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THE ISOMORPHISM PROBLEM FOR SOME

UNIVERSAL OPERATOR ALGEBRAS

KENNETH R. DAVIDSON, CHRISTOPHER RAMSEY, AND ORR MOSHE SHALIT

Abstract. This paper addresses the isomorphism problem for the universal
(nonself-adjoint) operator algebras generated by a row contraction subject to
homogeneous polynomial relations. We find that two such algebras are iso-
metrically isomorphic if and only if the defining polynomial relations are the
same up to a unitary change of variables, and that this happens if and only if
the associated subproduct systems are isomorphic. The proof makes use of the
complex analytic structure of the character space, together with some recent
results on subproduct systems. Restricting attention to commutative operator
algebras defined by a radical ideal of relations yields strong resemblances with
classical algebraic geometry. These commutative operator algebras turn out to
be algebras of analytic functions on algebraic varieties. We prove a projective
Nullstellensatz connecting closed ideals and their zero sets. Under some tech-
nical assumptions, we find that two such algebras are isomorphic as algebras
if and only if they are similar, and we obtain a clear geometrical picture of
when this happens. This result is obtained with tools from algebraic geometry,
reproducing kernel Hilbert spaces, and some new complex-geometric rigidity
results of independent interest. The C*-envelopes of these algebras are also
determined. The Banach-algebraic and the algebraic classification results are
shown to hold for the wot-closures of these algebras as well.

1. Introduction

A fundamental problem is: given polynomials p1, . . . , pk in C[z1, . . . , zd], find all
solutions to the system of equations

(1.1) pi(x1, . . . , xd) = 0 , i = 1, . . . , k.

When the indeterminates xi are understood to be complex numbers, the solution
set is a complex variety, and this is the starting point of complex algebraic ge-
ometry. This problem makes sense in operator theory, where the indeterminants
are bounded linear operators on Hilbert space. We consider both the case of ar-
bitrary operators and polynomials in d non-commuting variables, and the case of
d commuting operators and polynomials in commuting variables. The issue we
study is the isomorphism problem for the universal (nonself-adjoint) operator al-
gebra determined by the solutions. In some sense, we are attempting to develop
non-commutative complex algebraic geometry in this context. Ideas from classical
algebraic geometry are an important influence on our development.
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Let us first consider the case in which there are no relations. In the setting of
multi-variable operator theory, (1.1) has a universal solution if one adds a reason-
able norm constraint. The algebra that arises is Popescu’s non-commutative disk
algebra [31]. In the abelian case (the relations xixj − xjxi = 0 for 1 ≤ i < j ≤ d),
one obtains Arveson’s algebra [5] of multipliers on symmetric Fock space; and this
is realized as a continuous multipliers on a reproducing kernel Hilbert space of
functions.

When one imposes a family of (non-commutative) relations, the universal algebra
is realized as a quotient of the non-commutative disk algebra. This can be con-
sidered as an abstract operator algebra in the sense of Blecher, Ruan and Sinclair
[11]. However, it has been shown to have an explicit faithful representation on a
subspace of Fock space associated to the ideal of relations. In the abelian case, the
algebra is a quotient of the algebra of continuous multipliers on symmetric Fock
space; and it has a rather explicit faithful representation as an algebra of multipliers
on a reproducing kernel Hilbert space determined by the zero set of the relations.

Let E be a finite dimensional Hilbert space and fix an orthonormal basis e1, . . . , ed
for E. Let L = (L1, . . . , Ld) be the d-shift on the free Fock space F(E) :=
⊕n≥0E

⊗n, defined by

Lieα1
⊗ · · · ⊗ eαn

= ei ⊗ eα1
⊗ · · · ⊗ eαn

, i = 1 . . . , d.

By the Bunce-Frazho-Popescu Dilation Theorem [12, 23, 30], every pure row con-
traction T = (T1, . . . , Td) is the compression of L(∞) (a direct sum of infinitely
many copies of L) to a coinvariant subspace. In fact, the normed closed algebra
Ad = Alg{I, L1, . . . , Ld} is the universal operator algebra generated by a row con-
traction [31]. That is, for every row contraction T = (T1, . . . , Td), there is a unital,
completely contractive, surjective homomorphism ϕ : Ad → alg{I, T1, . . . , Td} send-
ing Li to Ti. So L can be considered as the universal (row contractive) solution to
(1.1) when there are no relations.

The existence of a universal solution for no relations allows us to exhibit a natural
construction of a universal solution to (1.1) when p1, . . . , pk generate a nontrivial
ideal I (in the algebra C 〈z1, . . . , zd〉 of polynomials in d non-commuting variables

with complex coefficients). Let Ĩ be the norm closed ideal in Ad generated by the

set {p(L) : p ∈ I}. Then the quotient AI := Ad/Ĩ is the universal operator alge-
bra generated by a row contraction subject to relations (1.1), and the images of
L1, . . . , Ld constitute a universal solution. Several researchers noticed over the years
that AI can be naturally identified with the compression of Ad to the coinvariant
subspace FI := F(E) ⊖ [ĨF(E)] (see, in increasing order of generality, [5, 9, 38],
and [18, 32]). The d-tuple LI = (LI

1, . . . , L
I
d) obtained by compressing L to FI is

a universal solution of (1.1), and every pure row contraction that satisfies (1.1) is a
compression of LI to a coinvariant subspace. The variety of (row contractive) solu-
tions of (1.1) is in one-to-one correspondence with the unital completely contractive
representations of AI .

A different, yet closely related, route which leads to these operator algebras is
via subproduct systems. A benefit of this route is that it is “coordinate free”. A
subproduct system is a family X = {X(n)}n∈N of Hilbert spaces satisfying

X(m+ n) ⊆ X(m)⊗X(n) , m, n ∈ N,

and X(0) = C. These objects were introduced in [38] as a framework for the dila-
tion theory of cp-semigroups; independently, they appeared in [10] under the name
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inclusion systems, to facilitate computations in amalgamated product systems. Ev-
ery subproduct system naturally gives rise to an operator algebra AX acting on the
space FX := ⊕n≥0X(n). The isometric isomorphism class of AX is an invariant
of X . Whether or not it is a complete invariant was a question left open in [38]
which we resolve in the affirmative here. When these algebras were introduced
there was some hope1 that they will shed light on the subproduct systems that
gave rise to them. But it turned out that the structure of the subproduct systems
is easier to understand. Luckily, it was also noticed that there is a bijection between
subproduct systems and ideals (in C 〈z1, . . . , zd〉),

X ←→ IX

and that AX = AIX . This gave rise to a different conceptual point of view by
which to consider the universal operator algebras discussed above.

The main result of this paper is the classification of the algebras AX . In the
general case the classification is up to (completely) isometric isomorphism; in the
commutative case, when the ideal of relations I is radical, we classify both up to
(completely) isometric isomorphism and up to algebraic isomorphism—this under
some reasonable technical assumptions on the geometry of the affine algebraic va-
riety associated with the ideal of relations I. In the latter case, it is shown that
the geometry of the affine algebraic variety determines the algebraic and isometric
structures of the algebra.

In more detail, the contents of this paper are as follows.
The notation is set up in Section 2. Among other things the correspondence be-

tween subproduct systems and ideals is explained. Some examples and motivation
are given in Section 3, and it is shown that two subproduct systems X and Y are
isomorphic if and only if the corresponding ideals IX and IY can be obtained, one
from the other, by unitary change of variables (Proposition 3.1). Section 4 contains
an analysis of the character spaces of the algebras AX , and it is shown that these
can be identified with a homogeneous algebraic variety intersected with the unit
ball. Further, it is shown that the character spaces have a complex analytic struc-
ture that is preserved under isometric isomorphisms. From this we infer that the
existence of an isometric isomorphism from AX onto AY implies the existence of
a vacuum preserving isometric isomorphism (Proposition 4.7). A result from [38]
then applies to give our first classification result, Theorem 4.8, that says that AX

is isometrically isomorphic to AY if and only if X is isomorphic to Y (and then
AX and AY are, in fact, unitarily equivalent).

From this point onward we concentrate on the commutative case (so the relations
in (1.1) include all relations xixj = xjxi, i = 1, . . . , d). Moreover, we assume
that the ideal IX is radical. In Section 5 a connection is made to the theory of
reproducing kernel Hilbert spaces. It is shown that AX is an algebra of multipliers,
and, in particular, an algebra of functions. In Section 6 we consider some natural
questions in a wide class of algebras of functions and prove a Nullstellensatz for
closed homogeneous ideals (Theorem 6.12). A direct corollary (Corollary 6.13)
is that in these algebras, any function that vanishes on a homogeneous algebraic
variety can be approximated in the norm by polynomials vanishing on that variety.

Sections 7 and 8 are the main course, with most of the hard work in the former,
and the main results in the latter. The first result in Section 7 is that a unital

1In the heart of the less experienced author.
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isomorphism from AI to AJ induces a holomorphic mapping between the character
spaces. The rest of the section is therefore devoted to studying mappings between
homogeneous algebraic varieties. Some complex-geometric rigidity results of inde-
pendent interest are obtained (Theorem 7.4 and Propositions 7.6 and 7.7). We then
turn to prove that, given two homogeneous ideals I and J , every invertible linear
map between the varieties V (I) and V (J) that is length preserving on the varieties,
gives rise to an isomorphism of the corresponding algebras AI and AJ (Theorem
7.17). We are able to prove this only when the varieties are what we call tractable,
which just means that their geometry is not too complicated. The precise definition
of a tractable variety is given before Theorem 7.16, but let us mention now that
many interesting varieties are tractable, for example: irreducible varieties, varieties
with two irreducible components, varieties of codimension 1 and varieties in C3.
Algebraically, this means that our methods work for, e.g., principal ideals, prime
ideals and in three variables.

In Section 8 we sum up all that we obtained to give the classification (in the
commutative case) of the algebras AI when I is radical. Theorem 8.2 says that AI

is isometrically isomorphic to AJ if and only if there is a unitary transformation
mapping the algebraic variety V (I) onto V (J). Theorem 8.5 says that, when V (I)
and V (J) are tractable, then AI is isomorphic to AJ if and only if there is a
linear map, that is length preserving on V (I), that maps V (I) onto V (J) (and
then the two algebras are, in fact, similar). Using the geometric rigidity results
Propositions 7.6 and 7.7, this implies an operator-algebraic rigidity result: if I is
prime or principal and AI is isomorphic (as an algebra) to AJ , then AI is unitarily
equivalent to AJ .

Section 9 closes our treatment of the algebras AI with a study of the automor-
phism groups of these algebras. Theorem 9.1 establishes a one-to-one correspon-
dence between the isomorphisms of Ad (which is the universal operator algebra
generated by a commuting row contraction) and the automorphism group of the
unit ball in Cd. We then turn to study when an automorphism of AI is induced
by an automorphism of Ad, and we find the automorphism group of the algebras
corresponding to a union of subspaces.

In Section 10 we look at the “Toeplitz” C*-algebras TX = C∗(AX). We find
that, in the commutative case, TX is the C*-envelope of AX , and this allows us
to deduce that all completely isometric isomorphisms between such algebras are
unitarily implemented. We also bring some evidence for a connection between the
∗-algebraic structure of TX and the topology of the variety V (IX).

In the final section we treat the algebras obtained by taking the closure of the
algebras AX in the weak-operator topology. We find that the algebraic and the
Banach-algebraic classification remains unchanged, as well as the algebraic rigidity.
We also show that in the radical commutative case every isomorphism is automat-
ically bounded and continuous in the weak-operator and weak-∗ topologies.

2. Definitions and notation

2.1. A word of explanation about notation. In this paper we are concerned
with two classes of operator algebras. The first class consists of universal operator
algebras generated by a contractive row of operators subject to noncommutative
homogeneous polynomial relations, and our objective is to classify these algebras
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up to isometric isomorphism (we will find that when two such algebras are isomet-
rically isomorphic, then they are also completely isometrically isomorphic). The
second class consists of universal operator algebras generated by a contractive row
of commuting operators subject to (commutative) homogeneous polynomial rela-
tions, and our objective is to classify these algebras up to isometric isomorphism as
well as up to (algebraic) isomorphism. Let us call the first class the noncommutative
case and the second class the commutative case.

In this section we set up the notational framework for the paper. The com-
mutative case is contained in the noncommutative case (we are simply adding the
relations zizj = zjzi), so in principle we can set up notation for the noncommuta-
tive case and use it consistently for the commutative case as well. However, since
most of our attention will be directed towards the commutative case, and since it
is natural to do so, we will set up a notational framework for the commutative case
also. This will cause notational inconsistencies, but no confusion.

2.2. The noncommutative case. In this paper, a subproduct system is a collec-
tion X = {X(n)}n∈N of finite dimensional Hilbert spaces that satisfy X(0) = C

and X(m+ n) ⊆ X(m)⊗X(n). Subproduct systems were introduced and studied
in greater generality in [38].

Given a subproduct system X , let E = X(1). Then X(n) ⊆ E⊗n. Write pXn for
the projections pXn : En → X(n). Then X has an associative multiplication that
extends to tensor products given by product maps UX

m,n : X(m)⊗X(n)→ X(m+n),

UX
m,n(x⊗ y) = pXm+n(x ⊗ y).

We define the X-Fock space, denoted FX , to be FX := ⊕n≥0X(n). If E = X(1),
then FX is a subspace of the full Fock space F(E) := ⊕n≥0E

⊗n. The symbol ΩX

will denote the vacuum vector ΩX = 1 ∈ X(0) ⊆ FX of FX .
Now fix an orthonormal basis {e1, . . . , ed} for E. Let C 〈z1, . . . , zd〉 be the algebra

of polynomials in d noncommuting variables with complex coefficients. When d is
understood, we simply write C 〈z〉. If p is a polynomial in C 〈z〉, we write p(e) or
p for the element of F(E) given by “evaluating” p at e1, . . . , ed. For example, if
p(z) = z1z2 − z3z1z3, then p(e) = e1 ⊗ e2 − e3 ⊗ e1 ⊗ e3.

There is a natural bijection between homogeneous ideals in C 〈z〉 and subproduct
systems X with X(1) ⊆ E (after fixing an orthonormal basis {e1, . . . , ed} for E).
If X is a subproduct system, we denote the associated ideal by IX , and if I is
a homogeneous ideal, we denote the associated subproduct system by XI . The
relation between X and IX is the following:

(2.1) IX = span{p : p(e) ∈ E⊗n ⊖X(n) for some n}.
See [38, Section 7] for details.

On F(E) there are the natural left creation operators L1, . . . , Ld, given by

Li(eα1
⊗ · · · ⊗ eαn

) = ei ⊗ eα1
⊗ · · · ⊗ eαn

, i = 1 . . . , d.

Let SX
1 , . . . , S

X
d denote their compression to FX .

We defineAX to be the norm closed operator algebra generated by I, SX
1 , . . . , S

X
d .

This is the main object of study in this paper. Recall that AX is equal to the univer-
sal norm closed unital operator algebra generated by a row contraction subject to
the relations in IX (see Section 8 in [38] for details). We also define TX := C∗(AX)
and OX = TX/K(FX), where K(FX) is the algebra of compact operators on FX .
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In [40], following terminology from [28], the algebraAX was denoted T+(X) and
called the tensor algebra of X , and the algebra TX was denoted T (X) and called
the Toeplitz algebra of X . We shall also refer to TX , sometimes, as the Toeplitz
algebra of X .

There is another way to obtain the algebra AX . Let Ad be the noncommu-
tative disc algebra, that is, the norm closed algebra generated by I, L1, . . . , Ld.
By [31, Theorem 3.9], Ad is the universal unital operator algebra generated by a

row contraction. If Ĩ is the ideal in Ad generated by {p(L1, . . . , Ld) : p ∈ IX},
then the quotient Ad/Ĩ is also the universal unital operator algebra generated by a
row contraction subject to the relations in IX , thus it is completely isometrically
isomorphic to AX [32].

Let Ld be the noncommutative analytic Toeplitz algebra, that is, closure of of
Ad in the weak-operator topology (wot). We also denote by LX the wot-closure
of AX .

2.3. The commutative case. When focusing on the commutative case it will be
more natural to use the following framework.

Let E be a Hilbert space of dimension d. Denote by En the symmetric tensor
product of E with itself n times. For x1, x2, . . . , xn ∈ E, we write x1x2 · · ·xn for
their symmetric product in En. The family {En}n≥0 forms a subproduct system
in which the product is just the symmetric product. Briefly, the commutative
case is the case in which we take X to be a subproduct subsystem of the symmetric
subproduct system {En}n∈N. Such a subproduct system will be referred to below as
a commutative subproduct system, and note that multiplication in these subproduct
systems is commutative.

In more detail, the notation for the commutative case will be almost the same as
for the noncommutative case described above, but with the following adjustments
made.

