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AN OPERATOR-VALUED LYAPUNOV THEOREM

SARAH PLOSKER1 AND CHRISTOPHER RAMSEY1,2

Abstract. We generalize Lyapunov’s convexity theorem for classical (scalar-
valued) measures to quantum (operator-valued) measures. In particular, we
show that the range of a nonatomic quantum probability measure is a weak∗-
closed convex set of quantum effects (positive operators bounded above by
the identity operator) under a sufficient condition on the non-injectivity of
integration. To prove the operator-valued version of Lyapunov’s theorem, we
must first define the notions of essentially bounded, essential support, and
essential range for quantum random variables (Borel measurable functions from

a set to the bounded linear operators acting on a Hilbert space).

1. Introduction

Lyapunov’s theorem ([13], and Corollary 3.3 below) states that if µ1, µ2, . . . ,
µn are finite positive nonatomic measures on a measurable space (X,Σ), then the
set of points in Rn of the form (µ1(A), µ2(A), . . . , µn(A)), with A ranging over the
measurable subsets of X , is closed and convex. In particular, the range of a single
finite positive nonatomic measure is closed and convex. Our goal is to extend this
result into the quantum, or operator-valued, setting.

In quantum mechanics, a quantum system is described by a Hilbert space H.
Positive operator-valued measures (POVMs) and quantum probability measures
(POVMs that sum to the identity) are studied in quantum information theory
in order to fully describe measurements of a quantum system [1, 2, 8]. The more
general notion of operator-valued measures (OVMs) has been studied independently
of quantum information theory; see [10, 16, 18].

Denote the C∗-algebra of all bounded operators acting on H by B(H) and recall
that the predual of B(H) is B(H)∗ = T (H), the ideal of trace class operators. In
the case when H is finite-dimensional, B(H) and T (H) coincide as sets, and so
often in the finite-dimensional setting authors do not distinguish between the two.
Unless stated otherwise, we take H to be infinite-dimensional herein. Denote the
set of all positive operators of unit trace by S(H) ⊂ T (H); this is a convex subset
of T (H). General elements of S(H), often denoted by ρ, are called states or density
operators and play a critical role in quantum information theory. Finally, let X be
a Hausdorff space and O(X) a σ-algebra of subsets of X (often O(X) is taken to
be the σ-algebra of Borel sets of X as it will be in the next section).
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2 SARAH PLOSKER AND CHRISTOPHER RAMSEY

Definition 1.1. [10, 15, 11] A map ν : O(X) → B(H) is an operator-valued
measure (OVM) if it is weakly countably additive: for every countable collection
{Ek}k∈N ⊆ O(X) with Ej ∩ Ek = ∅ for j 6= k we have

ν

(

⋃

k∈N

Ek

)

=
∑

k∈N

ν(Ek) ,

where the convergence on the right side of the equation above is with respect to the
ultraweak topology of B(H). An OVM ν is

(i) bounded if sup{‖ν(E)‖ : E ∈ O(X)} <∞,
(ii) self-adjoint if ν(E)∗ = ν(E), for all E ∈ O(X),
(iii) positive if ν(E) ∈ B(H)+, for all E ∈ O(X),
(iv) spectral if ν(E1 ∩ E2) = ν(E1)ν(E2), for all E1, E2 ∈ O(X)

Moreover, an OVM ν is called a positive operator-valued measure (POVM) if it is
positive (note that this necessarily implies ν is bounded), a positive operator-valued
probability measure or quantum probability measure if it is positive and ν(X) = IH
(the identity operator in B(H)), and is called a projection-valued measure (PVM)
if it is self-adjoint and spectral (PVMs show up as an important subclass of POVMs
in quantum information theory).

