Browsing by Author "Wilman, Alan H."
Now showing 1 - 7 of 7
Results Per Page
Sort Options
Item Discriminative analysis of regional evolution of iron and myelin/calcium in deep gray matter of multiple sclerosis and healthy subjects(2018) Elkady, Ahmed M.; Cobzas, Dana; Sun, Hongfu; Blevins, Gregg; Wilman, Alan H.Background: Combined R2* and quantitative susceptibility (QS) has been previously used in cross‐sectional multiple sclerosis (MS) studies to distinguish deep gray matter (DGM) iron accumulation and demyelination. Purpose: We propose and apply discriminative analysis of regional evolution (DARE) to define specific changes in MS and healthy DGM. Study Type: Longitudinal (baseline and 2‐year follow‐up) retrospective study. Subjects: Twenty‐seven relapsing‐remitting MS (RRMS), 17 progressive MS (PMS), and corresponding age‐matched healthy subjects. Field Strength/Sequence: 4.7T 10‐echo gradient‐echo acquisition. Assessment: Automatically segmented caudate nucleus (CN), thalamus (TH), putamen (PU), globus pallidus, red nucleus (RN), substantia nigra, and dentate nucleus were retrospectively analyzed to quantify regional volumes, bulk mean R2*, and bulk mean QS. DARE utilized combined R2* and QS localized changes to compute spatial extent, mean intensity, and total changes of DGM iron and myelin/calcium over 2 years. Statistical Tests: We used mixed factorial analysis for bulk analysis, nonparametric tests for DARE (α = 0.05), and multiple regression analysis using backward elimination of DGM structures (α = 0.05, P = 0.1) to regress bulk and DARE measures with the follow‐up Multiple Sclerosis Severity Score (MSSS). False detection rate correction was applied to all tests. Results: Bulk analysis only detected significant (Q ≤ 0.05) interaction effects in RRMS CN QS (η = 0.45; Q = 0.004) and PU volume (η = 0.38; Q = 0.034). DARE demonstrated significant group differences in all RRMS structures, and in all PMS structures except the RN. The largest RRMS effect size was CN total R2* iron decrease (r = 0.74; Q = 0.00002), and TH mean QS myelin/calcium decrease for PMS (r = 0.70; Q = 0.002). DARE iron increase using total QS demonstrated the highest correlation with MSSS (r = 0.68; Q = 0.0005).Data Conclusion: DARE enabled discriminative assessment of specific DGM changes over 2 years, where iron and myelin/calcium changes were the primary drivers in RRMS and PMS compared to age‐matched controls, respectively. Specific DARE measures of MS DGM correlated with follow‐up MSSS, and may reflect complex disease pathology.Item Discriminative analysis of regional evolution of iron and myelin/calcium in deep gray matter of multiple sclerosis and healthy subjects(2018) Elkady, Ahmed M.; Cobzas, Dana; Sun, Hongfu; Blevins, Gregg; Wilman, Alan H.Combined R2* and quantitative susceptibility (QS) has been previously used in cross‐sectional multiple sclerosis (MS) studies to distinguish deep gray matter (DGM) iron accumulation and demyelination. We propose and apply discriminative analysis of regional evolution (DARE) to define specific changes in MS and healthy DGM. Longitudinal (baseline and 2‐year follow‐up) retrospective study. Twenty‐seven relapsing‐remitting MS (RRMS), 17 progressive MS (PMS), and corresponding age‐matched healthy subjects . Field Strength/Sequence: 4.7T 10‐echo gradient‐echo acquisition. Automatically segmented caudate nucleus (CN), thalamus (TH), putamen (PU), globus pallidus, red nucleus (RN), substantia nigra, and dentate nucleus were retrospectively analyzed to quantify regional volumes, bulk mean R2*, and bulk mean QS. DARE utilized combined R2* and QS localized changes to compute spatial extent, mean intensity, and total changes of DGM iron and myelin/calcium over 2 years. We used mixed factorial analysis for bulk analysis, nonparametric tests for DARE (α = 0.05), and multiple regression analysis using backward elimination of DGM structures (α = 0.05, P = 0.1) to regress bulk and DARE measures with the follow‐up Multiple Sclerosis Severity Score (MSSS). False detection rate correction was applied to all tests. Bulk analysis only detected significant (Q ≤ 0.05) interaction effects in RRMS CN QS (η = 0.45; Q = 0.004) and PU volume (η = 0.38; Q = 0.034). DARE demonstrated significant group differences in all RRMS structures, and in all PMS structures except the RN. The largest RRMS effect size was CN total R2* iron decrease (r = 0.74; Q = 0.00002), and TH mean QS myelin/calcium decrease for PMS (r = 0.70; Q = 0.002). DARE iron increase using total QS demonstrated the highest correlation with MSSS (r = 0.68; Q = 0.0005). DARE enabled discriminative assessment of specific DGM changes over 2 years, where iron and myelin/calcium changes were the primary drivers in RRMS and PMS compared to age‐matched controls, respectively. Specific DARE measures of MS DGM correlated with follow‐up MSSS, and may reflect complex disease pathology.Item Five year iron changes in relapsing-remitting multiple sclerosis deep gray matter compared to healthy controls(2019) Elkady, Ahmed M.; Cobzas, Dana; Sun, Hongfu; Seres, Peter; Blevins, Gregg; Wilman, Alan H.Relapsing-Remitting MS (RRMS) Deep Grey Matter (DGM) 5 year changes were examined using MRI measures of volume, transverse relaxation rate (R2*) and quantitative magnetic susceptibility (QS). By applying Discriminative Analysis of Regional Evolution (DARE), R2* and QS changes from iron and non-iron sources were separated. 