We replace the algebra C 〈z〉 with the algebra C[z1, . . . , zd] of complex poly-
nomials in d (complex) variables. Again, when d is understood, we write C[z].
Also, we replace the full Fock space by the symmetric Fock space, also known as
Drury-Arveson space, which we denote by H2

d (see [5]).
As in the noncommutative case, once we fix an orthonormal basis {e1, . . . , ed} for

E, there is a natural bijection between homogeneous ideals in C[z] and commutative
subproduct systems X with X(1) ⊆ E. If X is a subproduct system, we denote the
associated ideal by IX , and if I is a homogeneous ideal, we denote the associated
subproduct system by XI . The relation between X and IX is the following:

IX = span{p : p(e) ∈ En ⊖X(n) for some n}.
Note that we are using the same notation, but now IX is understood to be an
ideal in C[z]. Here and below, when given a polynomial p(z) = p(z1, . . . , zd) =
∑
ci1···idz

i1
1 · · · zidd , we will write p(e) = p(e1, . . . , ed) for the element in the sym-

metric Fock space given by
∑
ci1···ide

i1
1 · · · eidd . For a multi-index α = (α1, . . . , αd),

we will write eα for the polynomial zα = zα1

1 · · · zαd

d evaluated at e. Let Z1, . . . , Zd

denote the coordinate functions on H2
d . Then Zi is the compression of Li to H

2
d ,

and SX
1 , . . . , S

X
d are also the compressions of the Zi to FX .

We denote by Ad the norm closed algebra generated by I, Z1, . . . , Zd. By [5,
Theorem 6.2], (and also by the discussion in the previous subsection), Ad is the

universal unital operator algebra generated by a commuting row contraction. If Ĩ
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is the ideal in Ad generated by {p(Z1, . . . , Zd) : p ∈ IX}, then the quotient Ad/Ĩ is
completely isometrically isomorphic to AX .

In the commutative case (and in that case only), when I = IX , then we will also
write AI instead of AX . We will also write LI for LX .

2.4. Ideals and zero sets. If I is an ideal in C[z] or in C 〈z〉, we let

V (I) = {z ∈ C
d : p(z) = 0 for all p ∈ I}.

When I is an ideal of polynomials in noncommutative variables, there is still a well
defined notion of p(z) for z = (z1, . . . , zd) ∈ Cd. In both the commutative and
noncommutative cases the set V (I) is an (affine) algebraic variety in Cd. Through-
out the paper we will use some well known results and terminology from algebraic
geometry.

An ideal I ⊆ C[z] is said to be radical if

I =
√
I := {p ∈ C[z] : ∃n.pn ∈ I}.

In algebraic geometry it is natural to associate to a homogeneous ideal a projec-
tive variety (rather than an affine variety), but we do not do so for reasons that
will become clear. The decisive role will be played by the sets

Z(I) = V (I) ∩ Bd

and
Zo(I) = V (I) ∩ Bd,

where Bd is the unit ball of Cd. The set of singular points of a variety V will be
denoted Sing(V ).

3. Motivation and examples

Two subproduct systems X and Y are said to be isomorphic, written X ∼= Y ,
if there is a family W = {Wn}n of unitaries Wn : X(n) → Y (n) such that for all
m,n,

(3.1) Wm+n ◦ UX
m,n = UY

m,n ◦ (Wm ⊗Wn).

It is clear that if X ∼= Y then AX is completely isometrically isomorphic to AY ,
because then the map

V := ⊕∞
n=0Wn : FX → FY

is a unitary that gives rise to a completely isometric isomorphism ϕ : AX → AY by

ϕ(a) = V aV ∗ , a ∈ AX .

Answering the converse question, “if AX is isometrically isomorphic to AY , does
it follow that X ∼= Y ?”, is our main objective in this section and the next. In [38]
it was verified within several special classes of subproduct systems that the answer
is yes. In the next section we will show that the answer is yes in general.

Let us indicate why the above problem—classifying the algebras AX in terms
of the subproduct systems X—is interesting. First, the subproduct systems give
a concrete and easily computable handle to the more complicated category of op-
erator algebras. In the last few sections of [38] several examples are given where
it was possible to effectively distinguish between naturally defined operator alge-
bras in terms of the associated subproduct systems. The second reason is that an
isomorphism of subproduct systems is “the same” as a unitary equivalence of the
associated ideals defining the relations.
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Proposition 3.1. [Proposition 7.4, [38]] Let X and Y be [commutative] sub-
product systems with dimX(1) = dimY (1) = d < ∞. Then X is isomorphic to Y

if and only if there is a unitary linear change of variables in C 〈z〉
[

C[z]
]

that sends

IX onto IY . Moreover, every isomorphism of subproduct systems is induced by a
unitary linear change of variables, and vice-versa.

This theorem was stated in [38] in the noncommutative case. Since in [38] a
proof was not provided, we include one for the commutative case. A similar proof
works in the noncommutative case.

Proof. Assume that IX is sent to IY when applying a unitary change of variables
in C[z]. By this we mean that there is a unitary U acting on Cd such that

IY = {f ◦ U : f ∈ IX}.
We now define an isomorphism W of subproduct systems from X = XIX to Y =
XIY . We define a unitary Wn on En by sending p(e1, . . . , ed) (where p(z1, . . . , zd)
is a homogeneous polynomial of degree n) to p ◦U(e1, . . . , ed) = p(U te1, . . . , U

ted).
The unitary Wn sends X(n)⊥ to Y (n)⊥, thus it sends X(n) unitarily onto Y (n).
The familyW = {Wn} is an isomorphism of subproduct systems. To see this, notice
that an arbitrary element of Y (m+n) can be written as

∑

i(pi ◦U)(e)⊗ (qi ◦U)(e),
where (pi◦U)(e) ∈ Y (m), and (qi◦U)(e) ∈ Y (n). On the one hand, applying to such
an element the inclusion map Y (m+n)→ Y (m)⊗Y (n) followed by (Wm⊗Wn)

−1,
we get the element

∑

i pi(e)⊗qi(e) ∈ X(m)⊗X(n). On the other hand, applying to
∑

i(pi ◦U)(e)⊗ (qi ◦U)(e) first W−1
m+n and then applying the inclusion X(m+n)→

X(m)⊗X(n) we again get the element
∑

i pi(e) ⊗ qi(e) ∈ X(m) ⊗X(n). Taking
the adjoint of the above argument, we obtain (3.1).

Conversely, assume that W : X → Y is an isomorphism of subproduct systems.
We define a unitary U = (uij)

d
i,j=1 by the following relations:

W1ei =

d∑

j=1

uijej , , i = 1, . . . , d.

Reversing the reasoning above, we find that U sends IX to IY . Here are the
details. W1 extends to a unitary W̃n : E⊗n → E⊗n by

W̃n(ei1 ⊗ · · · ⊗ ein) = (W1ei1)⊗ · · · ⊗ (W1ein).

Because W respects the product,

Wnp
X
n (x1 ⊗ · · · ⊗ xn) = pY (W1x1 ⊗ · · · ⊗W1xn).

Thus Wnp
X
n = pYn W̃n. Because Wn is a unitary from X(n) onto Y (n) we have

W̃n|X(n) = Wn. Thus p(e) 7→ p ◦ U(e) = p(W1e1, . . . ,W1ed) sends X(n) to Y (n),

and thus it sends X(n)⊥ to Y (n)⊥. It follows that p(z) 7→ p ◦ U(z) sends IX to
IY .

Remark 3.2. To a reader who is wondering why not forget about subproduct
systems and classify these algebras using “equivalence classes” of ideals, we note,
for example, the role of the integer d in the above proposition.

When the ideal IX is radical (in the commutative setting) we will show below
that the geometry of a certain variety determines AX . However, when AX comes
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from a non-radical ideal of relations, this geometrical classifying object disappears,
and the subproduct systems is the next best thing.

Example 3.3. Let I = 〈xy, y2, x3〉 and J = 〈x(x+y), (x+y)2 , x3〉 in C[x, y]. There
is a unique unital (algebraic) automorphism ϕ of C[x, y] determined by ϕ(x) = x,
ϕ(y) = x+y. Clearly, ϕ sends I onto J , thus it induces an isomorphism of algebras

ϕ : C[x, y]/I → C[x, y]/J.

Now write X = XI and Y = XJ . Since AX and AY are finite dimensional, they
are the universal commutative unital algebras generated by a pair satisfying the
relation in I and in J , respectively. Thus AX

∼= C[x, y]/I ∼= C[x, y]/J ∼= AY as
algebras. More is true: AX and AY are actually isometrically isomorphic.

The Fock space FX is seen to have an orthonormal basis {ΩX , e1, e2, e
2
1}. In this

basis we have

SX
1 =







0 0 0 0
1 0 0 0
0 0 0 0
0 1 0 0







, SX
2 =







0 0 0 0
0 0 0 0
1 0 0 0
0 0 0 0






.

It follows that

AX =













a 0 0 0
b a 0 0
c 0 a 0
d b 0 a







: a, b, c, d ∈ C







.

Similarly, FY is seen to have {ΩY , e1, e2, (e
2
1 − 2e1e2 + e22)/2} as an orthonormal

basis. (Recall that ‖e1e2‖ = ‖(e1 ⊗ e2 + e2 ⊗ e1)/2‖ = 1/
√
2.) So we obtain the

shifts

SY
1 =







0 0 0 0
1 0 0 0
0 0 0 0
0 1/2 −1/2 0







, SY
2 =







0 0 0 0
0 0 0 0
1 0 0 0
0 −1/2 1/2 0






,

and the algebra

AY =













a 0 0 0
b a 0 0
c 0 a 0
d (b− c)/2 (c− b)/2 a







: a, b, c, d ∈ C







.

From this description of the algebras it is not clear that they are isometric. But it
can be checked that the unitary change of variables

x 7→ (x− y)/
√
2 , y 7→ (x+ y)/

√
2

sends I onto J . Thus by Proposition 3.1 and the discussion before it, we conclude
that AX and AY are isometrically isomorphic (and, in fact, they are spatially
isomorphic). It is hard to recognize this because the isometric isomorphism will
not send {SX

1 , S
X
2 } to {SY

1 , S
Y
2 }.

The following example shows that if I and J are ideals in C[z1, . . . , zd] that are
related by a linear change of variables, then their universal operator algebras may
not be isometrically isomorphic.
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Example 3.4. Let I = 〈xy, y3, x3〉 and J = 〈x(x + y), y3, x3〉. Again, there is
a unique unital (algebraic) automorphism ϕ of C[x, y] determined by ϕ(x) = x,
ϕ(y) = x + y. Note that ϕ sends I onto J . Thus it induces an isomorphism of
algebras

ϕ : C[x, y]/I → C[x, y]/J.

Now write X = XI and Y = XJ . Exactly as above, AX
∼= C[x, y]/I ∼= C[x, y]/J ∼=

AY as algebras. However, AX and AY are not isometrically isomorphic.
The Fock space FX is seen to have an orthonormal basis {ΩX , e1, e2, e

2
1, e

2
2}. In

this basis we have

SX
1 =









0 0 0 0 0
1 0 0 0 0
0 0 0 0 0
0 1 0 0 0
0 0 0 0 0









, SX
2 =









0 0 0 0 0
0 0 0 0 0
1 0 0 0 0
0 0 0 0 0
0 0 1 0 0









.

It follows that

AX =















a 0 0 0 0
b a 0 0 0
c 0 a 0 0
d b 0 a 0
e 0 c 0 a









: a, b, c, d, e ∈ C







.

Similarly, FY is seen to have {ΩY , e1, e2, (e
2
1 − 2e1e2)/

√
3, e22} as an orthonormal

basis, so we obtain the shifts

SY
1 =









0 0 0 0 0
1 0 0 0 0
0 0 0 0 0

0 1/
√
3 −1/

√
3 0 0

0 0 0 0 0









, SY
2 =









0 0 0 0 0
0 0 0 0 0
1 0 0 0 0

0 −1/
√
3 0 0 0

0 0 1 0 0









,

and the algebra

AY =















a 0 0 0 0
b a 0 0 0
c 0 a 0 0
d b−c√

3
−b√
3

a 0

e 0 c 0 a









: a, b, c, d, e ∈ C







.

Here (as in any finite dimensional example), we have TX = TY = M5(C). How
does one go about showing that the algebras AX and AY are not isometrically
isomorphic? We will provide an answer at the end of the next section.

4. Classification of the algebras by their subproduct systems

4.1. The character spaces as analytic varieties. In this section, our subprod-
uct systems are not necessarily commutative. Let X be a subproduct system. Let
MX denote the space of all unital, multiplicative linear functionals on AX . The
maps inMX will be called characters. Recall that every character is automatically
contractive, hence completely contractive too.

The character space may be (homeomorphically) identified with the set

Z(IX) = {z ∈ Bd : p(z) = 0 for all p ∈ IX}
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via the identification:

(4.1) MX ∋ ρ←→ (ρ(SX
1 ), . . . , ρ(SX

d )) ∈ Z(IX).

See [38, Section 10.2] for details.
We will also use the notation and identification

Mo
X
∼= Zo(IX) = {z ∈ Bd : p(z) = 0 for all p ∈ IX}.

The character corresponding to the point 0 ∈ Z(IX) is called the vacuum state,
and is denoted by ρ0. It is the unique multiplicative linear functional sending I to
1 and SX

i to 0 for i = 1, . . . , d. The vacuum state is a vector state, and is given by

ρ0(T ) = 〈TΩX ,ΩX〉 .
We intentionally use the same notation for vacuum states acting on different alge-
bras. If ϕ : AX → AY and ϕ∗(ρ0) = ρ0 then we say that ϕ preserves the vacuum
state. The following theorem explains the significance of the vacuum state to our
discussion.

Theorem 4.1. [Theorem 9.7, [38]] X ∼= Y if and only if AX and AY are
isometrically isomorphic via an isomorphism that preserves the vacuum state. In
fact, if ϕ : AX → AY is a vacuum preserving isometric isomorphism, then there is
an isomorphism V : X → Y such that for all T ∈ AX ,

ϕ(T ) = V TV ∗.

For λ = (λ1, . . . , λd) ∈ Z(IX), let us denote by ρλ the character sending SX
i to

λi. For every T ∈ AX , the Gelfand transform gives rise to a continuous function
onMX by

T̂ (λ) = ρλ(T ).

If p ∈ C[z], then p̂(SX)(λ) = ρλ(p(S
X)) = p(λ). If T ∈ AX and pn(S

X) converges
to T in norm, then by the contractivity of the Gelfand transform, pn converges

uniformly to T̂ onMX . Therefore, for every fixed λ ∈ MX , the function T̂λ(t) =

T̂ (tλ1, . . . , tλd) is analytic in D.
Every continuous isomorphism ϕ : AX → AY gives rise naturally to a homeo-

morphism ϕ∗ :MY →MX given by ϕ∗(ρ) = ρ ◦ ϕ.

Lemma 4.2. If ϕ is an isometric isomorphism, then ϕ∗ maps Mo
Y ontoMo

X.

Proof. Let ρ ∈MX \Mo
X . By applying a unitary transformation to the variables

we may assume that ρ = (1, 0, . . . , 0). Assume that (ϕ∗)−1ρ = ρt0λ, where t0 ∈ [0, 1)

and λ ∈ MY . Put T = ϕ(SX
1 ). Then ‖T ‖ = 1, thus |T̂λ(t)| ≤ 1 for t ∈ D. On

the other hand, T̂λ(t0) = ρ(SX
1 ) = 1. By the maximum modulus principle, T̂λ is

constant 1 on D. We claim that this is possible only if T = I. That would show
that ϕ(SX

1 ) = I, but that is impossible because ϕ is injective and unital. This
contradiction completes the proof.

To derive T = I from T̂λ(t) ≡ 1, assume that T =
∑

n pn(S
X) is the Cesàro

norm-convergent series of T (see [38, Proposition 9.3]), where pn are homogeneous
polynomials of degree n. The terms pn(S

X) must be bounded, therefore pn(λ) are
also bounded. Then for t ∈ D we have that

T̂λ(t) =
∑

n

pn(tλ) =
∑

n

pn(λ)t
n.
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This holomorphic function can be constantly equal to 1 only if pn(λ) = 0 for n 6= 0
and p0 = 1. So T = I+

∑

n>0 pn(S
X). Now ‖T ‖ = 1 implies

∑

n>0 pn(S
X) = 0.

Remark 4.3. It is also true that if ϕ : AX → AY is a bounded isomorphism, then
ϕ∗ mapsMo

Y ontoMo
X . Since we will not require this result, the proof is omitted.

See Proposition 7.1 for the commutative case.

Lemma 4.4. Let X and Y be two subproduct systems with dimX(1) = d′ and
dimY (1) = d. Let ϕ : AX → AY be an isometric isomorphism. Then there exists

a holomorphic map f : Bd → Cd′

such that

ϕ∗|Mo
Y
= f |Mo

Y
.

That is, the restriction of ϕ∗ toMo
Y is an analytic map of analytic varieties.