We briefly recall some useful definitions from classical measure theory. Let X
be a set, Σ a σ-algebra over X , and µ a measure on the measurable space (X,Σ).
An atom for µ is a set E of nonzero measure such that, for any subset F ⊂ E,
either µ(F ) = 0 or µ(F ) = µ(E). A measure µ is atomic if every set of nonzero
measure contains an atom. A measure µ is nonatomic if it has no atoms; that is, if
every set of nonzero measure has a subset of different nonzero measure. Note that a
measure that is not atomic is not necessarily nonatomic, and vice-versa. A classical
partial order on measures is that of absolute continuity: if µ1, µ2 are measures on
(X,Σ), then µ1 is absolutely continuous with respect to µ2, denoted by µ1 ≪ac µ2,
if µ1(E) = 0 for all E ∈ Σ for which µ2(E) = 0.

The definitions of atomic, nonatomic, and absolutely continuous can be readily
adapted, mutatis mutandis, to OVMs; in fact, absolute continuity can be used to
compare OVMs from the same space X into different Hilbert spaces, in particular
one can compare an OVM with a (classical) measure.

Given an OVM ν : O(X) → B(H), for every state ρ ∈ S(H), we can associate to
ν the induced complex measure νρ on X defined by

νρ(E) = Tr(ρν(E)) ∀E ∈ O(X).

If ν is a quantum probability measure, then the complex measure νρ can be inter-
preted as mapping the measurement event E to the corresponding measurement
statistics; the probability that event E is measured by the quantum probability
measure ν when the system H is in state ρ is Tr(ρν(E)). Note that νρ is countably
additive since ν is weakly countably additive. It is not difficult to see that ν and
νρ are mutually absolutely continuous for any full-rank ρ ∈ S(H).

AssumeH is separable and let {en} be an orthonormal basis. As in [7, 11], denote
νij the complex measure νij(E) = 〈ν(E)ej , ei〉, E ∈ O(X). Now, for any full-rank
density operator ρ we have νij ≪ac νρ. Thus, by the classical Radon-Nikodým
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theorem, there is a unique
dνij
dνρ

∈ L1(X, νρ) such that

νij(E) =

∫

E

dνij
dνρ

dνρ, E ∈ O(X).

Definition 1.2. [11, Definition 2.3] Let ν : O(X) → B(H) be a POVM and ρ ∈
S(H) be a full-rank density operator. The Radon-Nikodým derivative of ν with
respect to νρ is defined to be

dν

dνρ
=
∑

i,j≥1

dνij
dνρ

⊗ eij ,

where {eij} are the matrix units. If dν
dνρ

is a valid quantum random variable (in the

sense that it takes every x to a bounded operator), then dν
dνρ

is said to exist.

If ν is into a finite-dimensional Hilbert space then dν
dνρ

always exists (see [7] for

further analysis into the finite-dimensional setting). However, for infinite dimen-
sions this derivative is potentially into the unbounded operators and does not exist
in such cases. If dν

dνρ0
exists for one full-rank density operator ρ0 ∈ S(H), then it

exists for all full-rank ρ ∈ S(H) [11, Corollary 2.13].
The following is a truly infinite-dimensional example, in the sense that it is not

merely finite-dimensional living in infinite dimensions, where the Radon-Nikodým
derivative exists.

Example 1.3. Let µ be Lebesgue measure on [0, 1] and let {µn}n≥1 be restrictions of
µ to the intervals [1/(n+1), 1/n], respectively. Define ν(E) = diag (µ(E), µ1(E), µ2(E), . . . )
and so ν : O(X) → B(H) is a nonatomic POVM. Taking ρ = diag(1/2, 1/4, . . . ),
we can see that

νρ =
1

2
µ+

∑

n

1

2n+1
µn

=
∑

n

2n + 1

2n+1
µn and

dν

dνρ
=

∑

n

2n+1

2n + 1
χ[1/(n+1),1/n]enn,

where enn is the (n, n)-matrix unit. Hence, the Radon-Nikodým derivative exists.

An important condition that arises in the study of Lyapunov’s theorem (both
the operator-valued version herein and the classical version) is a condition on the
non-injectivity of integration. This will be described in more detail at the end of
Section 2.

Lyapunov himself found a counterexample to the convexity theorem when there
is an infinite number of classical measures [14]. [3, Chapter IX] also contains coun-
terexamples. These examples all fail because of injectivity.

