Repository logo
 

Almost periodic measures and Bragg diffraction

dc.contributor.authorStrungaru, Nicolae
dc.date.accessioned2020-10-05
dc.date.accessioned2022-05-31T01:15:24Z
dc.date.available2022-05-31T01:15:24Z
dc.date.issued2013
dc.description.abstractIn this paper we prove that the cone PDS(G) of positive, positive definite, discrete and strong almost periodic measures over a σ-compact, locally compact Abelian group G has an interesting property: given any positive and positive definite measure μ smaller than some measure in PDS(G), the strong almost periodic part μS of μ is also in PDS(G). We then use this result to prove that given a positive-weighted Dirac comb ω with finite local complexity and pure point diffraction, any positive Dirac comb less than ω has either a trivial Bragg spectrum or a relatively dense set of Bragg peaks.
dc.description.urihttps://macewan.primo.exlibrisgroup.com/permalink/01MACEWAN_INST/d1nmsu/cdi_iop_journals_10_1088_1751_8113_46_12_125205
dc.identifier.citationStrungaru, N. “Almost periodic measures and Bragg diffraction”, J. Phys. A: Math. Theor. 46, (2013).
dc.identifier.doihttps://doi.org/10.1088/1751-8113/46/12/125205
dc.identifier.urihttps://hdl.handle.net/20.500.14078/1759
dc.languageEnglish
dc.language.isoen
dc.rightsAll Rights Reserved
dc.subjectBragg spectrum
dc.subjectBragg peaks
dc.titleAlmost periodic measures and Bragg diffractionen
dc.typeArticle

Files