Repository logo
 

Isometries of combinatorial Banach spaces

dc.contributor.authorBrech, C.
dc.contributor.authorFerenczi, V.
dc.contributor.authorTcaciuc, Adi
dc.date.accessioned2021-06-28
dc.date.accessioned2022-05-31T01:44:06Z
dc.date.available2022-05-31T01:44:06Z
dc.date.issued2020
dc.description.abstractWe prove that every isometry between two combinatorial spaces is determined by a permutation of the canonical unit basis combined with a change of signs. As a consequence, we show that in the case of Schreier spaces, all the isometries are given by a change of signs of the elements of the basis. Our results hold for both the real and the complex cases.
dc.format.extent285.62KB
dc.format.mimetypePDF
dc.identifier.citationBrech, C. Ferenczi, V., & Tcaciuc, A. (2020). Isometries of combinatorial Banach spaces. Proceedings of the American Mathematical Society, 148(11), 4845-4854.
dc.identifier.doihttps://doi.org/10.1090/proc/15122
dc.identifier.urihttps://hdl.handle.net/20.500.14078/2371
dc.languageEnglish
dc.language.isoen
dc.rightsAll Rights Reserved
dc.titleIsometries of combinatorial Banach spacesen
dc.typeArticle Post-Print

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Isometries_of_combinatorial_Banach_spaces_2020_roam.pdf
Size:
285.63 KB
Format:
Adobe Portable Document Format