On the Bragg diffraction spectra of a Meyer set

Author
Strungaru, Nicolae
Faculty Advisor
Date
2013
Keywords
diffraction , Meyer set , Bragg peaks
Abstract (summary)
Meyer sets have a relatively dense set of Bragg peaks, and for this reason they may be considered as basic mathematical examples of (aperiodic) crystals. In this paper we investigate the pure point part of the diffraction of Meyer sets in more detail. The results are of two kinds. First, we show that, given a Meyer set and any positive intensity a less than the maximum intensity of its Bragg peaks, the set of Bragg peaks whose intensity exceeds a is itself a Meyer set (in the Fourier space). Second, we show that if a Meyer set is modified by addition and removal of points in such a way that its density is not altered too much (the allowable amount being given explicitly as a proportion of the original density), then the newly obtained set still has a relatively dense set of Bragg peaks.
Publication Information
Strungaru, N. “On the Bragg diffraction spectra of a Meyer set”, Canadian Journal of Mathematics 65, no. 3, 675-701, (2013).
DOI
Notes
Item Type
Article
Language
English
Rights
All Rights Reserved