Van der Pol oscillator – analysis of a non-conservative system

Author
Reeves, Adam
Faculty Advisor
Date
2020
Keywords
Abstract (summary)
The Van der Pol oscillator was introduced by Balthasar van der Pol, who was ”a famous scholar, a famous scientist, a famous administrator at the international level, he was equally well known for the clarity of his lectures (in several languages), his knowledge of the classics, his warm personality and his talents for friendship, and his love for music.” [2] The oscillator describes the nonlinear oscillations for systems like a triode circuit, which produce selfsustained oscillations known as relaxation oscillations. Extensive studies have been done on the oscillator, for understanding it and for using it as an applied model for the heartbeat, for example. In this thesis, we will explain the nature of the oscillator from an original point of view, in the low-friction regime. First, we will give an intuitive physical explanation of the first order averaging method, a perturbation theory method, applied onto the oscillator. We will follow with an analytical approach of the first order averaging method, and we will show the mathematical complexity of it. We will conclude with the application of the first order averaging method to the Van der Pol oscillator, confirming the findings from the intuitive approach.
Publication Information
Notes
Item Type
Undergraduate Thesis
Language
English
Rights
All Rights Reserved