Proof. Let T = ϕ(SX
1 ), and let T =

∑

n pn(S
Y ) be the Cesàro norm-convergent

series of T . Denote E = Y (1), and let {e1, . . . , ed} be an orthonormal basis for E.
We can rewrite the series for T as

T =
∞∑

n=0

d∑

i1,...,in=1

bi1,...,inS
Y
i1 · · ·S

Y
in ,

where

T (ΩY ) =

∞∑

n=0

d∑

i1,...,in=1

bi1,...,inei1 ⊗ · · · ⊗ ein

is the image of the vacuum vector in the full Fock space F(E).
It follows that the coefficients {bi1,...,in} are ℓ2 summable. The estimate

∑

|bi1,...,inzi1 · · · zin | ≤
(∑

|bi1,...,in |2)1/2
(∑

|zi1 · · · zin |2
)1/2

together with the identity

∞∑

n=0

d∑

i1,...,in=1

|zi1 · · · zin |2 =

∞∑

n=0

(|z1|2 + . . .+ |zd|2)n

shows that the function

f1(z) =
∑

bi1,...,inzi1 · · · zin
is holomorphic in Bd. But

ϕ∗(ρλ)(S
X
1 ) = ρλ(T ) =

∑

bi1,...,inλi1 · · ·λin = f1(λ).

Thus ϕ∗ρλ = ρµ, where µ1 = f1(λ). In the same way, we see that µi = fi(λ), for

all i = 1, . . . , d′, where fi : Bd → Cd′

is holomorphic.

4.2. The singular nucleus of a homogeneous variety.

Lemma 4.5. Let V = V (I) be the variety in Cd determined by a radical homoge-
neous ideal I. Then either V has singular points, or V is a linear subspace.

Proof. If V is reducible, then by Theorem 8(iv) in [14, Section 9.6] the origin is
in the singular set. So we may assume that V is irreducible.
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Let f1, . . . , fk be a generating set for I, and assume the dimension of V (I) is m.
By a theorem in [39, page 88], the singular locus of V is the common zero set of
polynomials obtained from the (d−m)× (d−m) minors of the Jacobian matrix






∂f1
∂z1

· · · ∂f1
∂zd

...
...

∂fk
∂z1

· · · ∂fk
∂zd




 .

But since f1, . . . , fk are homogeneous, all these minors will vanish at the point 0
unless at least d − m of the fi’s are linearly independent linear forms. But then
V lies inside m dimensional subspace. Being an m-dimensional variety, V must be
that subspace.

Let V be a homogeneous variety in Cd. Then by the lemma, either V is a
subspace of Cd, or the singular locus Sing(V ) is nonempty. Now Sing(V ) is also a
homogeneous variety, so either Sing(V ) is a subspace or Sing(Sing(V )) is not empty.
Since the dimension of the singular locus is strictly less than the dimension of a
variety, we eventually arrive at a subspace N(V ) = Sing(· · · (Sing(V ) · · · ) which we
call the singular nucleus of V . Note that N(V ) = {0} might happen, as well as
N(V ) = V .

If X is a subproduct system and I = IX , then from Lemma 4.4 it is clear that
Bd ∩ N(V (I)) is an invariant of the isometric isomorphism class of AX . We also
refer to this set as the singular nucleus of I.

4.3. Classification of the algebras by subproduct systems. In what follows
we will need to consider the group Aut(Bn) of automorphisms of Bn, that is, the
biholomorphisms of the unit ball. We will use well known properties of these frac-
tional linear maps (see [35, Section 2.2]). For a ∈ Bn, we define

(4.2) ϕa(z) =
a− Paz − saQaz

1− 〈z, a〉 ,

where Pa is the orthogonal projection onto span{a}, Qa = In − Pa and sa =
(1 − |a|2)1/2. Then ϕa is an automorphism of Bn that maps 0 to a and satisfies
ϕ2
a = id. For every ψ ∈ Aut(Bn) there exists a unique unitary U and a ∈ Bn such

that ψ = U ◦ ϕa.
By a disc in Bn we shall mean a set D of the form D = Bn ∩ L, where L ⊆ Cn

is a one dimensional subspace.

Lemma 4.6. Let ψ ∈ Aut(Bn). Then there are two discs D1, D2 in Bn such that
ψ(D1) = D2.

Proof. If ψ = U ◦ϕa and a 6= 0, take D1 = span{a}∩Bn. Then ϕa|D1
is a Möbius

map of D1 onto itself. Take D2 = UD1. If a = 0, take D1 = D2 to be Bn∩L where
L is any one-dimensional eigenspace of U .

Proposition 4.7. Let X and Y be subproduct systems and assume that there exists
an isometric isomorphism ϕ : AX → AY . Then there exists a vacuum preserving
isometric isomorphism from AX to AY .

Proof. By the discussion following Lemma 4.5, the singular nucleus of IY must be
mapped biholomorphically by ϕ∗ onto the singular nucleus of IX . If these nuclei are
both {0} then ϕ itself must be vacuum preserving, and we are done. Otherwise, by
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rotating the coordinate systems we may assume that N(V (IX)) = N(V (IY )) = B,
a complex ball.

Now, ϕ∗|B ∈ Aut(B). Thus by Lemma 4.6 , there are two discs D1, D2 ⊆ B
such that ϕ∗(D2) = D1. Define

O(0;X,Y ) = {z ∈ D1 : z = ψ∗(0) for some isometric isomorphism ψ : AX → AY },

and

O(0;Y ) = {z ∈ D2 : z = ψ∗(0) for some isometric automorphism ψ of AY }.

Claim: The sets O(0;X,Y ) and O(0;Y ) are invariant under rotations about 0.
Proof of claim: For λ with |λ| = 1, write ϕλ for the isometric automorphism
mapping SX

i to λSX
i (i = 1, . . . , d). Let b = ϕ∗(0) ∈ O(0;X,Y ). Recall that

b = (b1, . . . , bd) is identified with a character ρb ∈ Mo
X such that ρb(S

X
i ) = bi for

i = 1, . . . , d. Consider ϕ ◦ ϕλ. We have

ρ0((ϕ ◦ ϕλ)(S
X
i )) = ρ0(ϕ(λS

X
i )) = λρ0(ϕ(S

X
i )) = λbi.

Thus λb = (ϕ ◦ ϕλ)
∗(ρ0) ∈ O(0;X,Y ). The proof for O(0;Y ) is the same.

We can now show the existence of a vacuum preserving isometric isomorphism.
Let b = ϕ∗(0). If b = 0 then we are done, so assume that b 6= 0. By definition, b ∈
O(0;X,Y ). Denote C := {z ∈ D1 : |z| = |b|}. By the above claim, C ⊆ O(0;X,Y ).
Consider C′ := (ϕ∗)−1(C). We have that C′ ⊆ O(0;Y ). Now C′ is a circle in D2

that goes through the origin. By the claim, the interior of C′, int(C′), is in O(0;Y ).
But then ϕ∗(int(C′)) is the interior of C, and it is in O(0;X,Y ). Thus 0 lies in
O(0;X,Y ), as required.

Combining Theorem 4.1 and Proposition 4.7, we obtain our main non-commutative
result:

Theorem 4.8. Let X and Y be subproduct systems. Then AX is isometrically
isomorphic to AY if and only if X is isomorphic to Y .

Remark 4.9. It follows from the above theorem that if AX and AY are isometri-
cally isomorphic, then they are also completely isometrically isomorphic.

Example 4.10. Let us return to Example 3.4. We now show that AX is not
isometrically isomorphic to AY . Using the above theorem, it is enough to show
that X is not isomorphic to Y . By Proposition 3.1, one must show that there is no
unitary change of variables that takes I onto J . But if there was, then the set

Z(I(2)) = {z ∈ B2 : f(z) = 0 for all f ∈ I(2)}

would be mapped unitarily onto the set

Z(J (2)) = {z ∈ B2 : f(z) = 0 for all f ∈ J (2)},

where I(2) denotes the set of homogeneous polynomials in I with degree 2, etc.
However, Z(I(2)) consists of two complex lines that intersect at an angle π/2, and
Z(J (2)) consists of two complex lines that intersect at an angle π/4. It follows from
the theorem (together with Proposition 3.1) that AX and AY are not isometrically
isomorphic.
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5. The algebras AX as algebras of continuous multipliers

From this point onward, we will concentrate on the commutative case. The
purpose of this section is to show that when X is commutative and IX is a radical
ideal in C[z], the algebra AX can be realized as a norm closed subalgebra of the
multiplier algebra of a reproducing kernel Hilbert space.

Let I ⊆ C[z] be an ideal, not necessarily homogeneous. We will denote the
closure of I in H2

d by [I]. Define

FI = H2
d ⊖ I.

When I = IX is a homogeneous ideal, then FI = FX , the X-Fock space.
Recall that for an ideal I ⊆ C[z] we denote

V (I) = {z ∈ C
d : p(z) = 0 for all p ∈ I},

Z(I) = V ∩ Bd,

and

Zo(I) = V ∩ Bd.

If W ⊆ Cd, we define

I(W ) = {f ∈ C[z] : f(λ) = 0 for all λ ∈W}.

Lemma 5.1. Let I be a radical ideal in C[z] such that all the irreducible components
of V (I) intersect Bd. Then I(Zo(I)) = I.

Proof. This is an exercise in algebraic geometry. Assume first that V (I) is irre-
ducible. Let f ∈ C[z] such that f(λ) = 0 for all λ ∈ Zo(I) = V (I) ∩ Bd. Denote
W = V (f). By assumption, W ∩ Bd ⊇ V (I) ∩ Bd, therefore dimW ∩ V (I) =
dimV (I). It follows from [29, Proposition 1.4] that W ∩ V (I) = V (I), therefore
f ∈ I(V (I)) = I.

Finally, if V (I) is reducible then we apply this argument to each irreducible
component.

For any ideal I in C[z], the radical of I is
√
I = {f ∈ C[z] : fn ∈ I for some n ≥ 1} = I(V (I)).

Corollary 5.2. If I is a homogeneous ideal, then
√
I = I(V (I)) = I(Z(I)) = I(Zo(I)).

Lemma 5.3. If I is a homogeneous ideal in C[z], then [I] ∩C[z] = I.

We omit the easy proof of this lemma. However we note that it is not true for
non-homogeneous ideals. Indeed, if d = 1, I = 〈x− 1〉, then H2

1 ⊖ I = {0}. Thus
[I] = H2

1 , and [I] ∩H2
1 = C[z].

Now we turn to the reproducing kernel. For any λ ∈ Bd, let

(5.1) νλ = (1 − ‖λ‖2)1/2
∞∑

n=0

d∑

i1,...,in=1

λi1 · · ·λinei1 ⊗ · · · ⊗ ein .

It is known [20] that νλ are eigenvectors for the operators L∗
i (the adjoints of the

left creation operators Li on the full Fock space) with eigenvalue λi. Since the
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multiplication operators Zi are co-restrictions of the Li’s to H
2
d , and since

(5.2) νλ = (1− ‖λ‖2)1/2
∑

α

|α|!
α1! · · ·αd!

λ
α
eα ∈ H2

d ,

we have that νλ are eigenvectors of Z∗
i with eigenvalues λi.

Alternatively, H2
d is known [5] to be a reproducing kernel Hilbert space with

kernel

k(ξ, λ) =
1

1− 〈ξ, λ〉 .

The kernel function at λ, the function k(·, λ), is seen to correspond to (5.2). Denote
by Mult(H2

d) the multiplier algebra of H2
d . From the basic theory of multiplier

algebras, it follows that for any ϕ ∈ Mult(H2
d), νλ is an eigenvector for M∗

ϕ with

eigenvalue ϕ(λ) [1, Chapter 2].
We now compute which νλ belong to FI for a given ideal I.

Lemma 5.4. The vector νλ is in FI if and only if λ ∈ Zo(I).

Proof. Fix λ ∈ Bd. Then νλ lies in FI if and only if νλ is orthogonal to I, if and
only if for all f ∈ I we have

f(λ) = 〈f, νλ〉 = 0.

This happens if and only if λ ∈ Zo(I) = V (I) ∩ Bd.

Lemma 5.5. Let I ⊆ C[z] be a homogeneous ideal. Then

FI = span{νλ : λ ∈ Zo(I)}
if and only if I is radical.

Proof. Assume that FI = span{νλ : λ ∈ Zo(I)}. Let [I] denote the closure of I in
H2

d . Then

[I] = F⊥
I = {f ∈ H2

d : f(λ) = 0 for all λ ∈ Zo(I)}.
By Lemma 5.2, [I]∩C[z] = I(V (I)) =

√
I, and by Lemma 5.3, [I]∩C[z] = I. Thus,

I is radical.
Now assume that I is radical. By Lemma 5.4, νλ ∈ FI for all λ ∈ Z(I)∩Bd. Thus

we need only show that if f ∈ H2
d is orthogonal to {νλ : λ ∈ Zo(I)} then f ∈ [I].

Let f ∈ {νλ : λ ∈ Zo(I)}⊥. Write the Taylor series of f as f(z) =
∑

α aαz
α. Then

for all λ ∈ Zo(I), we define a function gλ on D by

gλ(t) = f(tλ) =
∑

n




∑

|α|=n

aαλ
α



 tn.

But gλ ≡ 0, thus
∑

|α|=n aαz
α ∈ I(Zo(I)) for all n. Since I is radical, I = I(Zo(I))

by Lemma 5.2. So f belongs to [I].

Proposition 5.6. Let I ⊆ C[z] be a radical homogeneous ideal. Then FI is nat-
urally a reproducing kernel Hilbert space on the set Zo(I). The algebra AI is the
norm closure of the polynomials in Mult(FI), and can be identified with

{f |Zo(I) : f ∈ Ad}.
Moreover, LI = (L∗d|FI

)∗ can be identified with Mult(FI), and

(5.3) Mult(FI) = {f |Zo(I) : f ∈Mult(H2
d)}.
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Proof. Since FI = span{νλ : λ ∈ Zo(I)}, it is naturally a reproducing kernel
Hilbert space on the set Zo(I) with kernel functions νλ, λ ∈ Zo(I).

Now, AI is generated as the operator norm closure of the identity and the com-
pressions of the coordinate functions Si = PFI

Zi|FI
, i = 1, . . . , d, to a coinvariant

space. Since S∗
i νλ = λiνλ, Si is the multiplier operator that sends f(z) ∈ FI

(a function on Zo(I)) to zif(z). This shows that AI is the norm closure of the
polynomials in Mult(FI).

The same argument shows that LI is a wot-closed algebra of multipliers in
Mult(LI) generated by polynomials. Furthermore, if f ∈ Mult(H2

d) and Mf is the
corresponding multiplication operator on FI , then PFI

Mf |FI
= Mg, where g is

the multiplier on FI given by g = f |Zo(I). This provides a natural identification

between LI and {f |Zo(I) : f ∈ Mult(H2
d)}.

To establish Equation (5.3), it remains to show that every multiplier in Mult(LI)
extends to a multiplier in Mult(H2

d ) of the same norm. This follows from [18,
Theorem 3.3] or [2, Theorem 2.8].

Thus, the algebra AI , which is the universal unital operator algebra generated
by a row contraction satisfying the relations in I, can be given three interpretations.
First AI is the quotient algebra Ad/I; second, AI is the concrete operator algebra
generated by compression of Ad to FI ; and thirdly, it is also an algebra of functions

{f |Zo(I) : f ∈ Ad},
of restrictions given the multiplier norm (on the subspace FI). All of these points
of view are useful.

6. Nullstellensatz for homogeneous ideals in multiplier algebras

Our goal in this section is to obtain a (projective) Nullstellensatz for a large class
of operator algebras, including Ad and the “ball algebra” A(Bd). From this result
we will derive an approximation result (Corollary 6.13) that will allow us to describe
isomorphisms between the algebras AX that are induced by automorphisms of Bd

(Proposition 9.4 below). At the end of the section we will also provide a different
and quick proof of Corollary 6.13 for the algebra Ad.

Let Ω ⊆ Cd be an open bounded domain that is the union of polydiscs centered
at 0. Then Ω has the following property:

λ ∈ Ω⇒ tλ ∈ Ω , for all t ∈ D

and Ω also the property that every function f holomorphic in Ω has a Taylor series
that converges in Ω.

Let H be a reproducing kernel Hilbert space of analytic functions in Ω containing
the polynomials with the additional property that f(z) 7→ f(eitz) is a unitary
operator onH for all t ∈ R. It follows that if p, q ∈ H are homogeneous polynomials
of different total degrees, then 〈p, q〉 = 0.

In the discussion below B will denote the closure of the polynomials in the
multiplier algebra Mult(H). If H = H2

d , then B = Ad, which is the case of principal
interest in this paper. If H is taken to be the Bergman space on Ω, then B is A(Ω),
the space of continuous functions on Ω which are analytic on Ω, with the sup norm.
As is always the case with algebras of multipliers, the norm of B, which will be
denoted simply by ‖ · ‖, satisfies ‖f‖∞ ≤ ‖f‖ (see [1, Chapter 2]).
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Every f ∈ B has a Taylor series in Ω, f(z) =
∑

α aαz
α. We write

(6.1) f =

∞∑

n=0

fn

where fn(z) =
∑

|α|=n aαz
α is the nth homogeneous component of f . The series

(6.1) converges locally uniformly in Ω.

