Repository logo

The characterization of Helicobacter pylori DNA associated with ancient human remains recovered from a Canadian glacier

Faculty Advisor




Helicobacter pylori, DNA

Abstract (summary)

Helicobacter pylori is a gram-negative bacterium that colonizes the stomach of nearly half of the world’s population. Genotypic characterization of H. pylori strains involves the analysis of virulence-associated genes, such as vacA, which has multiple alleles. Previous phylogenetic analyses have revealed a connection between modern H. pylori strains and the movement of ancient human populations. In this study, H. pylori DNA was amplified from the stomach tissue of the Kwa¨day Da¨n Ts’ı`nchi individual. This ancient individual was recovered from the Samuel Glacier in Tatshenshini-Alsek Park, British Columbia, Canada on the traditional territory of the Champagne and Aishihik First Nations and radiocarbon dated to a timeframe of approximately AD 1670 to 1850. This is the first ancient H. pylori strain to be characterized with vacA sequence data. The Tatshenshini H. pylori strain has a potential hybrid vacA m2a/m1d middle (m) region allele and a vacA s2 signal (s) region allele. A vacA s2 allele is more commonly identified with Western strains, and this suggests that European strains were present in northwestern Canada during the ancient individual’s time. Phylogenetic analysis indicated that the vacA m1d region of the ancient strain clusters with previously published novel Native American strains that are closely related to Asian strains. This indicates a past connection between the Kwa¨day Da¨n Ts’ı`nchi individual and the ancestors who arrived in the New World thousands of years ago.

Publication Information

Swanston T, Haakensen M, Deneer H, Walker EG (2011) The Characterization of Helicobacter pylori DNA Associated with Ancient Human Remains Recovered from a Canadian Glacier. PLoS ONE 6(2): e16864. doi:10.1371/journal.pone.0016864


Item Type





Attribution (CC BY)