25 RRMS and 25 age-matched control subjects were studied at baseline and 5-year follow-up. Bulk DGM mean R2* and QS of the caudate nucleus, putamen, thalamus and globus pallidus were analyzed using mixed factorial analysis (α = 0.05) with sex as a covariate, while DARE employed non-parametric analysis to study regional changes. Regression/correlation analysis was performed with disease duration and MS Severity Score (MSSS). No significant change in Extended Disability Status Score was found over 5 years (baseline = 2.4 ± 1.2; follow-up = 2.8 ± 1.3). Significant time effects were found for R2* in the caudate (Q = 0.000008; η2 = 0.36), putamen (Q = 0.0000007; η2 = 0.43), and globus pallidus (Q = 0.0000007; η2 = 0.43), while significant longitudinal effects were only found for QS in the putamen (Q = 0.002; η2 = 0.22). Significant bulk interaction was only found for thalamus volume (Q = 0.02; η2 = 0.20). Iron decrease was the only detected significant effect using DARE, and the highest significant DARE effect size was mean thalamus R2* iron decrease (Q = 0.002; η2 = 0.26). No significant correlations or regressions were demonstrated with clinical measures. Thalamic atrophy was the only bulk effect that demonstrated different rates of changes over 5 years compared to age-matched controls. DARE Iron decrease in regions of the caudate, putamen, and thalamus were prominent features in stable RRMS over 5 years.Item Progressive iron accumulation across multiple sclerosis phenotypes revealed by sparse classification of deep gray matter(2017) Elkady, Ahmed M.; Cobzas, Dana; Sun, Hongfu; Blevins, Gregg; Wilman, Alan H.To create an automated framework for localized analysis of deep gray matter (DGM) iron accumulation and demyelination using sparse classification by combining quantitative susceptibility (QS) and transverse relaxation rate (R2*) maps, for evaluation of DGM in multiple sclerosis (MS) phenotypes relative to healthy controls.R2*/QS maps were computed using a 4.7T 10‐echo gradient echo acquisition from 16 clinically isolated syndrome (CIS), 41 relapsing‐remitting (RR), 40 secondary‐progressive (SP), 13 primary‐progressive (PP) MS patients, and 75 controls. Sparse classification for R2*/QS maps of segmented caudate nucleus (CN), putamen (PU), thalamus (TH), and globus pallidus (GP) structures produced localized maps of iron/myelin in MS patients relative to controls. Paired t‐tests, with age as a covariate, were used to test for statistical significance (P ≤ 0.05).In addition to DGM structures found significantly different in patients compared to controls using whole region analysis, singular sparse analysis found significant results in RRMS PU R2* (P = 0.03), TH R2* (P = 0.04), CN QS (P = 0.04); in SPMS CN R2* (P = 0.04), GP R2* (P = 0.05); and in PPMS CN R2* (P = 0.04), TH QS (P = 0.04). All sparse regions were found to conform to an iron accumulation pattern of changes in R2*/QS, while none conformed to demyelination. Intersection of sparse R2*/QS regions also resulted in RRMS CN R2* becoming significant, while RRMS R2* TH and PPMS QS TH becoming insignificant. Common iron‐associated volumes in MS patients and their effect size progressively increased with advanced phenotypes.A localized technique for identifying sparse regions indicative of iron or myelin in the DGM was developed. Progressive iron accumulation with advanced MS phenotypes was demonstrated, as indicated by iron‐associated sparsity and effect size.Item Progressive iron accumulation across multiple sclerosis phenotypes revealed by sparse classification of deep gray matter(2017) Elkady, Ahmed M.; Cobzas, Dana; Sun, Hongfu; Blevins, Gregg; Wilman, Alan H.Purpose: To create an automated framework for localized analysis of deep gray matter (DGM) iron accumulation and demyelination using sparse classification by combining quantitative susceptibility (QS) and transverse relaxation rate (R2*) maps, for evaluation of DGM in multiple sclerosis (MS) phenotypes relative to healthy controls. Materials and Methods: R2*/QS maps were computed using a 4.7T 10-echo gradient echo acquisition from 16 clinically isolated syndrome (CIS), 41 relapsing-remitting (RR), 40 secondary-progressive (SP), 13 primary-progressive (PP) MS patients, and 75 controls. Sparse classification for R2*/QS maps of segmented caudate nucleus (CN), putamen (PU), thalamus (TH), and globus pallidus (GP) structures produced localized maps of iron/myelin in MS patients relative