In Section 2 we define quantum random variables, the integral of such a func-
tion against a POVM, and concepts in relation to such functions such as essential
support, essential range, and essentially bounded. In Section 3 we present our
main results extending Lyapunov’s theorem to positive operator-valued measures.
In particular, Corollary 3.2 shows that the range of a nonatomic quantum proba-
bility measure is a weak∗-closed convex set, which can be viewed as the quantum
analogue to Lyapunov’s theorem.
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2. Integration and essentially bounded functions

Definition 2.1. A Borel measurable function f : X → B(H) between the σ-algebra
generated by the open sets of X and the σ-algebra generated by the open sets of
B(H) is a quantum random variable.

Equivalently, f is a quantum random variable if and only if

x 7→ Tr(ρf(x))

are Borel measurable functions for every state ρ ∈ S(H).
A quantum random variable f : X → B(H) is

(i) bounded if sup{‖f(x)‖ : x ∈ X} <∞,
(ii) self-adjoint if f(x) = f(x)∗, for all x ∈ X,
(iii) positive if f(x) ∈ B(H)+, for all x ∈ X.

Observe that the complex-valued functions x 7→ Tr(ρf(x)) are measurable and
are thus (classical) random variables. See [7, 6, 5, 9] for more detailed analyses of
quantum random variables.

We are interested in integrating a quantum random variable with respect to a
positive operator-valued measure:

Definition 2.2. [7, 11] Let ν : O(X) → B(H) be a POVM such that dν
dνρ

exists. A

positive quantum random variable f : X → B(H) is ν-integrable if the function

fs(x) = Tr

(

s

(

dν

dνρ
(x)

)1/2

f(x)

(

dν

dνρ
(x)

)1/2
)

, x ∈ X

is νρ-integrable for every state s ∈ S(H).

If f : X → B(H) is a self-adjoint quantum random variable, then f+, f− : X →
B(H)+ defined by

f+(x) = f(x)+ and f−(x) = f(x)−, x ∈ X

are positive quantum random variables [11, Lemma 2.1]. An arbitrary quantum
random variable f : X → B(H) is then said to be ν-integrable if and only if
(Ref)+, (Ref)−, (Imf)+ and (Imf)− are ν-integrable.

Definition 2.3. [7, 11] Let ν : O(X) → B(H) be a POVM such that dν
dνρ

exists.

If f : X → B(H) is a ν-integrable quantum random variable then the integral of f
with respect to ν, denoted

∫

X fdν, is implicitly defined by the formula

Tr

(

s

∫

X

fdν

)

=

∫

X

fsdνρ.

This definition of the integral of a quantum random variable with respect to a
POVM was first defined in the finite-dimensional case in [7]. The infinite case was
shown to work in [11] and one should note that showing that the above definition
works takes some proving.

A good sign that this is a reasonable definition is that for every set E ∈ O(X)
we have that

∫

X

χE(x)IHdν(x) = ν(E).

For a detailed discussion of this integral and a proof of the above consult [11].
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Definition 2.4. Let ν : O(X) → B(H) be a POVM and let f : X → B(H) be a
quantum random variable. Then the essential support of f is

ess-supp f = X \
⋃

E∈O(X) open
f=0 a.e. in E

E.

Definition 2.5. Let ν : O(X) → B(H) be an POVM and let f : X → B(H) be a
quantum random variable. Then the essential range of f is the set ess-ranf of all
A ∈ B(H) for which ν(f−1(U)) 6= 0 for every neighbourhood U ⊆ B(H) of A.

A standard classical result is that the essential range of a measurable function
is equal to the intersection of the closure of the image of the function over all
measurable sets whose complement has measure zero. We show this is also the case
in the setting of quantum random variables. Although the proof is a straightforward
generalization of the classical setting (see [4, Proposiion 5.45]), we include it here
for completeness and rigor.

Proposition 2.6. Let f : X → B(H) be a quantum random variable. Then

ess-ranf =
⋂

E∈O(X)
ν(Ec)=0

f(E).