Lemma 6.1. For all n, the map Pn : B → C[z] ⊆ B given by Pn(f) = fn is
contractive. Furthermore, the series (6.1) is Cesàro norm convergent to f in the
norm of B.

Proof. Consider the gauge automorphisms on B:

[γt(f)](z) = f(eitz).

The unitary group given by [Ut(h)](z) = h(eitz) is continuous in the strong operator
topology, and γt = adUt. Hence the path t 7→ γt(f) is continuous with respect to
the strong operator topology. One sees therefore that the integral

Pn(f) =
1

2π

∫ 2π

0

γt(f)e
−intdt

converges in the strong operator topology to an element of B(H). The operator Pn

is a complete contraction, as it is an average of complete contractions. Note that
Pn maps C[z] onto the space Hn of homogeneous polynomial of degree n. This
fact follows from the simple identity UsPn(f) = einsPn(f). Therefore, Pn maps

B = C[z]
‖·‖

onto Hn. A standard argument using the Fejér kernel shows that the
Cesàro means Σn(f) are completely contractive and converge in norm to f , and
that Pn(f) = fn.

In particular, we see that f is in the closed linear span of its homogeneous
components. This will be used repeatedly below.

Definition 6.2. An ideal J ⊆ B is said to be homogeneous if fn ∈ J for all n ∈ N

and all f ∈ J .
Proposition 6.3. A closed ideal J ⊆ B is homogeneous if and only if for all t ∈ D

and all f ∈ J , one has f(tz) ∈ J .
Proof. Assume that J is homogeneous, and let f(z) =

∑

n fn(z) ∈ J . By the
previous lemma ‖fn‖ ≤ ‖f‖, so for all t ∈ D, f(tz) =

∑

n t
nfn(z) is a norm

convergent series of elements in J . Hence f(tz) ∈ J .
Conversely, let f ∈ J , and assume that for all t ∈ D, f(tz) ∈ J . Assuming that

J is proper, f0 = 0 follows from taking t = 0. But then

f(tz)

t
=

∞∑

n=0

tnfn+1 ∈ J.

Taking t→ 0 we find that f1(z) ∈ J . Now we consider

f(tz)− f1(tz)
t2

=
∞∑

n=0

tnfn+2(z) ∈ J,

taking the limit as t→ 0 we find that f2(z) ∈ J . The result follows by recursion.
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Lemma 6.4. Let I ⊆ C[z] be a homogeneous ideal. Then the closure of I in B is
homogeneous. If p is a homogeneous polynomial in I, then p ∈ I.
Proof. This follows easily from the continuity of Pn.

Lemma 6.5. Let J be a homogeneous ideal in B. Then the ideal I = C[z] ∩ J of
C[z] satisfies I ⊆ J ⊆ I, and it is the unique homogeneous ideal in C[z] with this
property.

Proof. Clearly I ⊆ J , and that J ⊆ I follows from Lemma 6.1. If K is another
homogeneous ideal in C[z] such that K ⊆ J ⊆ K, then we have I ⊆ K and K ⊆ I.
From Lemma 6.4, I = K.

Corollary 6.6. Every closed homogeneous ideal in B is finitely generated (as a
closed ideal).

Remark 6.7. There do exist closed ideals in A(Bd) which are not finitely generated
(one may adjust the example in [34, Proposition 4.4.2]).

For a closed ideal J ⊆ B, the radical of J is defined to be the ideal
√
J given by

√
J = {f ∈ B : fn ∈ J for some n ≥ 1}.

Lemma 6.8. The radical of a closed homogeneous ideal J of B is homogeneous.

Proof. Let f and m be such that fm ∈ J . Write the homogeneous decomposition
of f as f(z) =

∑

n≥k fn(z), where fk(z) is the lowest non-vanishing homogeneous

term. Then fm(z) = fk(z)
m + . . .. Since J is homogeneous, fm

k ∈ J , so fk ∈
√
J .

Proceeding recursively, we find that fj ∈
√
J for all j.

Theorem 6.9. Let J ⊆ B be a closed homogeneous ideal. Then there exists N ∈ N

such that fN ∈ J for all f ∈
√
J .

Proof. By the effective Nullstellensatz [27, Theorem 1.5] there is an N ∈ N such

that pN ∈ J∩C[z] for all p ∈
√

J ∩ C[z] =
√
J∩C[z]. If f ∈

√
J , then f ∈

√
J ∩ C[z]

by Lemma 6.5. If {fn} is a sequence in
√
J ∩ C[z] converging to f , then fN

n ∈ J
for all n, thus fN = limn f

N
n ∈ J .

Corollary 6.10. The radical of a closed homogeneous ideal J ⊆ B is closed.

Proposition 6.11. If I ⊆ C[z] is radical, then I is radical in B.

Proof. Put J = I. Then
√
J ∩ C[z] is the unique homogeneous ideal in C[z] with

closure equal to
√
J . But

√
J ∩ C[z] =

√

J ∩C[z] = I, so
√
J = I = J .

The main result of this section is a projective Nullstellensatz for closed ideals in
B. We shall need the following notation. For an ideal J ⊆ B, we define

VΩ(J) = {z ∈ Ω : f(z) = 0 for all f ∈ J}.
If X ⊆ Ω, we define

IB(X) = {f ∈ B : f(λ) = 0 for all λ ∈ X}.
Theorem 6.12. Let J ⊆ B be a closed homogeneous ideal. Then

(6.2)
√
J = IB(VΩ(J)).
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Proof. Define K = IB(VΩ(J)). First, note that K is closed. Next we show that K
is homogeneous. Notice that VΩ(J) = VΩ(J∩C[z]), so tVΩ(J) ⊆ VΩ(J) for all t ∈ D.
Thus if f ∈ K, then for all λ ∈ VΩ(J) it follows that f(tλ) = 0. By Proposition
6.3, K is homogeneous.

Finally, K ∩ C[z] is the set of all polynomials vanishing on

VΩ(J) = VΩ(J ∩ C[z]) = V (J ∩C[z]) ∩ Ω.

So by an easy extension of Corollary 5.2, we find

K ∩ C[z] =
√

J ∩ C[z] =
√
J ∩ C[z].

By Lemma 6.5 and Corollary 6.10,

K = K ∩ C[z] =
√
J ∩ C[z] =

√
J.

Corollary 6.13. Let I ⊆ C[z] be a radical homogeneous ideal, and let f ∈ B be a
function that vanishes on V (I) ∩ Ω. Then f ∈ I.

Proof. Define J = I. Then, using Theorem 6.12 and then Proposition 6.11,

f ∈ IB(VΩ(I)) = IB(VΩ(J)) =
√
J = J = I.

A natural question now is the following: suppose that a function f ∈ B is known
to be small on V (I) ∩ Ω. Does it follow that f is close to I? The following
proposition shows that this equivalent to an extension problem.

Proposition 6.14. Let I ⊆ C[z] be a homogeneous ideal, and let D be an algebra
of functions on VΩ(I) that is the closure of the polynomials in some norm that
satisfies ‖f |VΩ(I)‖D ≤ ‖f‖B. Then the following are equivalent.

(1) For every g ∈ D there exists an f ∈ B such that f |VΩ(I) = g.
(2) There exists a constant C > 0 such that for all f ∈ B

(6.3) dist(f, I) ≤ C
∥
∥f |V (I)∩Ω

∥
∥
D
.

Proof. (1) ⇒ (2). Define the map ϕ : B → D by ϕ(f) = f |VΩ(I). By Corollary

6.13, kerϕ = I. Therefore, ϕ induces an injective and surjective bounded map
ϕ̃ : B/I → D. Therefore ϕ̃ has a bounded inverse, and that proves (6.3).

(2) ⇒ (1). Define ϕ and ϕ̃ as above. Equation (6.3) implies that ϕ̃ has closed
range. But the range of ϕ̃ is clearly dense because it contains the polynomials.
Hence ϕ is surjective.

Remark 6.15. Let I ⊆ C[z] be a radical homogeneous ideal, and let J be the
closure of I in Ad. Then both AI and Ad/J are the universal unital operator
algebras generated by a row contraction satisfying the relations in I, so they are
naturally isomorphic. In particular, using Proposition 5.6, it follows that for all
f ∈ Ad,

dist(f, I) =
∥
∥f |Zo(I)

∥
∥
Mult(FI)

.

This gives another proof for Corollary 6.13 for the special case B = Ad. By the
above proposition, it also follows that every function that is in the closure of the
polynomials on Zo(I) with respect to the multiplier norm on FI is extendable to a
function in Ad.



ISOMORPHISM OF OPERATOR ALGEBRAS 21

7. Isomorphisms of algebras, biholomorphisms of character spaces,

and their rigidity

We now turn our attention to algebras that are universal for row contractions
of commuting operators satisfying the relations of a radical homogeneous ideal
I ⊆ C[z]. In this special and important case we will be able to sharpen our results
in three ways. First, we will classify the algebras up to (completely) isometric
isomorphism and also, in many cases, up to isomorphism. Second, the classifying
objects will no longer be subproduct systems (or ideals), but rather geometric
objects. Finally, we will describe the isomorphisms and (completely) isometric
isomorphisms of the algebras in terms of holomorphic maps of the unit ball in Cd.

7.1. Unital homomorphisms are composition operators. Let I be a radical
homogeneous ideal, and let X = XI . The algebra AX will be denoted by AI . Also,
the character spaceMX will be identified with Z(I).

Recall that by Proposition 5.6, AI can be considered as an algebra of functions:

AI = {f |Zo(I) : f ∈ Ad},
where the norm is the multiplier norm on the reproducing kernel Hilbert space
FI = span{νλ : λ ∈ Zo(I)}.

If I and J are radical homogeneous ideals in C[z1, . . . , zd] and C[z1, . . . , zd′],
respectively, then for every algebra homomorphism ϕ : AI → AJ and every ρ ∈
Z(J), the composition ρ ◦ ϕ is a homomorphism from AI into C. Therefore it
is either a character or it is the functional 0. Thus every unital homomorphism
ϕ : AI → AJ gives rise to a mapping ϕ∗ : Z(J)→ Z(I).

Proposition 7.1. Let I and J be radical homogeneous ideals in C[z1, . . . , zd] and
C[z1, . . . , zd′ ], respectively. Let ϕ : AI → AJ be a unital algebra homomorphism.
Then there exists a holomorphic map F : Bd′ → Cd that extends continuously to
Bd′ , such that

F |Z(J) = ϕ∗.

The components of F are in Ad′ . Moreover, ϕ is given by composition with F , that
is

ϕ(f) = f ◦ F , f ∈ AI .

Proof. Let λ ∈ Z(J) give rise to the evaluation functional ρλ on AJ given by
ρλ(f) = f(λ). Then ϕ∗(ρλ) is also an evaluation functional. In fact, for the
coordinate functions zi ∈ AI , we find

[ϕ∗(ρλ)](zi) = zi(ϕ
∗(ρλ)) = ρλ(ϕ(zi)) = ϕ(zi)(λ).

We find that the mapping ϕ∗ is given by

ϕ∗(λ) = (ϕ(z1)(λ), . . . , ϕ(zd)(λ)).

Now ϕ(z1), . . . , ϕ(zd) are restrictions to Zo(J) of functions f1, . . . , fd ∈ Ad′ (see
Remark 6.15). Defining

F (z) = (f1(z), . . . , fd(z)),

we obtain the required function F . Finally, for every λ ∈ Z(J),
ϕ(f)(λ) = ρλ(ϕ(f)) = ϕ∗(ρλ)(f) = ρF (λ)(f) = f(F (λ)),

so ϕ(f) = f ◦ F .
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Using the fact that every unital homomorphism is a composition operator, to-
gether with a standard application of the closed graph theorem, yields the following
corollary.

Corollary 7.2. Every unital algebra homomorphism ϕ : AI → AJ is bounded.

7.2. Some complex geometric rigidity results. We now follow the discussion
in [35, Chapter 2] to obtain some rigidity results for isomorphisms between the
varieties Z(I). These rigidity results will help us determine the possibilities for
isomorphisms between the various algebras AI .

Lemma 7.3. Let I be a homogeneous ideal in C[z]. Let F : Bd → Cd be a contin-
uous map, holomorphic on Bd, such that F |Z(I) is a bijection of Z(I). If F (0) = 0

and d
dtF (tz)

∣
∣
∣
t=0

= z for all z ∈ Z(I), then F |Z(I) is the identity.

Proof. It seems that a careful variation of the proof for “Cartan’s Uniqueness
Theorem” given in [35] (page 23) will work. One only needs to use the facts that
Z(I) is circular and bounded. The reason one must be careful is that Z(I) typically
has empty interior.

Let’s make sure that it all works. We write the homogeneous expansion of F :

(7.1) F (z) = Az +
∑

n≥2

Fn(z),

where A = F ′(0). First let us show that, without loss of generality, we may assume

(7.2) F (z) = z +
∑

n≥2

Fn(z).

Let W be the linear span of Z(I), and let W⊥ be its orthogonal complement in Cd.

By the assumption d
dtF (tz)

∣
∣
∣
t=0

= z for z ∈ Z(I), so the matrix A can be written
as

A =

(
I B
0 C

)

with respect to the decomposition Cd =W ⊕W⊥. Replacing F by F + ICd −A we
obtain a function that is continuous on Bd, analytic on Bd, agrees with F on Z(I),
and has homogeneous decomposition as in (7.2).

Following Rudin [35, bottom of page 23], we consider the kth iterate F k of F :

F k(z) = z + kF2(z) + . . . .

Since Z(I) is circular and since F k maps Z(I) onto itself, we find that for all
z ∈ Zo(I)

kF2(z) =
1

2π

∫ 2π

0

F k(eiθz)e−2iθdθ,

from which it follows that ‖kF2(z)‖ ≤ 1 for all k and all z ∈ Zo(I). This implies
that F2(z) = 0 for all z ∈ Zo(I). Therefore there exists a continuous function
G : Bd → Cd that is holomorphic on Bd and agrees with F on Z(I), that has
homogeneous expansion

G(z) = z +
∑

n≥3

Gn(z),
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(namely, one takes G = F − F2). Note that Gn = Fn for all n > 2. This last
observation allows us to repeat the argument inductively and deduce that F (z) = z
for all z ∈ Zo(I). By continuity, F |Z(I) equals the identity.

We now obtain the desired analogue of Cartan’s uniqueness theorem.

Theorem 7.4. Let I and J be homogeneous ideals in C[z1, . . . , zd] and C[z1, . . . , zd′ ],
respectively. Let F : Bd′ → Cd be a continuous map that is holomorphic on Bd′

and maps 0 to 0. Assume that there exists a continuous map G : Bd → Cd′

that
is holomorphic on Bd such that F ◦ G|Z(I) and G ◦ F |Z(J) are the identity maps.

Then there exists a linear map A : Cd′ → Cd such that F |Z(J) = A.

Proof. Again we adjust the proof of [35, Theorem 2.1.3] to the current setting.
The derivatives F ′(0) and G′(0) might not be inverses of each other, but from
G ◦ F (z) = z, we find that G′(0)F ′(0)z = z for all z ∈ Z(J).

Fix θ ∈ [0, 2π], and define H : Bd′ → Cd′

by

H(z) = G(e−iθF (eiθz)).

Then H(0) = 0 and

d

dt
H(tz)

∣
∣
∣
t=0

= G′(0)e−iθF ′(0)eiθz = z.

By the previous lemma

H(z) = z

for z ∈ Z(J). After replacing z by e−iθz and applying F to both sides we find that

F (e−iθz) = e−iθF (z) for all z ∈ Z(J).
Integrating over θ, this implies that if (7.1) is the homogeneous expansion of F ,
then Fn(z) = 0 for all z ∈ Zo(J) and all n ≥ 2. Thus F |Z(J) = A.

The following easy result is a straightforward consequence of homogeneity.

Lemma 7.5. Let I and J be homogeneous ideals in C[z1, . . . , zd] and C[z1, . . . , zd′ ],

respectively. If a linear map A : Cd′ → Cd carries Z(J) bijectively onto Z(I), then
A is isometric on V (J).

Proof. Each unit vector v ∈ V (J) determines a disc Dv = Cv ∩ Bd′ in Z(J).
Observe that A carries Cv onto CAv, and must take the intersection with the ball
to the corresponding intersection with the ball Bd. Thus it takes Dv onto DAv.
Therefore ‖Av‖ = ‖v‖.

This lemma can be significantly strengthened to obtain a rigidity result which
will be useful for the algebraic classification of the algebras AI .