to controls. Paired t-tests, with age as a covariate, were used to test for statistical significance (P ≤ 0.05).Results: In addition to DGM structures found significantly different in patients compared to controls using whole region analysis, singular sparse analysis found significant results in RRMS PU R2* (P = 0.03), TH R2* (P = 0.04), CN QS (P = 0.04); in SPMS CN R2* (P = 0.04), GP R2* (P = 0.05); and in PPMS CN R2* (P = 0.04), TH QS (P = 0.04). All sparse regions were found to conform to an iron accumulation pattern of changes in R2*/QS, while none conformed to demyelination. Intersection of sparse R2*/QS regions also resulted in RRMS CN R2* becoming significant, while RRMS R2* TH and PPMS QS TH becoming insignificant. Common iron-associated volumes in MS patients and their effect size progressively increased with advanced phenotypes. Conclusion: A localized technique for identifying sparse regions indicative of iron or myelin in the DGM was developed. Progressive iron accumulation with advanced MS phenotypes was demonstrated, as indicated by iron-associated sparsity and effect size.Item Significant anatomy detection through sparse classification: a comparative study(2018) Zhang, Li; Cobzas, Dana; Wilman, Alan H.; Kong, LinglongWe present a comparative study for discriminative anatomy detection in high dimensional neuroimaging data. While most studies solve this problem using mass univariate approaches, recent works show better accuracy and variable selection using a sparse classification model. Two types of image-based regularization methods have been proposed in the literature based on either a Graph Net (GN) model or a total variation (TV) model. These studies showed increased classification accuracy and interpretability of results when using image-based regularization, but did not look at the accuracy and quality of the recovered significant regions. In this paper, we theoretically prove bounds on the recovered sparse coefficients and the corresponding selected image regions in four models (two based on GN penalty and two based on TV penalty). Practically, we confirm the theoretical findings by measuring the accuracy of selected regions compared with ground truth on simulated data. We also evaluate the stability of recovered regions over cross-validation folds using real MRI data. Our findings show that the TV penalty is superior to the GN model. In addition, we showed that adding an l2 penalty improves the accuracy of estimated coefficients and selected significant regions for the both types of models.Item Stable anatomy detection in multimodal imaging through sparse group regularization: a comparative study of iron accumulation in the aging brain(2021) Pietrosanu, Matthew; Zhang, Li; Seres, Peter; Elkady, Ahmed M.; Wilman, Alan H.; Kong, Linglong; Cobzas, DanaMultimodal neuroimaging provides a rich source of data for identifying brain regions associated with disease progression and aging. However, present studies still typically analyze modalities separately or aggregate voxel-wise measurements and analyses to the structural level, thus reducing statistical power. As a central example, previous works have used two quantitative MRI parameters—R2* and quantitative susceptibility (QS)—to study changes in iron associated with aging in healthy and multiple sclerosis subjects, but failed to simultaneously account for both. In this article, we propose a unified framework that combines information from multiple imaging modalities and regularizes estimates for increased interpretability, generalizability, and stability. Our work focuses on joint region detection problems where overlap between effect supports across modalities is encouraged but not strictly enforced. To achieve this, we combine L1 (lasso), total variation (TV), and L2 group lasso penalties. While the TV penalty encourages geometric regularization by controlling estimate variability and support boundary geometry, the group lasso penalty accounts for similarities in the support between imaging modalities. We address the computational difficulty in this regularization scheme with an alternating direction method of multipliers (ADMM) optimizer. In a neuroimaging application, we compare our method against independent sparse and joint sparse models using a dataset of R2* and QS maps derived from MRI scans of 113 healthy controls: our method produces clinically-interpretable regions where specific iron changes are associated with healthy aging. Together with results across multiple simulation studies, we conclude that our approach identifies regions that are more strongly associated with the variable of interest (e.g., age), more accurate, and more stable with respect to training data variability. This work makes progress toward a stable and interpretable multimodal imaging analysis framework for studying disease-related changes in brain structure and can be extended for classification and disease prediction tasks.