Proof. Let A ∈ ess-ranf and suppose E ∈ O(X) is such that ν(Ec) = 0. This

implies A ∈ f(E). Indeed, if that were not the case, then there would be an open

set U containing A such that U ∩ f(E) = ∅, and so f−1(U) ⊂ Ec); however,
0 = ν(Ec) ≥ ν(f−1(U)) 6= 0 (since A ∈ ess-ranf), a contradiction. It follows that

ess-ranf ⊆ f(E) for every E ∈ O(X) is such that ν(Ec) = 0.
Conversely, let A /∈ ess-ranf . Then ν(f−1(U)) = 0 for some neighbourhood U

of A. Let E = f−1(U)c. This implies A /∈ f(E). Indeed, if that were not the
case, then f(E) ∩ U 6= ∅, but then E ∩ Ec 6= ∅, a contradiction. It follows that

f(E) ⊆ ess-ranf for every E ∈ O(X) such that ν(Ec) = 0. �

Again, analogous to the classical setting, we define the essential supremum of a
quantum random variable.

Definition 2.7. Let f : X → B(H) be a quantum random variable. The essential
supremum of f is the quantity

ess-sup f = sup{‖A‖ : A ∈ ess-ranf}.

If ess-sup f <∞ then f is essentially bounded and

ess-sup f = inf{M ≥ 0 : ν(f−1({A ∈ B(H) : ‖A‖ > M})) = 0}.

Let ν : O(X) → B(H) be a POVM such that dν
dνρ

exists for any full-rank density

operator ρ. [11, Corollary 2.9] tells us that every quantum random variable that
is essentially bounded with respect to ν is ν-integrable. Denote the set of all such
quantum random variables by L∞

H (X, ν).
As in the classical case, for f ∈ L∞

H (X, ν) let ‖f‖∞ = ess-sup f which is a
seminorm on L∞

H (X, ν). Quotienting by the ideal of functions that vanish under this
seminorm we get L∞

H (X, ν). Because ν and νρ are mutually absolutely continuous
they give the same set of essentially bounded quantum random variables from X
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to B(H) by the second part of the definition of essentially bounded. This implies
that

L∞
H (X, ν) = L∞

H (X, νρ) ≃ L∞(X, νρ) ⊗ B(H)

is a Banach space, actually a von Neumann algebra (and so the tensor product is
unique by [17, Section IV.5]). In the same section of the previous reference, there
is the following predual identity

(L∞
H (X, ν))∗ ≃ (L∞(X, νρ) ⊗ B(H))∗ = L1(X, νρ) ⊗ T (H).

Thus L∞
H (X, ν) carries a weak∗-topology. To be clear, on sums of simple tensors

these isomorphisms are both given by
n
∑

i=1

fi(x) ⊗Ai 7→
n
∑

i=1

fi(x)Ai.

So we consider both L∞
H (X, ν) and its predual as sets of equivalence classes of

functions from X into B(H) or T (H), respectively.
Integration is a very important concept in our analysis and so, for a given POVM

ν : O(X) → B(H) such that dν
dνρ

exists for any full-rank density operator ρ, we define

Eν : L∞
H (X, ν) → B(H) to be

(1) Eν(f) =

∫

X

fdν, f ∈ L∞
H (X, ν).

This integral operator is called the quantum expected value of f relative to the
POVM ν in [6, 9, 5] and denoted Eν(f).

Theorem 2.8. Let ν : O(X) → B(H) be a POVM such that dν
dνρ

exists. Then Eν
is weak∗-weak∗-continuous.

Proof. For every s ∈ T (H) we first need to establish that

x 7→

(

dν

dνρ
(x)

)1/2

s

(

dν

dνρ
(x)

)1/2

is an element of L1(X, νρ)⊗̄T (H). To this end, consider the bounded linear func-
tional f 7→

∫

X
Tr(f(x)h(x)A) dνρ(x), h ∈ L∞(X, νρ), A ∈ B(H) which is precisely

integration against h in the first component and taking the trace against A in the
second component of L1(X, νρ)⊗T (H). In particular, the span of these functionals
is dense in (L1(X, νρ)⊗T (H))∗ = L∞

H (X, ν).
We then have

∫

X

Tr

(

(

dν

dνρ
(x)

)1/2

s

(

dν

dνρ
(x)

)1/2

h(x)A

)

dνρ(x)

= Tr

(

s

∫

X

h(x)Adν(x)

)

∈ C

by Corollary 2.9 of [11] since h(x)A is essentially bounded. Therefore,
(

dν

dνρ
(x)

)1/2

s

(

dν

dνρ
(x)

)1/2

∈ L1(X, νρ) ⊗ T (H).