Proposition 7.6. Let V be a homogeneous variety in Cd, and let A be a linear
map on Cd such that ‖Az‖ = ‖z‖ for all z ∈ V . If V = W1 ∪ · · · ∪ Wk is the
decomposition of V into irreducible components, then A is isometric on span(Wi)
for 1 ≤ i ≤ k.
Proof. It is enough to prove the proposition for an irreducible variety V . The idea
of the proof is to produce a sequence of algebraic varieties V ⊆ V1 ⊆ V2 ⊆ ... such
that ‖Az‖ = ‖z‖ for all z ∈ Vi and all i, where either dimVi < dimVi+1, or Vi is a
subspace (and then it is the subspace spanned by V ).
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First, we prove that ‖Ax‖ = ‖x‖ for all x lying in the tangent space Tz(V )
for every z ∈ V \ Sing(V ). Since z is nonsingular, for every such x there is a
complex analytic curve γ : D → V such that γ(0) = z and γ′(0) = x. By the
polar decomposition, we may assume that A is a diagonal matrix with nonnegative
entries a1, . . . , ad. Since A is isometric on V ,

d∑

i=1

a2i |γi(z)|2 =

d∑

i=1

|γi(z)|2 for z ∈ D.

Applying the Laplacian to both sides of the above equation, and evaluating at 0,
we obtain

d∑

i=1

a2i |γ′i(0)|2 =

d∑

i=1

|γ′i(0)|2.

Thus, ‖Ax‖ = ‖x‖ for all x ∈ Tz(V ) and all nonsingular z ∈ V .
Consider now the set

X0 =
⋃

z∈V \Sing(V )

{z} × Tz(V ) ⊆ C
d × C

d.

Let X denote the Zariski closure of X0, that is, X = V (I(X0)). As X sits inside the

tangent bundle
⋃

z∈V {z}×Tz(V ), X0 is equal to X \
(

Sing(V )×Cd
)

. ThereforeX0

is Zariski open inX . By Proposition 7 of Section 7, Chapter 9 in [14], the closure (in
the usual topology of C2d) of X0 is X . Letting π denote the projection onto the last

d variables, we have π(X) ⊆ π(X0). But π(X0) =
⋃

z∈V \Sing(V ) Tz(V ), therefore

‖Ax‖ = ‖x‖ for all x ∈ π(X). Now, π(X) might not be an algebraic variety, but by
Theorem 3 of Section 2, Chapter 3 in [14], there is an algebraic varietyW in which
π(X) is dense. Observe that W must be a homogeneous variety, and ‖Az‖ = ‖z‖
for every z ∈ W .

Being irreducible, V must lie completely in one of the irreducible components of
W . We denote this irreducible component by V1, and let W2, . . . ,Wm be the other
irreducible components of W . We claim: if V itself is not a linear subspace, then
dimV1 > dimV . We prove this claim by contradiction. If dimV1 = dimV then
V = V1, because V ⊆ V1 and both are irreducible. Let z ∈ V = V1 be a regular
point. Since dimTz(V ) = dimV , and Tz(V ) is irreducible, Tz(V ) is not contained
in V1. But Tz(V ) is contained inW , thus Tz(V ) ⊆Wi for some i. But z ∈ Tz(V ) by
homogeneity. What we have shown is that, under the assumption dimV1 = dimV ,
every regular point z ∈ V is contained in

⋃m
i=2Wi. Thus V1 ⊆ ∪iWi. That

contradicts the assumed irreducible decomposition.
If V is not a linear subspace then we are now in the situation in which we

started, with V1 instead of V , and with dimV1 > dimV . Continue this procedure
finitely many times to obtain a sequence of irreducible varieties V1 ⊆ . . . ⊆ Vn that
terminates at a subspace on which A is isometric. Vn must be spanV . Indeed, it
certainly contains V . On the other hand, every Vi lies in spanVi−1 and hence in
spanV .

When the variety V is a hypersurface we sketch a more elementary proof, which
provides somewhat more information.

Proposition 7.7. Let f ∈ C[z1, . . . , zd] be a homogeneous polynomial, and let
V = V (f). Let A be a linear map on Cd such that ‖Az‖ = ‖z‖ for all z ∈ V . Let
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A = UP be the polar decomposition of A with U unitary and P positive. Then one
of the following possibilities holds:

(1) P = I;
(2) P has precisely one eigenvalue different from 1 and V (f) is a hyperplane;
(3) P has precisely two eigenvalues not equal to 1 (one larger and one smaller),

and in this case V is the union of hyperplanes which all intersect in a
common d−2-dimensional subspace.

Proof. After a unitary change of variables, we may assume that A is a positive
diagonal matrix A = diag(a1, . . . , ad) with ai ≥ ai+1 for 1 ≤ i < d. Now A takes
the role of P in the statement.

We first show that a2 = · · · = ad−1 = 1. For if a1 ≥ a2 > 1, there is a non-zero
solution to f = 0 and z3 = · · · = zd = 0, say v = (z1, z2, 0, . . . , 0). But ‖Av‖ > ‖v‖,
contrary to the hypothesis. Hence a2 ≤ 1. Similarly one shows that ad−1 ≥ 1.
Hence all singular values equal 1 except possibly a1 > 1 and ad < 1.

If A = I then we have (1). When there is precisely one eigenvalue different from
1, A is only isometric on the hyperplane ker(A − I); thus (2) holds. So we may
assume that there are precisely two singular values different from 1, a1 > 1 > ad.
Then f must have the form f = αzm1 + . . . for some α 6= 0. Indeed, otherwise (if z1
appears only in mixed terms) there is non-zero solution v = (1, 0, . . . , 0) to f = 0,
and ‖Av‖ > ‖v‖, contrary to the hypothesis. Now there are two cases:
Case 1: f does not depend on z2, . . . , zd−1. In this case f is essentially a polynomial
in two variables, and can therefore be factored as f =

∏

i(αiz1 + βizd), from which
case (3) follows.
Case 2: f depends on z2, . . . , zd−1. Say f depends on z2. Fix z3, . . . , zd such that
the polynomial f(·, ·, z3, . . . , zd) still depends on z2. For every z2 there is a solution
z1 to the equation f(z1, z2, . . . , zd) = 0. As z2 tends to ∞, the form of f forces
z1 to tend to ∞ as well. But since (z1, . . . , zd) is a solution and A is isometric on
V (f), one has

a21|z1|2 + a2d|zd|2 = |z1|2 + |zd|2.

This cannot hold when zd is fixed and z1 tends to∞. So this case does not occur.

Example 7.8. Let us show that arbitrarily many hyperplanes can appear in case
(3) above. Let a, b > 0 be such that a2 + b2 = 2, and let λ1, . . . , λk ∈ T. Let

V = ℓ1 ∪ · · · ∪ ℓk, where ℓi = C(λi/
√
2, 1/
√
2). Then A = diag(a, b) is isometric on

V .

Example 7.9. Propositions 7.6 and 7.7 depend on the fact that we are working
over C. Indeed, consider the cone V = V (x2 + y2 − z2) over R. With a and b as
in the previous example, one sees that A = diag(a, a, b) is isometric on V , but it is
clearly not an isometry on R3 = span(V ).

7.3. Algebra isomorphisms induced by linear maps. Let I and J be radical
homogeneous ideals. We know that for AI and AJ to be isomorphic there must
be a linear map A : Bd′ → Cd taking Z(J) bijectively onto Z(I) (see Remark 8.4
below). Our goal now is to show the converse, that is, the existence of such a linear
map gives rise to an isomorphism of the algebras via a similarity, which we establish
for a certain class of varieties.
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Let V be a homogeneous variety in Cd and let V = V1 ∪ · · · ∪ Vk be the decom-
position of V into irreducible components. Then we call

S(V ) := span(V1) ∪ · · · ∪ span(Vk)

the minimal subspace span of V . By Proposition 7.6, the linear map A must be
isometric on S(V ). Note that V = S(V ) if and only if V is already the union of
subspaces.

Our goal is to establish that A induces a bounded linear isomorphism Ã between
the Fock spaces FJ and FI given by Ãf = f ◦A∗. This is evidently linear (provided
it is defined) and satisfies

(7.3) Ãνλ = νAλ for λ ∈ Zo(J).

Conversely, Ã is determined by (7.3) because the kernel functions span FJ .
Before describing the class of varieties for which we can establish this very natural

sounding fact, we prove it in several special cases which will form the building blocks
for the general result.

Let L be a Hilbert space. Let Sn denote the symmetric group on n elements.
For σ ∈ Sn, we let πσ be the unitary operator on L⊗n given by

πσ(x1 ⊗ · · ·xn) = xσ(1) ⊗ · · · ⊗ xσ(n).
Then En = 1

n!

∑

σ∈Sn
πσ is the orthogonal projection of L⊗n, the n-fold tensor

product, onto Ln, the symmetric n-fold tensor product. If W ⊆ L is a subspace,
then Wn = EnW

⊗n is the symmetric n-fold tensor product of W . If V is another
subspace, then we write V mWn for the subspace Em+n(V

m ⊗Wn) ⊆ (Cd′

)m+n,
which is the symmetric tensor product of V m and Wn.

If PV is the orthogonal projection of L onto V , then P⊗n
V is the projection of

L⊗n onto V ⊗n. The orthogonal projection onto V n is given by PV n = EnP
⊗n
V ι

where ι is the natural injection of Ln into L⊗n.
We need the following lemma which shows that high tensor powers of disjoint

subspaces are almost orthogonal.

Lemma 7.10. Let Vi for 1 ≤ i ≤ k be subspaces of a Hilbert space L so that
maxi6=j ‖PVi

PVj
‖ = c < 1. When cn ≤ 1/2k, any vectors xi ∈ V n

i satisfy

1

2

k∑

i=1

‖xi‖2 ≤
∥
∥

k∑

i=1

xi
∥
∥
2 ≤ 3

2

k∑

i=1

‖xi‖2.

Proof. Observe that

‖PV n
i
PV n

j
‖ ≤ ‖P⊗n

Vi
P⊗n
Vj
‖ = cn ≤ 1

2k
.

Therefore
∣
∣
∣

∥
∥

k∑

i=1

xi
∥
∥
2 −

k∑

i=1

‖xi‖2
∣
∣
∣ =

∣
∣
∣

∑

i6=j

〈xi, xj〉
∣
∣
∣ ≤

∑

i6=j

|〈xi, xj〉|

≤
∑

i6=j

cn‖xi‖ ‖xj‖ ≤ cn
( k∑

i=1

‖xi‖
)2

≤ cnk
k∑

i=1

‖xi‖2 ≤
1

2

k∑

i=1

‖xi‖2.
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Recall that F(X) is a reproducing kernel Hilbert spaces and that νλ denotes the
kernel function at λ. We introduce a convenient basis for the symmetric Fock space
F(X) of a subspace X . Decompose νλ into its homogeneous parts

νλ =
∑

n≥0

νnλ =
∑

n≥0

λ⊗n.

Thus if f =
∑

n fn is the homogeneous decomposition of f ∈ H2
d ,

νnλ (f) =
〈
fn, λ

⊗n
〉
= fn(λ).

This functional is completely determined by the identity

νnλ (z
n) =

〈
zn, λ⊗n

〉
=

∑

|α|=n

n!

α1! . . . αd!
λαzα.

For any subspace X ,

F(X) = span{νλ : λ ∈ Bd ∩X}
=

∑

n≥0

⊕
span{νnλ : λ ∈ Bd ∩X} =

∑

n≥0

⊕
Xn.

Lemma 7.11. Let V = V1 ∪ · · · ∪ Vk and W = W1 ∪ · · · ∪Wk be unions of linear
subspaces in Cd′

and Cd, respectively, with zero intersections Vi ∩ Vj = {0} and

Wi ∩Wj = {0} for i 6= j. Suppose that A is a linear map from Cd′

to Cd such that

A(Wi) = Vi and A is isometric on each of the Wi’s. Then Ã, defined by Ãνλ = νAλ,
determines a bounded linear map of F(W ) into F(V ).

Proof. For any variety V that is a union of subspaces, V = V1 ∪ · · · ∪ Vk,

F(V ) =

k∑

i=1

F(Vi) =
∑

n≥0

⊕
(

k∑

i=1

V n
i ).

For f ∈ F(W ), Ãf = f ◦A∗. In particular,

Ãνnλ = νnAλ = A⊗snνnλ .

That is, Ã|(Cd′)n = A⊗sn is the symmetric tensor product of n copies of A.

In particular, on any subspace X on which A is isometric, Ã is a unitary map
of F(X) onto F(AX). In particular, Ã carries F(Wi) isometrically onto F(Vi) for
1 ≤ i ≤ k. The only issue is whether this defines a bounded linear map on their
span. Since Ã respects the homogeneous decomposition, it suffices to consider the

restriction of A⊗sn to
∑k

i=1W
n
i . We will write Wn :=

∑k
i=1W

n
i .

Since Wi∩Wj = {0} for i < j, and d′ <∞, the projections onto these subspaces
satisfy ‖PWi

PWj
‖ < 1. Thus we can define

c = max{‖PWi
PWj
‖, ‖PVi

PVj
‖ : 1 ≤ i < j ≤ k} < 1.

We consider two cases. Observe that

‖Ã|Wn‖ ≤ ‖A⊗sn‖ = ‖A‖n.
When cn > 1/2k, n ≤ N := logc−1(2k), and so we obtain

‖Ã|Wn‖ ≤ ‖A‖N provided n ≤ N.
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When cn ≤ 1/2k, we use Lemma 7.10. By hypothesis Wi ∩Wj = {0} for i 6= j.

A typical vector inWn =
∑k

i=1W
n
i can be written as x =

∑k
i=1 xi where xi ∈Wn

i .
It follows from Lemma 7.10 that

1

2

k∑

i=1

‖xi‖2 ≤
∥
∥

k∑

i=1

xi
∥
∥
2 ≤ 3

2

k∑

i=1

‖xi‖2.

Lemma 7.10 also applies to A⊗snx =
∑k

i=1 A
⊗snxi in

∑k
i=1 V

n
i , namely

1

2

k∑

i=1

‖A⊗snxi‖2 ≤
∥
∥

k∑

i=1

A⊗snxi
∥
∥
2 ≤ 3

2

k∑

i=1

‖A⊗snxi‖2.

However A is isometric on each Wi, and thus ‖A⊗snxi‖ = ‖xi‖. We deduce that
for any vector x ∈ Wn, we have

1

3
‖x‖2 ≤ ‖A⊗snx‖2 ≤ 3‖x‖2.

In particular, ‖Ã|Wn‖ ≤
√
3.

Putting the pieces together, we see that

‖Ã‖ ≤ max{‖A‖N ,
√
3}.

Hence Ã is a bounded linear map of F(W ) into F(V ).

If W =W1 ∪ · · · ∪Wk is a union of subspaces and E is a subspace orthogonal to
each of the Wi’s, then we let E ⊕W denote (E ⊕W1) ∪ · · · ∪ (E ⊕Wk).

Lemma 7.12. Suppose that V = V1 ∪ · · · ∪ Vk and W =W1 ∪ · · · ∪Wk are unions
of linear subspaces; and A is a linear map from Cd′

to Cd such that A(Wi) = Vi
and A is isometric on each of the Wi’s. Furthermore suppose that Ã, defined by
Ãνλ = νAλ, determines a bounded linear map of F(W ) into F(V ). If E is a
subspace orthogonal to span(V ) and F is a subspace orthogonal to span(W ) such

that A carries F isometrically onto E, then Ã determines a bounded linear map of
F(F ⊕W ) into F(E ⊕ V ).

Proof. This is straightforward. If F and X are orthogonal subspaces,

F(F ⊕X) =
∑

m,n≥0

⊕
FmXn =

∑

n≥0

⊕F(F )Xn.

If A is isometric on F ⊕ X and AF = E and AX = Y , then it follows that Ã is
an isometry of F(F ⊕X) onto F(E ⊕ Y ) which takes F(F )Xn isometrically onto

F(E)Y n. Moreover if A|F = U is the isometry onto E, the restriction of Ã to

F(F )Xn is Ũ ⊗s A
⊗sn|Xn .

This situation applies to each space F ⊕Wi. Hence Ã carries F(F )∑k
i=1W

n
i

onto F(E)
∑k

i=1 V
n
i via

Ũ ⊗s A
⊗sn|∑k

i=1
Wn

i
.

Since Ũ is isometric, the norm of this map coincides with

‖A⊗sn|∑k
i=1

Wn
i
‖ ≤ ‖Ã|F(W )‖.

It follows that ‖Ã|F(F⊕W )‖ = ‖Ã|F(W )‖.
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Corollary 7.13. Let V = V1 ∪ · · · ∪ Vk and W = W1 ∪ · · · ∪Wk be homogeneous
varieties decomposed into irreducible components. Suppose that A is a linear map
from Cd′

to Cd such that A(Wi) = Vi and A is isometric on each of the Wi’s.

