Isometries of combinatorial Banach spaces
dc.contributor.author | Brech, C. | |
dc.contributor.author | Ferenczi, V. | |
dc.contributor.author | Tcaciuc, Adi | |
dc.date.accessioned | 2021-06-28 | |
dc.date.accessioned | 2022-05-31T01:44:06Z | |
dc.date.available | 2022-05-31T01:44:06Z | |
dc.date.issued | 2020 | |
dc.description.abstract | We prove that every isometry between two combinatorial spaces is determined by a permutation of the canonical unit basis combined with a change of signs. As a consequence, we show that in the case of Schreier spaces, all the isometries are given by a change of signs of the elements of the basis. Our results hold for both the real and the complex cases. | |
dc.format.extent | 285.62KB | |
dc.format.mimetype | ||
dc.identifier.citation | Brech, C. Ferenczi, V., & Tcaciuc, A. (2020). Isometries of combinatorial Banach spaces. Proceedings of the American Mathematical Society, 148(11), 4845-4854. | |
dc.identifier.doi | https://doi.org/10.1090/proc/15122 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14078/2371 | |
dc.language | English | |
dc.language.iso | en | |
dc.rights | All Rights Reserved | |
dc.title | Isometries of combinatorial Banach spaces | en |
dc.type | Article Post-Print |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Isometries_of_combinatorial_Banach_spaces_2020_roam.pdf
- Size:
- 285.63 KB
- Format:
- Adobe Portable Document Format