Browsing by Author "Feng, Jilu"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Mapping amorphous SiO2 in Devonian shales and the possible link to marine productivity during incipient forest diversification(2023) Corlett, Hilary; Feng, Jilu; Playter, Tiffany; Rivard, BenoitSilica cycling in the world’s oceans is not straightforward to evaluate on a geological time scale. With the rise of radiolarians and sponges from the early Cambrian onward, silica can have two depositional origins, continental weathering, and biogenic silica. It is critical to have a reliable method of differentiating amorphous silica and crystalline silica to truly understand biogeochemical and inorganic silica cycling. In this study, opal-A is mapped across the Western Canada Sedimentary Basin in the Late Devonian Duvernay Formation shales using longwave hyperspectral imaging alongside geochemical proxies that differentiate between crystalline and amorphous SiO2, during the expansion of the world’s early forests. Signaled by several carbon isotope excursions in the Frasnian, the punctata Event corresponds to the expansion of forests when vascular land plants develop seeds and deeper root networks, likely resulting in increased pedogenesis. Nutrients from thicker soil horizons entering the marine realm are linked to higher levels of primary productivity in oceans and subsequent oxygen starvation in deeper waters at this time. The results of this study reveal, for the first time, the spatial distribution of amorphous SiO2 across a sedimentary basin during this major shift in the terrestrial realm when forests expand and develop deeper root networks.Item Shortwave infrared hyperspectral imaging as a novel method to elucidate multi-phase dolomitization, recrystallization, and cementation in carbonate sedimentary rocks(2021) McCormick, Cole A.; Corlett, Hilary; Stacey, Jack; Hollis, Cathy; Feng, Jilu; Rivard, Benoit; Omma, Jenny E.Carbonate rocks undergo low-temperature, post-depositional changes, including mineral precipitation, dissolution, or recrystallisation (diagenesis). Unravelling the sequence of these events is time-consuming, expensive, and relies on destructive analytical techniques, yet such characterization is essential to understand their post-depositional history for mineral and energy exploitation and carbon storage. Conversely, hyperspectral imaging offers a rapid, non-destructive method to determine mineralogy, while also providing compositional and textural information. It is commonly employed to differentiate lithology, but it has never been used to discern complex diagenetic phases in a largely monomineralic succession. Using spatial-spectral endmember extraction, we explore the efficacy and limitations of hyperspectral imaging to elucidate multi-phase dolomitization and cementation in the Cathedral Formation (Western Canadian Sedimentary Basin). Spectral endmembers include limestone, two replacement dolomite phases, and three saddle dolomite phases. Endmember distributions were mapped using Spectral Angle Mapper, then sampled and analyzed to investigate the controls on their spectral signatures. The absorption-band position of each phase reveals changes in %Ca (molar Ca/(Ca + Mg)) and trace element substitution, whereas the spectral contrast correlates with texture. The ensuing mineral distribution maps provide meter-scale spatial information on the diagenetic history of the succession that can be used independently and to design a rigorous sampling protocol.