If there is a common subspace E so that S(Vi) ∩ S(Vj) = E for i 6= j, then Ã
determines a bounded linear map of F(W ) into F(V ).

Proof. By Proposition 7.6, Amaps the minimal subspace span S(Wi) isometrically
onto S(Vi) for 1 ≤ i ≤ k. In particular, F := S(Wi)∩S(Wj) is independent of i 6= j,
and is mapped isometrically onto E. Let V ′

i = S(Vi) ⊖ E and W ′
i = S(Wi) ⊖ F .

As these are disjoint subspaces, Lemma 7.11 implies that Ã is a bounded map of
F(W ′

1 ∪ · · · ∪W ′
k) into F(V ′

1 ∪ · · · ∪ V ′
k). Then by Lemma 7.12, this extends to a

bounded map of F(S(W )) into F(S(V )). The restriction of this map to F(W ) is
a bounded map into F(V ).

A third construction is obtained by using the ideas in Proposition 7.7.

Lemma 7.14. Let V = V1 ∪ · · · ∪ Vk and W = W1 ∪ · · · ∪Wk be homogeneous
varieties decomposed into irreducible components. Suppose that A is a linear map
from Cd′

to Cd such that A(Wi) = Vi and A is isometric on each of the Wi’s. If

dim
(
span(W )/S(W1)

)
≤ 1, then Ã determines a bounded linear map of F(W ) into

F(V ).

Proof. If S(W1) = span(W ), then A is an isometry of span(W ) onto span(V ). In

this case, Ã is an isometry of F(W ) onto F(V ). So we may suppose that S(W1) is
codimension 1 in span(W ).

As in the proof of Proposition 7.7, the restriction of A to span(W ) has singular
values a1 ≥ 1 = a2 = · · · = ap−1 ≥ ap. And A will be isometric on span(W ) as
in cases (1) and (2) of Proposition 7.7, unless a1 > 1 > ap. So we assume that we
are in this situation. Let f1, . . . , fp be the orthonormal basis for span(W ) so that
there is a corresponding orthonormal basis e1, . . . , ep for span(V ) with Afj = ajej.

There is a unique α ∈ (0, π/2) so that

a21 cos
2 α+ a2p sin

2 α = 1.

The maximal subspaces on which A is isometric have the form

Wθ = span{cosαf1 + eiθ sinαfp, f2, . . . fp−1} for θ ∈ [0, 2π).

Each irreducible component Wi is contained in some Wθi . By Corollary 7.13, Ã is
bounded on F(Wθ1 ∪· · ·∪Wθk). Hence it restricts to a bounded map of F(W ) into
F(V ).

Corollary 7.15. Let V and W be homogeneous varieties in C3. If there is a linear
map A on C3 such that A(W ) = V and A is isometric on the irreducible components

of W , then Ã is a bounded linear map of F(W ) into F(V ).

Proof. Let W = W1 ∪ · · · ∪Wk. If dimS(Wi) > 1 for any i, then Lemma 7.14
applies. Otherwise eachWi is a subspace of dimension one. In this case,Wi∩Wj =
{0} when i 6= j. Hence Lemma 7.11 applies.

We are now in a position to state the class of varieties to which our techniques
apply. We introduce a definition for the purposes of easier exposition. Call a variety
V tractable ifW = S(V ) is tractable, meaning that it can be constructed as follows:
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(1) A finite union W of subspaces Wi with zero intersection, Wi ∩Wj = {0}
for i 6= j, is tractable.

(2) A finite union W of subspaces Wi so that dim
(
spanW/Wi0

)
= 1 for some

i0 is tractable.
(3) If W is tractable, and E is a subspace orthogonal to spanW , then E ⊕W

is tractable.
(4) If Wi for 1 ≤ i ≤ k are tractable unions of subspaces and span(Wi) ∩

span(Wj) = {0} for i 6= j, then W1 ∪ · · · ∪Wk is tractable.

The crucial technical result we need is the following:

Theorem 7.16. Let I and J be radical homogeneous ideals in C[z1, . . . , zd] and
C[z1, . . . , zd′ ], respectively. Assume that V (J) is tractable. If there is a linear map

A : Cd′ → Cd that maps Z(J) bijectively onto Z(I), then the map Ã : FJ → FI

given by (7.3) :

Ãνλ = νAλ for λ ∈ Zo(J)

is a bounded linear map of FJ into FI .

Proof. By Lemma 7.5, A preserves the norm on V (J). By Proposition 7.6, A

is also isometric on the minimal subspace span S(V (J)). If we can show that Ã
is a bounded map of F(S(V (J))) into F(S(V (I))), then by restriction, it maps
F(V (J)) into F(V (I)). So the theorem reduces to the case in which the varieties
are unions of subspaces.

Lemma 7.11 shows that the result holds in case (1) of a union of subspaces with
zero pairwise intersection. Lemma 7.14 shows that the result holds in case (2) in
which one subspace Wi0 has codimension one in spanW . And Lemma 7.12 shows
that if the result holds for W , then it holds for E ⊕W when E is orthogonal to
spanW . Thus it remains to show that if Wi for 1 ≤ i ≤ k are tractable unions
of subspaces and span(Wi) ∩ span(Wj) = {0} for i 6= j, then the result holds for
W1 ∪ · · · ∪Wk. The proof is a refinement of the proof of Lemma 7.11.

The hypotheses guarantee that Ã is a bounded linear map of F(Wi) into F(Vi)
for 1 ≤ i ≤ k. As in the proof of Lemma 7.11, it suffices to estimate ‖Ã|Wn‖ for
each n ≥ 0. Again we let

c = max{‖Pspan(Wi)Pspan(Wj)‖, ‖Pspan(Vi)Pspan(Vj)‖ : 1 ≤ i < j ≤ k} < 1.

The proof that ‖Ã|Wn‖ ≤ ‖A⊗sn‖ ≤ ‖A‖N for n ≤ N := logc−1(2k) remains the

same. So we consider ‖Ã|Wn‖ for n > N .
Following the proof of Lemma 7.11 again, we split a typical vector x ∈ Wn as

x =
∑n

i=1 xi with xi ∈Wn
i ⊂ span(Wi)

n. As before, Lemma 7.10 yields

1

2

k∑

i=1

‖xi‖2 ≤
∥
∥

k∑

i=1

xi
∥
∥
2 ≤ 3

2

k∑

i=1

‖xi‖2

and

1

2

k∑

i=1

‖A⊗snxi‖2 ≤
∥
∥

k∑

i=1

A⊗snxi
∥
∥
2 ≤ 3

2

k∑

i=1

‖A⊗snxi‖2.
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Let M = max
{
‖Ã|F(Wi)‖ : 1 ≤ i ≤ k

}
. Then

∥
∥

k∑

i=1

A⊗snxi
∥
∥
2 ≤ 3

2

k∑

i=1

‖A⊗snxi‖2

≤ 3

2
M2

k∑

i=1

‖xi‖2 ≤ 3M2
∥
∥

k∑

i=1

xi
∥
∥
2
.

Hence ‖Ã‖ ≤ max{‖A‖N ,
√
3M} on F(W ). Thus Ã is a bounded map of F(W )

into F(V ).

To recapitulate, we list a number of examples of tractable varieties:

(1) Any irreducible variety V because S(V ) is a subspace.
(2) V = V1 ∪ V2, the union of two irreducible varieties, because there is only

one S(Vi) ∩ S(Vj) for i 6= j.
(3) V = V1 ∪ · · · ∪ Vk where Vi are irreducible and S(Vi) ∩ S(Vj) = E, a fixed

subspace, for all i 6= j.
(4) V = V1 ∪ · · · ∪ Vk where dimS(V1) ≥ d− 1.
(5) Any variety in C3.

As an immediate consequence, we obtain the following statement about isomor-
phism of operator algebras of the form AI when V (I) is tractable. We conjecture
that this result is valid for all homogeneous varieties.

Theorem 7.17. Let I and J be radical homogeneous ideals in C[z1, . . . , zd] and

C[z1, . . . , zd′ ], respectively, such that V (J) is tractable. Let A : Cd′ → Cd and

B : Cd → Cd′

be linear maps such that AB|Z(I) = idZ(I) and BA|Z(J) = idZ(J).

Let Ã be the map given by Theorem 7.16. Then Ã is invertible, and the map

ϕ : f → f ◦A
is a completely bounded isomorphism from AI onto AJ , and it is given by conjuga-
tion with Ã∗:

ϕ(f) = Ã∗f(Ã−1)∗.

Proof. By Theorem 7.16, Ã and B̃ are bounded. By checking the products on
the kernel functions, it follows easily that B̃ = Ã−1. So these maps are linear
isomorphisms.

Let f ∈ AI and λ ∈ Z(J). Denote by Mf the operator of multiplication by f on
FI . Then

Ã−1M∗
f Ãνλ = Ã−1M∗

f νAλ = Ã−1f ◦A(λ)νAλ = f ◦A(λ)νλ.

Thus (Ã−1M∗
f Ã)

∗ = Ã∗Mf (Ã
−1)∗ is the operator on FJ given by multiplication

by f ◦A.

Remark 7.18. The various lemmas established above only require that A be length
preserving on V . It need not be invertible on span(V ) in order to show that the map

Ã is bounded. However, if A is singular on span(V ), then Ã is not injective because
the homogeneous part of order one, M1 := span{ν1λ : λ ∈ Zo(V )} ≃ span(V ) and

Ã|M1
≃ A.

For example, if V = Ce1 ∪Ce2 ∪Ce3 and A =

[
1 0 1/

√
2

0 1 1/
√
2

0 0 0

]

, then one can see that
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A is isometric on V and maps C3 into span{e1, e2}, taking V to the union of three

lines in 2-space. The map Ã is bounded, and satisfies Ãνλ = νAλ for λ ∈ Zo(V ).
But for the reasons mentioned in the previous paragraph, it is not injective.

On the other hand, if A is bounded below by δ > 0 on spanV , one can argue in
each of the various lemmas that A⊗sn is bounded below by δn for n ≤ N and use
the original arguments for upper and lower bounds on the higher degree terms. In
this way, one sees directly that Ã is an isomorphism.

Although the following example does not disprove Theorem 7.16 for arbitrary
complex algebraic varieties, it does illustrate some of the difficulties one must over-
come.

Example 7.19. In this example we identify C2 with R4. Let

V = {(w, x, y, z) : w2 + x2 = y2 + z2}.
Then V is a real algebraic variety in R4, but is not a complex algebraic variety in
C2 because it has odd real dimension. Note that

V =
⋃

θ∈T

{

λ

(
1√
2
,
θ√
2

)

: λ ∈ C

}

.

Let A =
(
a 0
0 b

)
, where a > 1 > b > 0 satisfy a2 + b2 = 2. Then A is an invertible

linear map that preserves the lengths of vectors in V . Put V ′ = AV . We will now
show that the densely defined operator given by Ãνλ = νAλ

does not extend to
a bounded map taking span{νλ : λ ∈ V ∩ B2} into span{νλ : λ ∈ V ′ ∩ B2}. Let
α, β > 0, and consider

n∑

j=1

(αe1 + θjβe2)
n ∈ (C2)n,

where θj = exp(2πin j). We find

n∑

j=1

(αe1 + θjβe2)
n =

n∑

j=1

n∑

k=0

(αe1)
k(θjβe2)

n−k

=

n∑

k=0

αkβn−k(e1)
k
( n∑

j=1

θn−k
j (e2)

n−k
)

= βnnen2 + αnnen1 ,

because
∑n

j=1 exp(
2πi
n (n− k)j) is equal to 0 for 1 ≤ k ≤ n− 1, and equal to n for

k = 0 and n. Thus,

‖
n∑

j=1

(αe1 + θjβe2)
n‖2 = (α2n + β2n)n2.

Comparing this norm for (α, β) = (a, b) and (α, β) = (1, 1) we find that the densely

defined Ã is unbounded.

8. Classification of the algebras

We now have enough machinery to give a geometric classification of the operator
algebras AI . In the case of algebraic isomorphism, we require the varieties to be
tractable.
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First, let us say a few words about the purely algebraic problem. When I is
a radical ideal in C[z], then C[z]/I can be identified with the ring of polynomial
functions on V (I), which is nothing but the ring of restrictions of polynomials to
V (I). This algebra is also the universal unital commutative algebra generated by
a tuple satisfying the relations in I. If J is another radical ideal, then every ho-
momorphism from C[z]/I to C[z]/J gives rise to a regular map (i.e., a polynomial
map) V (J)→ V (I), and the two algebras are isomorphic if and only if the varieties
are isomorphic (see [36, p. 29]). Consequently, a grading preserving isomorphism
is implemented by a linear change of variables. Therefore, when I and J are homo-
geneous, C[z]/I and C[z]/J are isomorphic as graded algebras if and only if there is
a linear map that takes V (J) bijectively onto V (I). We will see that the situation
for the algebras AI is both similar and different.

8.1. Classifying the algebras AI up to isometric isomorphism. We provide
a concrete criterion for when two algebrasAI and AJ are (completely) isometrically
isomorphic.

Remark 8.1 (Adding variables). Let I be an ideal in C[z1, . . . , zd], and let d′ > d.
We may want to consider I as an ideal in C[z1, . . . , zd′ ]. Of course, it isn’t. But
note that if we define I ′ = 〈I, xd+1, . . . , xd′〉, then I ′ is an ideal in C[z1, . . . , zd′ ] and
V (I ′) is isomorphic to V (I). Furthermore, C[V (I)] ∼= C[V (I ′)] and AI is completely
isometrically isomorphic to AI′ . Therefore, when studying the situation where I
is an ideal in C[z1, . . . , zd] and J is an ideal in C[z1, . . . , zd′ ], we may assume that
d = d′. We do not always make this assumption, but the next theorem is much
more elegant when stated for the case d = d′.

Theorem 8.2. Let I and J be two homogeneous radical ideals in C[z1, . . . , zd]. AI

and AJ are isometrically isomorphic if and only if they are completely isometrically
isomorphic. This happens if and only if there is a unitary U on Cd taking V (J)
onto V (I).

Proof. By Proposition 3.1 and Theorem 4.8, AI and AJ are (completely) isomet-
rically isomorphic if and only if there is a unitary U such that

J = {f ◦ U−1 : f ∈ I}.
Since I and J are radical, it follows from Hilbert’s Nullstellensatz that this holds
if and only if U(V (J)) = V (I).

8.2. Classifying the algebras AI up to isomorphism.

Proposition 8.3. Let I and J be two homogeneous radical ideals of polynomials
and assume that there exists an isomorphism ϕ : AI → AJ . Then there exists a
vacuum preserving isomorphism from AI to AJ .

Proof. The proof is identical to the proof of Proposition 4.7, where one uses Propo-
sition 7.1 instead of Lemma 4.4.

Remark 8.4. The same trick used to prove Propositions 4.7 and 8.3 can be used
to show that, if there is biholomorphism between Zo(I) and Zo(J), then there is a
biholomorphism between them that fixes 0. This may seem like an obvious result,
but consider the following problem: given that Z(I) and Z(J) are homeomorphic,
prove that there exists a homeomorphism between them that fixes 0.
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Theorem 8.5. Let I and J be homogeneous ideals in C[z1, . . . , zd] and C[z1, . . . , zd′ ],
respectively, such that V (J) is tractable. The algebras AI and AJ are isomorphic

if and only if there exist two linear maps A : Cd → Cd′

and B : Cd′ → Cd such that
A ◦B|Z(J) and B ◦A|Z(I) are identity maps.

Proof. If AI and AJ are isomorphic, then by Proposition 8.3 there exists also a
vacuum preserving isomorphism between them. By Proposition 7.1 and Theorem
7.4, there exist linear maps A,B as asserted.

If, conversely, there exist linear maps A,B as in the statement of the theorem,
then Theorem 7.17 applies to show that there is an isomorphism (in fact, a simi-
larity) from AI onto AJ .

Example 8.6. Consider the simplest case when d = d′ = 2. Then the maximal
ideal spaces Z(I) and Z(J) are either 0, B2 or finitely many lines. If Z(I) and Z(J)
are one line, then AI and AJ are completely isometrically isomorphic. If Z(I) and
Z(J) consist of two lines, then AI and AJ are isomorphic but if the angle between
the two lines is not the same then they will not be isometrically isomorphic. If
Z(I) and Z(J) consist of three or more lines, then C[z]/I and C[z]/J might not
be isomorphic, because the action of a linear map on C2 is determined already by
its action on two lines. The coordinate rings C[z]/I and C[z]/J are isomorphic
precisely when there exists a linear map A mapping V (J) onto V (I). When this
happens, there exist cases when AI and AJ are isomorphic, and there exist cases
when they are not— depending on whether or not this A maps Z(J) onto Z(I).

The geometric rigidity of the varieties implies that the operator algebras also
have a rigid structure.

