) have pairwise disjoint supports, we get

‖νn‖ =
∑

k
1
,...,kn,ℓ1,...,ℓn∈{0,1}

|s(k1, . . . , kn, ℓ1, . . . , ℓn)| = 22n.

Moreover, Eq. (5) implies

‖ν̂n‖∞ =
∥∥∥

n∏

i=1

µ̂ai,bi

∥∥∥
∞

6 2
3n
2 .
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Now, for each m ∈ N, pick some n such that 2
n
2 > 2m(m2 + 1)m, and consider

ωm :=
νn

2m‖ν̂n‖∞
.

Then, we get

‖ωm‖ =
‖νn‖

2m‖ν̂n‖∞
> 2

n
2
−m

> (m2 + 1)m and ‖ω̂m‖∞ = 2−m.

Further, by construction, supp(ωm) ⊆ [0, 2] ⊆ [−2, 2]. Therefore, by Lemma 3.4, the measure

µ =

∞∑

m=1

δ8m ∗ ωm

is tempered, but not slowly increasing. Moreover, since each ωm has finite support, µ has

locally finite support by Remark 3.5.
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