Repository logo
 

Eberlein decomposition for PV inflation systems

dc.contributor.authorBaake, Michael
dc.contributor.authorStrungaru, Nicolae
dc.date.accessioned2022-05-02
dc.date.accessioned2022-05-31T01:50:53Z
dc.date.available2022-05-31T01:50:53Z
dc.date.issued2021
dc.description.abstractThe Dirac combs of primitive Pisot–Vijayaraghavan (PV) inflations on the real line or, more generally, in Rd are analysed. We construct a mean-orthogonal splitting for such Dirac combs that leads to the classic Eberlein decomposition on the level of the pair correlation measures, and thus to the separation of pure point versus continuous spectral components in the corresponding diffraction measures. This is illustrated with two guiding examples, and an extension to more general systems with randomness is outlined.
dc.format.extent376.67KB
dc.format.mimetypePDF
dc.identifier.citationBaake, M., Strungaru, N. (2021). Eberlein decomposition for PV inflation systems. Letters in Mathematical Physics 111(2),59. https://doi.org/10.1007/s11005-021-01399-w
dc.identifier.doihttps://doi.org/10.1007/s11005-021-01399-w
dc.identifier.urihttps://hdl.handle.net/20.500.14078/2626
dc.languageEnglish
dc.language.isoen
dc.relation.urihttps://roam.macewan.ca/islandora/object/gm:2709
dc.rightsAttribution (CC BY)
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectinflation tilings
dc.subjectdiffraction measure
dc.subjectEberlein decomposition
dc.subjectspectral components
dc.titleEberlein decomposition for PV inflation systemsen
dc.typeArticle

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Eberlein_decomposition_for_PV_inflation-_2021_roam.pdf
Size:
376.67 KB
Format:
Adobe Portable Document Format