Theorem 8.7. Let I and J be two radical homogeneous ideals in C[z1, . . . , zd], and
assume that V (I) is either irreducible or a nonlinear hypersurface. If AI and AJ

are isomorphic, then AI and AJ are unitarily equivalent. If ϕ : AI → AJ is a
vacuum preserving isomorphism, then it is unitarily implemented.

Proof. This follows from Theorems 8.5, 8.2 and Proposition 7.6.

9. Automorphisms of Ad and induced isomorphisms

9.1. Automorphisms of Ad. By Proposition 7.1, every (algebraic) automorphism
of Ad arises as a composition operator f 7→ f ◦ ϕ, where ϕ ∈ Aut(Bd). Conversely,
it is known that every conformal automorphism of the ball yields a completely iso-
metric isomorphism of Ad. As we do not have a convenient reference, we briefly
sketch the ideas. Voiculescu [41] constructed unitaries on full Fock space which
implement ∗-automorphisms of the Cuntz-Toeplitz algebra and fix the noncommu-
tative disc algebra Ad. Davidson and Pitts [19] showed that the action on the
character space was the action of the full group Aut(Bd). It is clear that these
automorphisms preserve the commutator ideal, and thus the unitaries preserve the
range of the commutator ideal, (H2

d)
⊥. Thus they also fix H2

d . Now Ad is com-
pletely isometrically isomorphic to the quotient of Ad by the commutator ideal, and
this is completely isometric to the compression to H2

d by [18]. So the compressions
of the Voiculescu unitaries implement the action of Aut(Bd) on Ad.

Theorem 9.1. Every ϕ ∈ Aut(Bd) gives rise to a completely isometric automor-
phism of Ad.
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In fact we can say more than this, specifically that the Voiculescu unitaries, when
restricted to symmetric Fock space, are just composition with the conformal map
followed by an appropriate multiplier.

Theorem 9.2. Let ϕ ∈ Aut(Bd). Then there is a completely isometric automor-
phism Θϕ of Ad given by Θϕ(f) = f ◦ ϕ = UfU∗, where the unitary U : H2

d → H2
d

is

Uf =
(
1− |ϕ−1(0)|2

)1/2
νϕ−1(0)(f ◦ ϕ).

Proof. We begin with Voiculescu’s construction of automorphisms of the Cuntz
algebra [41]. Consider the Lie group U(1, d) consisting of (d+1)× (d+1) matrices

X satisfying X∗JX = J , where J =
[−1 0

0 Id

]
. When X is of the form X =

[
x0 η∗

1

η2 X1

]

it must have the following relations:

(1) ‖η1‖2 = ‖η2‖2 = |x0|2 − 1
(2) X1η1 = x0η2 and X∗

1η2 = x0η1
(3) X∗

1X1 = Id + η1η
∗
1 and X1X

∗
1 = Id + η2η

∗
2 .

Furthermore, if X ∈ U(1, d) then JXTJ ∈ U(1, d) since

(JXTJ)∗J(JXTJ) = J(X∗)T JXTJ = (XJX∗J)T J = Id+1J = J.

It follows from Voiculescu’s work that the map U(1, d)→ Aut(Bd) given by

X 7→ ϕX(z) :=
X1z + η2
x0 + 〈z, η1〉

is a surjective homomorphism. Thus, fix X ∈ U(1, d) such that ϕ = ϕJXT J which
makes

ϕX = ϕ−1

JX∗J
= ϕ−1

JXT J
= ϕ−1.

There is a unique automorphism of Ad defined by

Θϕ(Lζ) = (x0I − Lη2
)−1(LX1ζ − 〈ζ, η1〉I),

where we use the convention that Lζ =
∑n

i=1 ζiLi for ζ ∈ Cd. This extends to an
automorphism of the Cuntz-Toeplitz algebra. As well, Voiculescu defined a unitary
U ∈ U(F(Cd)) by

U(AΩ) = Θϕ(A)(x0I − Lη2
)−1Ω, for all A ∈ Ld,

establishing that the automorphism Θϕ(A) = UAU∗ is unitarily implemented. As
was discussed in the beginning of this section, H2

d is an invariant subspace of U and
so Θϕ also yields an automorphism of Ad which is implemented by the restriction
of U . We will show that U has the desired form.

For w ∈ F
+
d , |w| = m, we have

U(zw) = U
( 1

m!

∑

σ∈Sm

ξσ(w)

)
= PH2

d
U
(( 1

m!

∑

σ∈Sm

Lσ(w)

)
Ω
)

= PH2

d
Θϕ(Mzw)PH2

d
(x0I − Lη2

)−1Ω.

As noted above, becauseH2
d must reduce U , we obtain PH2

d
Θϕ(A) = PH2

d
Θϕ(A)PH2

d
.

Suppose that ζ ∈ Cd. Then

PH2

d
(Lζ)(z) =

d∑

i=1

ζizi(z) =

d∑

i=1

ζi〈z, ei〉 = 〈z, ζ〉.
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Now with x−1
0 η2 = ϕX(0) = ϕ−1(0), we have that

PH2

d
(x0I − Lη2

)−1Ω =
1

x0 − 〈z, η2〉
= x−1

0 νϕ−1(0).

Note that if |θ| = 1, then θX implements ϕX as well. So we may assume that
x0 ≥ 0. As well, X ∈ U(1, d) implies that |x0|2 − |η2|2 = 1. Hence,

|ϕ−1(0)|2 = |ϕX(0)|2 =
|η2|2
|x0|2

=
|x0|2 − 1

|x0|2
.

Thus x0 = (1 − |ϕ−1(0)|2)−1/2.
Next we compute

PH2

d
Θϕ(Mzw) = PH2

d
Θϕ

( 1

m!

∑

σ∈Sm

Lσ(w)

)

=
1

m!

∑

σ∈Sm

m∏

j=1

PH2

d
Θϕ(Lσ(w)j )

=

m∏

j=1

PH2

d
Θϕ(Lwj

)

=

m∏

j=1

PH2

d

LX1ewj
− 〈ewj

, η1〉I
x0I − Lη2

.

Observe that

JXTJ =

[
x0 −η2∗
−η1 XT

1

]

.

Consequently,

PH2

d
Θϕ(Mzw)(z) =

m∏

j=1

PH2

d
LX1ewj

(z)− 〈ewj
, η1〉

x0 − PH2

d
Lη2

(z)

=

m∏

j=1

〈z,X1ewj
〉 − 〈η1, ewj

〉
x0 − 〈z, η2〉

=

m∏

j=1

〈XT
1 z, ewj

〉+ 〈−η1, ewj
〉

x0 + 〈z,−η2〉

=

m∏

j=1

zwj

(
XT

1 z +−η1
x0 + 〈z,−η2〉

)

=

m∏

j=1

zwj
(ϕJXT J(z))

=

m∏

j=1

zwj
(ϕ(z)) = (zw ◦ ϕ)(z).

Combining these equations, we get that

U(zw) =
( m∏

j=1

zwj
◦ ϕ

)

(1− |ϕ−1(0)|2)1/2νϕ−1(0)

= (zw ◦ ϕ)(1− |ϕ−1(0)|2)1/2νϕ−1(0).

Extending this to the span, we have that

Uf = (1− |ϕ−1(0)|2)1/2νϕ−1(0)(f ◦ ϕ)
for all f ∈ Ad.
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Remark 9.3. This also gives a very nice description for U∗ on kernel functions.
Letting λ0 = ϕ−1(0) then the previous theorem gives us

Uf =
√

1− ‖λ0‖2 νλ0
(f ◦ ϕ) and UMfU

∗ =Mf◦ϕ.

Then for λ ∈ Bd we have

M∗
f (U

∗νλ) = U∗M∗
f◦ϕνλ = U∗(f ◦ ϕ)(λ)νλ = (f ◦ ϕ)(λ)(U∗νλ).

Hence, U∗νλ = cλνϕ(λ) ∈ Cνϕ(λ), the eigenspace of M∗
f for eigenvalue (f ◦ ϕ)(λ).

Now compute

cλf(ϕ(λ)) = 〈f, cλνϕ(λ)〉 = 〈f, U∗νλ〉
= 〈Uf, νλ〉 =

√

1− ‖λ0‖2〈(f ◦ ϕ)νλ0
, νλ〉

=
√

1− ‖λ0‖2
f(ϕ(λ))

1− 〈λ, λ0〉
.

Therefore,

U∗νλ =

√

1− ‖λ0‖2
1− 〈λ0, λ〉

νϕ(λ).

We wish to describe how ϕ ∈ Aut(Bd) gives rise to an isomorphism ϕ : AI → AJ ,
when I and J are radical ideals in C[z].

Proposition 9.4. Let I and J be homogeneous radical ideals in C[z]. Let ϕ ∈
Aut(Bd) map Z(J) onto Z(I). Then the automorphism of Ad given by ϕ(f) = f ◦ϕ
maps I onto J . Consequently, ϕ induces an isometric isomorphism ϕ′ : AI → AJ

given by ϕ′(f) = f ◦ ϕ.

Proof. It suffices to prove the first assertion. In fact, it suffices to prove that ϕ
maps I into J . Let f ∈ I. Then f ◦ ϕ vanishes on Z(J). By Corollary 6.13,
f ◦ ϕ ∈ J .

Remark 9.5. As we have seen in the discussion following Theorem 8.5, not every
algebraic isomorphism between two algebrasAI andAJ is isometric. Thus not every
such isomorphism is induced from an automorphism of Ad. This leaves us with the
question: is every isometric isomorphism between two such algebras induced from
an automorphism of Ad? We answer this in a very special case.

9.2. The automorphism group of a union of subspaces. Let I be a radical
ideal such that V = V (I) is a union of subspaces. We will compute the group
of automorphisms of Z := Z(I). By an “automorphism” of Z we mean a map
ϕ : Bd → Cd, analytic in Bd, such that there exists ψ : Bd → Cd, analytic in Bd,
for which ϕ ◦ ψ|Z = ψ ◦ ϕ|Z = id. The collection of all such maps is denoted by
Aut(Z).

Write V = V1 ∪ . . . ∪ Vk. Setting Zi = Vi ∩ Bd, we have also Z = Z1 ∪ . . . ∪ Zk.
Finally, define Z0 = ∩ki=1Zi.

For a ∈ Bd, we define ϕa as in (4.2).

Lemma 9.6. Suppose that a ∈ Z0 and A is a linear map which takes Z onto itself.
The map ϕ = ϕa◦A yields an automorphism of Z. Conversely, every automorphism
of Z arises in this way.
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Proof. Let a ∈ Z0. We must show that ϕa preserves Z. Let z ∈ Zi. Write
z = x+ y, where x, y ∈ Zi, x ∈ span{a} and y ⊥ a. Then

ϕa(z) = (1 − 〈x, a〉)−1(a− x) − sa(1− 〈x, a〉)−1y ∈ Zi.

For the other direction, let ϕ ∈ Aut(Z), and let a = ϕ(0). Note that ϕ
must permute the subspaces Zi, and thus preserves their intersection Z0. Hence
ϕ(0) = a ∈ Z0. It was established above that ϕa preserves Z. Thus ϕa ◦ ϕ is an
automorphism of Z which takes 0 to 0. By Theorem 7.4, ϕa ◦ ϕ = A, where A is a
linear map.

Corollary 9.7. Suppose that V is a tractable union of subspaces, and I = I(V ).
Then Aut(AI) is isomorphic to Aut(Z(I)), and all of these maps are implemented
by similarities.

The subgroup of (completely) isometric automorphisms is identified with those
ϕ ∈ Aut(Z(I)) of the form ϕ = ϕa ◦ U where U is a unitary map which fixes
Z(I). These are precisely the quotients of θ ∈ Aut(Bd) which fix Z(I), and they
are unitarily implemented.

Proof. Lemma 9.6 identifies the elements of Aut(Z(I)). The automorphisms ϕa for
a ∈ Z0 are automorphisms of Bd, and thus are induced by the completely isometric
automorphism of Ad. In particular, they are unitarily implemented on H2

d and fix
the ideal of functions which vanish on Zo(I). Thus the orthogonal complement,
FI , is also fixed by this unitary. So the automorphism ϕa is unitarily implemented.

The linear map A fixes Z(I) and is necessarily isometric on V . By Theorem 7.17,

Ã implements the automorphism via a similarity. When U is unitary, Ũ is unitary
and the automorphism is unitarily implemented, and thus is completely isometric.
Conversely, by Theorem 8.2, isometric automorphisms are unitarily implemented
by Ũ for some unitary U which fixes Z(I). These are evidently induced by the
corresponding automorphism of Aut(Ad).

Example 9.8. Consider the variety V = V1 ∪ V2 ⊂ C3 given by V1 = span{e1, e2}
and V2 = span{(e2 + e3)/

√
2}. If U = [ u11 u12

u21 u22
] is any 2 × 2 unitary matrix, and

β ∈ [0, 2π), the map

A =





u11 u12 −u12
u21 u22 eiβ − u22
0 0 eiβ





is an isometric map of V onto itself. It is easy to see that these are the only
possibilities. Since spanV = C3, this does not coincide with any unitary map
except when it is unitary, which occurs only for the subgroup of the form

A =





eiα 0 0
0 eiβ 0
0 0 eiβ



 , for α, β ∈ [0, 2π).

Since V1 has codimension one, V is tractable. So Corollary 9.7 applies. Z0 = {0}.
So Aut(Z(I)) coincides with the linear maps described above, and the isometric
subgroup corresponds to the unitaries, and so is isomorphic to T2.

10. Toeplitz algebras and C*-envelopes

In this section we consider the Toeplitz algebra of X , defined as TX = C∗(AX).
We begin with some simple consequences of Section 4.
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Theorem 10.1. Let X and Y be subproduct systems.

(1) Every vacuum preserving isometric isomorphism ϕ : AX → AY extends to
a ∗-isomorphism ϕ̃ : TX → TY .

(2) If AX and AY are isometrically isomorphic, then TX and TY are ∗-isomor-
phic.

Proof. Assertion (1) follows from Theorem 4.1. Assertion (2) then follows from
Proposition 4.7.

Example 3.4 shows that the converse of assertion (2) above is false. We do not
know whether an isomorphism that does not preserve the vacuum can be extended
to a ∗-isomorphism of the C*-algebras. In [40], Viselter studied (in greater gener-
ality) the problem of when a completely contractive representation of AX can be
extended to a ∗-representation of TX , but his results do not apply directly.

10.1. The C*-envelope of AX , X commutative. In this subsection all our sub-
product systems will be commutative. Thus, below, X and Y will always denote
commutative subproduct systems and the algebras AX ,AY will always be commu-
tative algebras. Recall that we denote OX = TX/K(FX), where K(FX) denotes
the compact operators on FX .

A variant of the following lemma appears as [13, Proposition 6.4.6], where the
result is proven for arbitrary (not necessarily homogeneous) submodules of H2

d .
The situation in [13] is slightly different, but after a simple modification the proof
carries over to our case.

Lemma 10.2. If dimX(1) > 1 then the quotient map q : TX → OX is not a
complete isometry.

By [4, Theorem 2.1.1], the identity representation is a boundary representation
if and only if the quotient map q : TX → OX is not a complete isometry. Thus the
above lemma gives immediately:

Corollary 10.3. The identity representation of TX is a boundary representation
for AX .

Since the Silov boundary ideal is contained in the kernel of any boundary repre-
sentation, we find that the Silov ideal of AX in TX is {0}. Thus we obtain:

Theorem 10.4. The C*-envelope of AX is TX .

This allows us to prove that all the completely isometric isomorphisms in the
commutative setting are unitarily implemented:

Theorem 10.5. Let ϕ : AX → AY be a completely isometric isomorphism. Then
there exists a unitary U : FX → FY such that

ϕ(T ) = UTU∗ , T ∈ AX .

Proof. By Arveson’s “Implementation Theorem” [4, Theorem 0.3], ϕ is imple-
mented by a ∗-isomorphism π : TX → TY . Since K(FX) ⊆ TX (see [38, Proposition
8.1]), π = π0 ⊕ π1, where π0 is a multiple of representations unitarily equivalent
to the identity representation and π1 annihilates the compacts. Since K(FY ) ⊆ TY
and π is an isomorphism, π is irreducible and therefore has just one summand.
Thus either π is unitarily implemented, or π annihilates the compacts. But if π an-
nihilates the compacts it factors through OX , that is, π = π̃ ◦q where π̃ : OX → TY
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is a ∗-homomorphism and q : TX → OX is the quotient map. Thus ϕ = π̃ ◦ q|AX
.

By Lemma 10.2, this contradicts the assumption that ϕ is completely isometric.

The above result is interesting for the non vacuum-preserving case, as Theorem
4.1 shows that every vacuum preserving isometric isomorphism is unitarily imple-
mented (even for X not commutative).

Having brought C*-algebras into our discussion about universal operator alge-
bras, one might wonder whether our methods give any handle on the universal
unital C*-algebra generated by a row contraction subject to homogeneous polyno-
mial relations. Unfortunately, these universal C*-algebras are out of our reach. All
we can say is that TX is not, in general, the universal unital C*-algebra generated
by a row contraction subject to the relations in IX . One can see this by considering
the case d = 1 and no relations. Then TX is the ordinary Toeplitz algebra, which
is not the universal unital C*-algebra generated by a contraction.

