On quasinilpotent operators and the invariant subspace problem
dc.contributor.author | Tcaciuc, Adi | |
dc.date.accessioned | 2020-12-16 | |
dc.date.accessioned | 2022-05-31T01:43:00Z | |
dc.date.available | 2022-05-31T01:43:00Z | |
dc.date.issued | 2019 | |
dc.description.abstract | We show that a bounded quasinilpotent operator T acting on an infinite dimensional Banach space has an invariant subspace if and only if there exists a rank one operator F and a scalar α∈ℂ, α≠0, α≠1, such that T+F and T+αF are also quasinilpotent. We also prove that for any fixed rank-one operator F, almost all perturbations T+αF have invariant subspaces of infinite dimension and codimension. | |
dc.format.extent | 415.84KB | |
dc.format.mimetype | ||
dc.identifier.citation | Tcaciuc, A. (2019). On quasinilpotent operators and the invariant subspace problem. Journal of Mathematical Analysis and Applications 477(1), 187-195. https://doi.org/10.1016/j.jmaa.2019.04.026 | |
dc.identifier.doi | https://doi.org/10.1016/j.jmaa.2019.04.026 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14078/2102 | |
dc.language | English | |
dc.language.iso | en | |
dc.rights | All Rights Reserved | |
dc.title | On quasinilpotent operators and the invariant subspace problem | en |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- On_quasinilpotent_operators_and_the_invariant-_2019_roam.pdf
- Size:
- 415.84 KB
- Format:
- Adobe Portable Document Format