Now suppose ψn
wk∗

−−→ ψ in L∞
H (X, ν). By the above, every bounded linear

functional of L1(X, νρ)⊗T (H) is given as f 7→
∫

X Tr(fψ)dνρ for ψ ∈ L∞
H (X, ν).
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Then

Tr

(

s

∫

X

ψn(x) dν(x)

)

=

∫

X

Tr

(

(

dν

dνρ
(x)

)1/2

s

(

dν

dνρ
(x)

)1/2

ψn(x)

)

dνρ(x)

→

∫

X

Tr

(

(

dν

dνρ
(x)

)1/2

s

(

dν

dνρ
(x)

)1/2

ψ(x)

)

dνρ(x)

= Tr

(

s

∫

X

ψ(x) dν(x)

)

,

from which it follows that
∫

X ψn dν
wk∗

−−→
∫

X ψ dν. �

A very natural problem that arises from the study of integration against a POVM
is that of whether Eν is injective or not. More specifically, for a POVM ν : O(X) →
B(H) we say that integration against ν is classically non-injective if for every E ∈
O(X) such that ν(E) 6= 0 we have that

f ∈ L∞(E, ν) 7−→ Eν(fIH)

is non-injective.
It is immediate that integration against any measure with an atom fails this

condition. By cardinality alone it is also immediate that integration against a
non-atomic finite-dimensional POVM is classically non-injective.

Such a condition is quite essential to proving a convexity result as shown by an
example of Uhl [3, Example 1, Chapter IX].

Example 2.9 (Uhl). Let µ be Lebesgue measure on [0, 1] and L∞([0, 1], µ) ⊂ B(H).
Define the POVM ν : O([0, 1]) → B(H) by

ν(E) = χE , ∀E ∈ O([0, 1]).

Then the range space Rν = {ν(E) : E ∈ O([0, 1])} is not convex. Note that it can
be proven that this non-atomic measure is not classicaly non-injective.

3. Operator-valued Lyapunov theorem

We are now in a position to prove the main theorem of this paper.

Theorem 3.1. Let ν : O(X) → B(H) be a nonatomic POVM such that dν
dνρ

exists

and let Eν : L∞
H (X, ν) → B(H) be as above. If integration against ν is classically

non-injective then the set Rν = {ν(E) : E ∈ O(X)} is a weak∗-compact convex set
in B(H).

Proof. The proof follows the same general structure as in the classical setting (see
[4, Theorem 7.26] or [12]). Let

I = {ψ ∈ L∞
H (X, ν) : ess-ranψ ∈ {λIH : λ ∈ [0, 1]}}

= {h ∈ L∞(X, νρ) : 0 ≤ h(x) ≤ 1 a.a.} ⊗ IH.

It is well known from the classical case that the set on the left side of the tensor
product is weak∗-closed and thus weak∗-compact (being in its unit ball). Hence, I
is weak∗-compact as well.

It is easy to see that the map Eν : I → B(H) defined in equation (1) is affine
with respect to quantum random variables ψ (although it is not affine with respect
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to POVMs ν). Since Eν is weak∗-weak∗-continuous by Theorem 2.8 we have that
K = E(I) is weak∗-compact and convex.

One should note here thatK ⊆ [0, ν(X)] and contains 0 and ν(X) = Eν(χX(x)IH)
but it does not have to equal the operator interval [0, ν(X)]. For instance, K would
equal {λIH : 0 ≤ λ ≤ 1} if ν = µIH where µ is Lebesgue measure on [0, 1].