10.2. The Toeplitz algebras and topology. It is a fact that, for any subproduct
system X , K(FX) ⊆ TX (see [38, Proposition 8.1]). Thus, there is always an exact
sequence

0 −→ K(FX) −→ TX −→ OX −→ 0.

Arveson conjectured that, for any homogeneous ideal such that I ⊆ C[z], the al-
gebra OXI

is commutative [6]. This conjecture is still open; the most up-to-date
results can be found in [22]. There are several significant consequences of this
conjecture treated in the literature (see, e.g., [7]). We will see below that another
consequence is a connection between the ∗-algebraic structure of the Toeplitz al-
gebras TX and the topology of the variety V (IX). The “topological classification”
results in this subsection should be compared with the “geometrical classification”
results of Section 8.

Given a homogeneous ideal I ⊆ C[z], let us say that Arveson’s conjecture holds
for I, if OXI

is commutative. Note that if Arveson’s conjecture holds for I and
X = XI , then the above exact sequence becomes

(10.1) 0 −→ K(FX) −→ TX −→ C(V (I) ∩ ∂Bd) −→ 0.

Proposition 10.6. Let I, J ⊆ C[z] be two homogeneous ideals for which Arveson’s
conjecture holds. Let X = XI and Y = XJ . If TX is ∗-isomorphic to TY , then
V (I)∩∂Bd is homeomorphic to V (J)∩∂Bd, and consequently V (I) is homeomorphic
to V (J).

Proof. In the proof of Theorem 10.5 it was observed that a ∗-isomorphism from
TX onto TY is unitarily implemented, and therefore sends the compacts onto the
compacts. Therefore, given that the exact sequence (10.1) holds for X and for Y ,
every such ∗-isomorphism induces a ∗-isomorphism between C(V (I) ∩ ∂Bd) and
C(V (J) ∩ ∂Bd). The assertion follows.

Thus, the topology of V (I) is an invariant of the algebras TX . Examples 3.3 and
3.4 show that it is not a complete invariant (in both examples V (I) = {0}, but TX
is eitherM4(C) orM5(C)). This is not surprising, as the ideals arising in Examples
3.3 and 3.4 are not radical. Does the topology of V (I) determine the structure of
the associated algebra TX when I is radical? All we can say right now is that the
answer is yes in dimension d = 2 (when there is, in fact, not too much topology
going on). It is interesting to compare the following proposition with the discussion
in Example 8.6.
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Proposition 10.7. Let I, J ⊆ C[x, y] be two radical homogeneous ideals. Let
X = XI and Y = XJ . Then V (I) is homeomorphic to V (J) if and only if TX is
∗-isomorphic to TY .

Proof. In dimension d = 2, Arveson’s conjecture holds for all ideals [25, Theorem
3.1] (see also [22, 37]). For a nontrivial ideal I ⊂ C[x, y], V (I) is equal to a union
of lines ∪ki=1ℓi. If Ii is the radical ideal corresponding to the line ℓi, then we have
I = ∩ki=1Ii. It is easy to see that the Toeplitz algebra corresponding to Ii is equal to
the ordinary Toeplitz algebra T , that is, the C*-algebra generated by the unilateral
shift. By [25, Proposition 5.2],

TX =
(

T ⊕ · · · ⊕ T
︸ ︷︷ ︸

k times

)

+K ,

and this C*-algebra is completely determined by the number k, which encodes also
the topology of V (I).

Similar assertions can be made in higher dimensions about unions of subspaces
intersecting at {0}, assuming that Arveson’s conjecture holds.

11. The classification of the wot-closures of the algebras AX

Let LX be the wot-closure of AX in B(FX). In the commutative case we write
LI instead of LX , where, as usual, I = IX . In this section we will classify the
algebras LX up to isometric isomorphism, and for I radical and V (I) tractable,
we will classify the algebras LI up to isomorphism. We will also show that in
the radical commutative case, every isomorphism is automatically bounded and
continuous in the weak-operator and weak-∗ topologies.

It turns out that, just like in the norm-closed case, the Banach algebra structure
of LX is completely determined by the the subproduct system X ; the algebraic
structure of LI determines the geometry of V (I), and is determined by this geom-
etry when V (I) is tractable. The rigidity results obtained above also survive the
wot-closure. Before proving these results, let us explain why they are not obvious.

Let V1, . . . , Vd be a set of isometries on a Hilbert space with pairwise orthogonal
ranges. The normed closed algebra Alg{V1, . . . , Vd} is always isometrically isomor-
phic to the noncommutative disc algebra Ad = Alg{L1, . . . , Ld} (see the proof of
Theorem 2.1, [31]). On the other hand, the wot-closure of Alg{V1, . . . , Vd} may
fall into several quite different isomorphism classes: it might be Ld, it might be a
type I∞ factor, and it might be something “in between” (see [16, 17, 20, 33]).
On the other hand, the C*-algebras encountered in Proposition 10.7 fall into infin-
itely many ∗-isomorphism classes, while their wot-closures are all type I∞ factors.
These two examples show that taking the wot-closure of an operator algebra is
not as innocuous an operation as one might think.

As we have seen in Example 8.6, it can happen that the algebras Alg(SI
1 , . . . , S

I
d)

and Alg(SJ
1 , . . . , S

J
d ) are isomorphic, but their norm closures are non-isomorphic.

It is plausible that the wot-closed algebras split further into more isomorphism
classes, or degenerate to fewer isomorphism classes. We will see below that this is
not the case.

The proofs of our results follow closely the proofs for the norm-closed case. We
will give complete details only where the proofs are significantly different.
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The main connection to geometry is made via the character space. We denote
the maximal ideal space of LX byM(LX). As above, we call elements ofM(LX)
characters. In general,M(LX) can be a very wild topological space, and the useful
characters are the wot-continuous ones.

Proposition 11.1. The wot-continuous characters of LX can be identified with
Zo(IX).

Proof. For every λ ∈ Zo(IX), the vector νλ is in FX . Therefore the character ρλ,
defined by

ρλ(T ) = 〈Tνλ, νλ〉
is a wot-continuous character.

On the other hand, there is a natural quotient from the free semigroup algebra
Ld onto LX that is wot-continuous. Thus, if ρ is a wot-continuous character of
LX , then it gives rise to wot-continuous character on Ld. Therefore, using [19,
Theorem 2.3], we find that ρ must be equal to the evaluation functional ρλ at some
point λ ∈ Bd. But since ρ restricts to a character of AX , we must have λ ∈ Zo(IX).

The correspondence λ ↔ ρλ is easily seen to be a homeomorphism of Zo(IX)
onto a subset ofM(LX).

Every ρ ∈ M(LX) \ Zo(IX) restricts to a character of AX . Thus, the corona
M(LX)\Zo(IX) is the union of fibers over Z(IX)\Zo(IX). If λ ∈ Z(IX)\Zo(IX),
ρ being in the fiber over λ means that ρ(SX

i ) = λi, or, equivalently, that ρ|AX
is

equal to evaluation at λ.

11.1. The noncommutative case.

Theorem 11.2. Let X and Y be subproduct systems. Then LX is isometrically
isomorphic to LY if and only if X ∼= Y .

Proof. One direction follows immediately from the classification of the algebras
AX . Indeed, if X ∼= Y , then there is a unitarily implemented isomorphism from
AX onto AY , and this isomorphism extends to the wot-closures.

The proof of the other direction is similar to the proof in the normed closed case,
with small modifications. The proofs of Lemmas 4.2 and 4.4 can be adjusted to this
case to show that for every isometric isomorphism ϕ : LX → LY , the restriction of
ϕ∗ is a biholomorphism of Zo(IY ) onto Zo(IX). Appropriate versions of Theorem
4.1 and Proposition 4.7 are true for the wot-closed algebras, with basically the
same proofs. The result therefore follows just as in the norm-closed case.

11.2. The commutative radical case. From now on we concentrate on the com-
mutative, radical case. In this case, the modifications of the proofs given in the
norm-closed case are more significant.

Lemma 11.3. Let I and J be homogeneous radical ideals in C[z]. Then every
homomorphism ϕ : LI → LJ is bounded.

Proof. By Proposition 5.6, LJ is the multiplier algebra of FJ . Thus, if f ∈ LJ
satisfies f(λ) = 0 for all λ ∈ Zo(J), then f = 0. This shows that LJ is semi-
simple. A general result in the theory of commutative Banach algebras says that
every homomorphism into a semi-simple algebra is automatically continuous (see
Exercise 3.5.23 in [26]). Thus ϕ is bounded.
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Remark 11.4. The same argument works for the norm closed algebras. In Corol-
lary 7.2, we deduced that every unital homomorphism ϕ : AI → AJ is bounded by
using the fact that every such homomorphism is given by a composition operator.
In the case of the wot-closed algebras, we will use the boundedness of homomor-
phisms to show that they preserve wot-continuous characters, which is crucial to
showing that they are implemented by composition.

Lemma 11.5. Let I and J be homogeneous radical ideals in C[z]. If ϕ : LI → LJ
is an isomorphism, then ϕ∗ maps Zo(J) onto Zo(I).

Proof. The proof of the lemma uses the notion of Gleason parts. Let BI be the
norm closure of the Gelfand transform L̂I = {T̂ : T ∈ LI} of LI in C(M(LI)).
BI is a function algebra. The algebra BI does not really play an important role
below. It is introduced just for convenience of applying the theory of Gleason parts
in its usual setting: function algebras. For any function algebra, Gleason defined
an equivalence relation as follows.

For two characters ρ1, ρ2 ∈M(LL), write ρ1 ∼ ρ2 if

sup{|f(ρ1)− f(ρ2)| : f ∈ BI , ‖f‖ ≤ 1} < 2.

The relation ∼ is an equivalence relation onM(LI), and the equivalence classes are
called Gleason parts or just parts (see [8], Sections 1 and 2). Since by the previous
lemma ϕ : LI → LJ is a bounded isomorphism, then ϕ∗ will map a part into a
single part.

Since Zo(J) is a union of disks through the origin, and sinceM(LJ ) is the union
of Zo(J) with the fibers over Z(J) \ Zo(J), it follows from classical considerations
that Zo(J) is a part (see Example 1, p. 3, [8]). We need to show that the part
Zo(J) is mapped by ϕ∗ into the part Zo(I). ¿From the remarks above, it suffices
to show that the vacuum state ρ0 ∈ Zo(J) is mapped into Zo(I).

Assume for the sake of contradiction that ϕ∗ρ0 = ρ, where ρ ∈ M(LI) \ Zo(I).
By applying a unitary transformation to the variables we may assume that ρ is in
the fiber over (1, 0, . . . , 0).

Put T = ϕ(SI
1 ). Let λ be any point in Zo(J), and define a function T̂λ on D by

T̂λ(t) = ρtλ(T ). From the discussion preceding Lemma 4.2, T̂λ is analytic. Now,

|T̂λ(t)| = |ρtλ(T )| = |ϕ∗ρtλ(S
X
1 )| ≤ 1 for t ∈ D,

because ϕ∗ρtλ is contractive. On the other hand, T̂λ(0) = ρ(SX
1 ) = 1. By the

maximum modulus principle, T̂λ is constant 1 on D. Thus T̂ , the Gelfand transform
of ϕ(SX

1 ), is constantly equal to 1 on the disc D·λ ⊆ Zo(J). Since λ was an arbitrary

point in Zo(J), it follows that T̂ ≡ 1 on Zo(J). But the multiplier T and the

Gelfand transform T̂ are the same function on Zo(J), so T = 1. This contradicts
the fact that ϕ is injective and unit preserving. This contradiction shows that no
ρ ∈M(LI) \ Zo(I) can be equal to ϕ∗ρ0, and this completes the proof.

Lemma 11.6. Let I and J be radical homogeneous ideals in C[z]. Let ϕ : LI → LJ
be an isomorphism. Then there exists a holomorphic map F : Bd → Cd such that

F |Zo(J) = ϕ∗|Zo(J).

The components of F are in Mult(H2
d). Moreover, ϕ is given by composition with

F , that is

ϕ(f) = f ◦ F , f ∈ LI .
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Proof. The proof is very similar to the proof of Proposition 7.1, where the change
is that we have to restrict attention to Zo(J) and Zo(I). We must use the crucial
lemma above, together with Proposition 5.6. We omit the details.

Theorem 11.7. Let I, J ⊆ C[z] be radical homogeneous ideals.

(1) Then LI is isometrically isomorphic to LJ if and only if LI is unitarily
equivalent to LJ , and this happens if and only if there is a unitary mapping
Z(I) onto Z(J).

(2) If LI is isomorphic to LJ , then there is an invertible linear map mapping
Z(I) onto Z(J). Conversely, if V (I) and V (J) are tractable, and there
exists an invertible linear map mapping Z(I) onto Z(J), then LI is similar
to LJ .

Proof. Part (1) follows from Theorem 11.2 and the Nullstellensatz.
If V (I) and V (J) are tractable, and there is an invertible linear map mapping

Z(I) onto Z(J), then by Theorem 7.17 AI and AJ are similar. This extends to a
similarity of the wot-closures LI and LJ .

Conversely, assume that LI and LJ are isomorphic. By an analogue of Proposi-
tion 4.7, there exists a vacuum preserving isomorphism between the two algebras.
By Lemma 11.6, there exists a holomorphic map F : Bd → Cd sending Zo(J) onto
Zo(I) that fixes the origin. By Theorem 7.4, one can assume that F is an invertible
linear map.

A consequence of the geometric classification of the algebras LI is that they are
as rigid as the varieties that classify them. The proof is identical to the proof in
the norm-closed case.

Theorem 11.8. Let I and J be two homogeneous radical ideals in C[z1, . . . , zd],
and assume that V (I) is either irreducible or a nonlinear hypersurface. If LI and
LJ are isomorphic, then LI and LJ are unitarily equivalent. If ϕ : LI → LJ is a
vacuum preserving isomorphism, then it is unitarily implemented.

11.3. Automatic continuity in the weak-operator and weak-∗ topologies.
In this section we show that if I and J are radical homogeneous ideals, and if
ϕ : LI → LJ is an isomorphism, then ϕ is continuous with respect to the weak-
operator and the weak-∗ topologies. Note that the above results only imply this
for vacuum preserving isomorphisms.

Lemma 11.9. Let I ⊆ C[z] be a radical homogeneous ideal. The weak-∗ and weak-
operator topologies on LI coincide.

Proof. By [2, Proposition 1.2] (see also [15, Theorem 5.2]), LI has property A1(1).
This means that for every ρ in the open unit ball of (LI)∗, there are x, y ∈ FI with
‖x‖‖y‖ < 1 such that

ρ(T ) = 〈Tx, y〉 , T ∈ LI .
The conclusion immediately follows from this.

To avoid confusion, in the next two results we will distinguish between a function
f on Zo(I) and the multiplication operator Mf on FI that it gives rise to.

Lemma 11.10. A bounded net {Mfn} in LI converges in the weak-operator topol-
ogy to Mf if and only if for all z ∈ Zo(I), fn(z)→ f(z).
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Proof. If Mfn
wot−−→Mf , then for all z ∈ Zo(I),

fn(z)

1− ‖z‖2 =
〈

νz, fn(z)νz

〉

= 〈Mfnνz , νz〉 → 〈Mfνz, νz〉 =
f(z)

1− ‖z‖2 .

Conversely, suppose {Mfn} ⊂ LI is a bounded net such that {fn} converges
pointwise to f . Since {Mfn} is bounded, it suffices to show that 〈Mfnνλ, νµ〉 →
〈Mfνλ, νµ〉 for all λ, µ ∈ Zo(I), because span{vλ : λ ∈ Zo(I)} is dense in FI . But

〈Mfnνλ, νµ〉 =
fn(µ)

1− 〈µ, λ〉 →
f(µ)

1− 〈µ, λ〉 = 〈Mfνλ, νµ〉 .

Theorem 11.11. Let I, J ⊆ C[z] be radical homogeneous ideals. If ϕ : LI → LJ
is an isomorphism, then ϕ is continuous with respect to the weak-operator and the
weak-∗ topologies.
Proof. By Lemma 11.9 together with the Krein-Šmulian Theorem (Theorem 7,
Section V.5, [21]), it is enough to show that ϕ is wot-continuous on bounded sets.

Let {Mfn} be a bounded net in LI converging to Mf in the weak-operator
topology. By Lemma 11.3, {ϕ(Mfn)} is a bounded net in LJ . By Lemma 11.6,
there is some holomorphic F such that ϕ(Mg) = Mg◦F . Therefore, by Lemma
11.10, it suffices to show that fn ◦ F converges pointwise to f ◦ F . But since fn
converges pointwise to f (by the same lemma), this is evident.
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