Browsing by Author "Edwards, Sara"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- ItemAn endophytic fungus interacts with crown level and larval density to reduce the survival of eastern spruce budworm, Choristoneura fumiferana (Lepidoptera: Tortricidae), on white spruce (Picea glauca)(2019) Quiring, Dan; Flaherty, Leah; Adams, Greg; McCartney, Andrew; Miller, J. David; Edwards, SaraA two-year field study was carried out to determine whether inoculating white spruce, Picea glauca (Moench) Voss, with a native endophytic fungus, Phialocephala scopiformis DAOM 229536 Kowalski & Kehr (Helotiales, Ascomycota), decreased the performance of eastern spruce budworm, Choristoneura fumiferana Clemens, developing on these trees. Second instars were reared at three densities in the mid crown and at one density in the lower, mid, and upper crown. Larval survival (i.e., survival of larvae to pupation) was lower on endophyte-inoculated trees than on control trees in the mid crown and especially the upper crown but was similar in the lower crown, resulting in a significant interaction between endophyte and crown level. A similar but marginally insignificant interaction was observed for overall survival up to adult emergence (i.e., total survival). Larval survival and total survival were approximately 22% and 19% lower, respectively, when developing in the upper crown of endophyte-inoculated trees than in control trees. Larval survival remained relatively constant, with increased density on control trees but decreased with density on endophyte-inoculated trees, resulting in a significant interaction between endophyte and larval density. Sex ratios of emerged adults and wing lengths of emerged females were not influenced by the endophyte. Our results suggest that endophytic fungi could be useful additions to integrated pest management programs.
- ItemInfluence of a foliar endophyte and budburst phenology on survival of wild and laboratory-reared eastern spruce budworm, Choristoneura fumiferana on white spruce (Picea glauca)(2019) Quiring, Dan; Adams, Greg; Flaherty, Leah; McCartney, Andrew; Miller, J. David; Edwards, SaraA manipulative field study was carried out to determine whether the foliar endophyte fungus, Phialocephala scopiformis DAOM 229536, decreased the performance of eastern spruce budworm, Choristoneura fumiferana larvae developing on white spruce trees. Overwintered second-instar budworm larvae from a laboratory colony or from a wild population were placed on endophyte positive or negative trees one or two weeks before budburst. The presence of the endophyte in the needles reduced the survival of C. fumiferana from both a wild population and a laboratory colony. Survival for budworm juveniles up to pupation and to adult emergence was 13% and 17% lower, respectively, on endophyte positive trees. The endophyte did not influence the size or sex of survivors and budworm survival was not influenced by any two- or three-way interactions. Budworm survival was higher for wild than for laboratory-reared budworm and for budworm placed on trees a week before budburst. This may be the first field study to demonstrate the efficacy of an endophytic fungus against wild individuals of a major forest insect pest. The efficacy of the endophyte at low larval densities suggests that it could be a useful tactic to limit spruce budworm population growth in the context of an early intervention strategy.
- ItemResponse of native and exotic longhorn beetles to common pheromone components provides partial support for the pheromone-free space hypothesis(2020) Rassati, Davide; Marchioro, Matteo; Flaherty, Leah; Poloni, Riccardo; Edwards, Sara; Faccoli, Massimo; Sweeney, JonLonghorn beetles are among the most important groups of invasive forest insects worldwide. In parallel, they represent one of the most well-studied insect groups in terms of chemical ecology. Longhorn beetle aggregation-sex pheromones are commonly used as trap lures for specific and generic surveillance programs at points of entry and may play a key role in determining the success or failure of exotic species establishment. An exotic species might be more likely to establish in a novel habitat if it relies on a pheromone channel that is different to that of native species active at the same time of year and day, allowing for unhindered mate location (i.e., pheromone-free space hypothesis). In this study, we first tested the attractiveness of single pheromone components (i.e., racemic 3-hydroxyhexan-2-one, racemic 3-hydroxyoctan-2-one, and syn-2,3-hexanediol), and their binary and tertiary combinations, to native and exotic longhorn beetle species in Canada and Italy. Second, we exploited trap catches to determine their seasonal flight activity. Third, we used pheromone-baited “timer traps” to determine longhorn beetle daily flight activity. The response to single pheromones and their combinations was mostly species specific but the combination of more than one pheromone component allowed catch of multiple species simultaneously in Italy. The response of the exotic species to pheromone components, coupled with results on seasonal and daily flight activity, provided partial support for the pheromone-free space hypothesis. This study aids in the understanding of longhorn beetle chemical ecology and confirms that pheromones can play a key role in longhorn beetle invasions.