Browsing by Author "Leskiw, Brenda K."
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item BldG and SCO3548 interact antagonistically to control key developmental processes in streptomyces coelicolor(2009) Parashar, Archana; Bignell, Dawn R. D.; Leskiw, Brenda K.; Harcombe, KimberleyThe similarity of BldG and the downstream coexpressed protein SCO3548 to anti-anti-sigma and anti-sigma factors, respectively, together with the phenotype of a bldG mutant, suggests that BldG and SCO3548 interact as part of a regulatory system to control both antibiotic production and morphological differentiation in Streptomyces coelicolor. A combination of bacterial two-hybrid, affinity purification, and far-Western analyses demonstrated that there was self-interaction of both BldG and SCO3548, as well as a direct interaction between the two proteins. Furthermore, a genetic complementation experiment demonstrated that SCO3548 antagonizes the function of BldG, similar to other anti-anti-sigma/anti-sigma factor pairs. It is therefore proposed that BldG and SCO3548 form a partner-switching pair that regulates the function of one or more sigma factors in S. coelicolor. The conservation of bldG and sco3548 in other streptomycetes demonstrates that this system is likely a key regulatory switch controlling developmental processes throughout the genus Streptomyces.Item Expression of ccaR, encoding the positive activator of cephamycin C and clavulanic acid production in Streptomyces clavuligerus, is dependent on bldG(2005) Leskiw, Brenda K.; Tahlan, Kapil; Harcombe, Kimberley; Bignell, Dawn R. D.; Jensen, Susan E.In Streptomyces coelicolor, bldG encodes a putative anti-anti-sigma factor that regulates both aerial hypha formation and antibiotic production, and a downstream transcriptionally linked open reading frame (orf3) encodes a putative anti-sigma factor protein. A cloned DNA fragment from Streptomyces clavuligerus contained an open reading frame that encoded a protein showing 92% identity to the S. coelicolor BldG protein and 91% identity to the BldG ortholog in Streptomyces avermitilis. Sequencing of the region downstream of bldG in S. clavuligerus revealed the presence of an open reading frame encoding a protein showing 72 and 69% identity to the ORF3 proteins in S. coelicolor and S. avermitilis, respectively. Northern analysis indicated that, as in S. coelicolor, the S. clavuligerus bldG gene is expressed as both a monocistronic and a polycistronic transcript, the latter including the downstream orf3 gene. High-resolution S1 nuclease mapping of S. clavuligerus bldG transcripts revealed the presence of three bldG-specific promoters, and analysis of expression of a bldGp-egfp reporter indicated that the bldG promoter is active at various stages of development and in both substrate and aerial hyphae. A bldG null mutant was defective in both morphological differentiation and in the production of secondary metabolites, such as cephamycin C, clavulanic acid, and the 5S clavams. This inability to produce cephamycin C and clavulanic acid was due to the absence of the CcaR transcriptional regulator, which controls the expression of biosynthetic genes for both secondary metabolites as well as the expression of a second regulator of clavulanic acid biosynthesis, ClaR. This makes bldG the first regulatory protein identified in S. clavuligerus that functions upstream of CcaR and ClaR in a regulatory cascade to control secondary metabolite production.Item The putative anti-anti sigma factor BldG is post-translationally modified by phosphorylation in Streptomyces coelicolor(2003) Harcombe, Kimberley; Bignell, Dawn R. D.; Lau, Leon H.; Leskiw, Brenda K.The Streptomyces coelicolor bldG gene encodes a protein showing similarity to the SpoIIAA and RsbV anti-anti-sigma factors of Bacillus subtilis. Purified maltose binding protein-BldG could be phosphorylated in vitro by wild-type S. coelicolor crude extract, and both the phosphorylated and unphosphorylated forms of BldG could be detected in vivo using isoelectric focusing. ATP was shown to serve as the phosphoryl group donor, and phosphorylation of BldG was abolished when the putative phosphorylation site was changed from a serine to an alanine residue. A bldG mutant strain expressing the non-phosphorylatable BldG protein was unable to undergo morphological differentiation or produce antibiotics even after prolonged incubation, suggesting that phosphorylation of BldG is necessary for proper development in S. coelicolor.