Pick A ∈ K. The set IA = {ψ ∈ I : Eν(ψ) = A} = E−1
ν ({A}) is the weak∗-

continuous inverse image of a weak∗-closed set, and so IA is weak∗-closed. Clearly
IA is convex as well. By the Krein-Milman theorem, there exists ψ ∈ ext IA.
We claim that ψ = χE for some E ∈ O(X). This will complete the proof since we
already have that Rν = {ν(E) : E ∈ O(X)} ⊆ K, givingRν = K is weak∗-compact
and convex.

Now, we prove the claim by contradiction: suppose ψ ∈ ext IA is not a charac-
teristic function; that is, ψ(x) 6= χE(x)IH in L∞

H (X, ν). Thus, the essential range
of ψ contains some λIH with 0 < λ < 1. Let ǫ = 1

2 min{λ, 1 − λ} and define
U = {B ∈ B(H) : ‖B − λIH‖ < ǫ}. Note that U is open and λIH ∈ U but
0, IH /∈ U . We then have that E = ψ−1(U) is a Borel set and ν(E) 6= 0.

So E is a measurable set with ν(E) 6= 0, because λIH is in the essential range of
ψ. By the fact that integration against ν is classically non-injective there exists a
σ 6= 0 ∈ L∞(E, ν) such that Eν(σIH) = 0. One can consider σ(x) = 0 on X \E and
hence ψ ± ǫ

2‖σ‖∞

σ ∈ I. Moreover, Eν(ψ ± ǫ
2‖σ‖∞

σ) = A and so ψ ± ǫ
2‖σ‖∞

σ ∈ IA
contradicting the assumption that ψ ∈ ext IA, and the claim is proven. �

Corollary 3.2. Let νi : O(X) → B(Hi) be nonatomic POVMs such that dνi
(dνi)ρ

exists for i = 1, 2, . . . , n. If integration against νi is classically non-injective then the
set of points in

⊕n
i=1 B(Hi) of the form (ν1(E), ν2(E), . . . , νn(E)), with E ranging

over all O(X), is a weak∗-closed convex set.

Proof. Define ν : O(X) → B(H) as ν(E) =
⊕n

i=1 νi(E) on H =
⊕n

i=1 Hi. It is not

hard to see that ν is a nonatomic POVM and dν
dνρ

exists. The result follows from

the last theorem since integration by ν is classically non-invertible. �

Note that if X is a discrete set, then the range of ν cannot be convex, and so
the above corollary shows that nonatomic POVMs such that dνi

(dνi)ρ
exists for i =

1, 2, . . . , n have fundamentally different range spaces compared to atomic POVMs.
Lyapunov’s Convexity Theorem follows as a one-dimensional consequence of

Corollary 3.2:

Corollary 3.3. [12] Let {µ1, µ2, . . . , µn} be finite positive nonatomic measures on
Σ. Then the set of points in Rn of the form (µ1(E), µ2(E), . . . , µn(E)), with E
ranging over all Σ, is a closed convex set.

Our methods rely on the existence of the Radon-Nikodým derivative dν
dνρ

(which,

as we mentioned before, always exists when H is finite-dimensional). In the ab-
sence of this derivative there are easy examples where one can see that Lyapunov’s
theorem will still hold but we do not have a proof of the general situation. One
such case is the following:

Example 3.4. Let {µn}n≥1 be a set of mutually singular nonatomic probability
measures on the measure space (X,O(X)). Define ν(E) = diag(µ1(E), µ2(E), . . . )
and so ν : O(X) → B(H) is a nonatomic quantum probability measure. By the
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same reasoning as [11, Example 2.4] it is easy to see that dν
dνρ

does not exist (just

take ρ = diag(1/2, 1/4, . . . )).
Let Xn = ess-suppµn and by the mutually singular assumption we have that

Xn ∩Xm = ∅. For any infinite tuple λ = (λ1, λ2, . . . ) with 0 ≤ λn ≤ 1 we can find
by Lyapunov’s theorem above that there exists En ∈ O(X) such that En ⊆ Xn and
µn(En) = λn. Thus, for E = ∪n≥1En ∈ O(X) we have ν(E) = diag(λ1, λ2, . . . ).
Therefore, Rν = {ν(F ) : F ∈ O(X)} is a weak∗-closed and convex subset in the
operator interval [0, IH].
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