Browsing by Author "Des Marais, David J."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemA synthesis of Martian aqueous mineralogy after 1 Mars year of observations from the Mars Reconnaissance Orbiter(2009) Murchie, Scott L.; Mustard, John F.; Ehlmann, Bethany L.; Milliken, Ralph E.; Bishop, Janice L.; McKeown, Nancy K.; Noe Dobrea, Eldar Z.; Seelos, Frank P.; Buczkowski, Debra L.; Wiseman, Sandra M.; Arvidson, Raymond E.; Wray, James J.; Swayze, Gregg A.; Clark, Roger N.; Des Marais, David J.; McEwen, Alfred S.; Bibring, Jean-PierreMartian aqueous mineral deposits have been examined and characterized using data acquired during Mars Reconnaissance Orbiter's (MRO) primary science phase, including Compact Reconnaissance Imaging Spectrometer for Mars hyperspectral images covering the 0.4-3.9 mu m wavelength range, coordinated with higher-spatial resolution HiRISE and Context Imager images. MRO's new high-resolution measurements, combined with earlier data from Thermal Emission Spectrometer; Thermal Emission Imaging System; and Observatoire pour la Mineralogie, L'Eau, les Glaces et l'Activitie on Mars Express, indicate that aqueous minerals are both diverse and widespread on the Martian surface. The aqueous minerals occur in 9-10 classes of deposits characterized by distinct mineral assemblages, morphologies, and geologic settings. Phyllosilicates occur in several settings: in compositionally layered blankets hundreds of meters thick, superposed on eroded Noachian terrains; in lower layers of intracrater depositional fans; in layers with potential chlorides in sediments on intercrater plains; and as thousands of deep exposures in craters and escarpments. Carbonate-bearing rocks form a thin unit surrounding the Isidis basin. Hydrated silica occurs with hydrated sulfates in thin stratified deposits surrounding Valles Marineris. Hydrated sulfates also occur together with crystalline ferric minerals in thick, layered deposits in Terra Meridiani and in Valles Marineris and together with kaolinite in deposits that partially infill some highland craters. In this paper we describe each of the classes of deposits, review hypotheses for their origins, identify new questions posed by existing measurements, and consider their implications for ancient habitable environments. On the basis of current data, two to five classes of Noachian-aged deposits containing phyllosilicates and carbonates may have formed in aqueous environments with pH and water activities suitable for life.
- ItemWhat the ancient phyllosilicates at Mawrth Vallis can tell us about possible habitability on early Mars(2013) Bishop, Janice L.; Loizeau, Damien; McKeown, Nancy K.; Saper, Lee; Dyar, M. Darby; Des Marais, David J.; Parente, Mario; Murchie, Scott L.Phyllosilicate deposits on Mars provide an opportunity to evaluate aqueous activity and the possibility that habitable environments may have existed during the Noachian period there. Analysis of hyperspectral visible/near-infrared (VNIR) Mars Reconnaissance Orbiter (MRO) Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) images has shown thick, complex profiles of phyllosilicates at Mawrth Vallis, Mars that are consistent with long-term aqueous activity and active chemistry. The ancient phyllosilicates in places such as this could have served as reaction centers for organic molecules. Previous experiments even suggest that phyllosilicates could have played a role in the origin of life. Regardless of whether life formed on early Mars or not, evaluating the type and thickness of clay-bearing units on Mars provides insights into plausible aqueous processes and chemical conditions both during the time of formation of the phyllosilicates, but also the subsequent period following their formation. The phyllosilicate outcrops at Mawrth Vallis extend across a broad (∼1000km) region and exhibit a consistent general trend of Al-phyllosilicates and amorphous Al/Si species at the top of the clay profile and Fe/Mg-phyllosilicates on the bottom. This implies either a change in water chemistry, a change in material being altered, or an alteration profile where the upper clays were leached and altered more significantly than those below. A change in iron in the phyllosilicate units is also observed such that an Fe2+-bearing unit is frequently observed between the Fe3+- and Mg-rich phyllosilicates below and the Al/Si-rich materials above. Abrupt changes in chemistry like this are often indicative of biogeochemical activity on Earth. Possible microbe-clay interactions are considered in comparison with the CRISM observations. This study evaluates CRISM spectra from four images of different outcrops across the Mawrth Vallis region and evaluates the observed phyllosilicates and clay components in terms of plausible aqueous and microbial processes and the potential for retention of biosignatures, if present.