Browsing by Author "Reeves, Adam"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Lp spaces of operator-valued functions(2021) Ramsey, Christopher; Reeves, AdamWe define a p-norm in the context of quantum random variables, measurable operator-valued functions with respect to a positive operator-valued measure. This norm leads to a operator-valued Lp space that is shown to be complete. Various other norm candidates are considered as well as generalizations of H¨older’s inequality to this new context.Item Van der Pol oscillator – analysis of a non-conservative system(2020) Reeves, Adam; Bica, IonThe Van der Pol oscillator was introduced by Balthasar van der Pol, who was ”a famous scholar, a famous scientist, a famous administrator at the international level, he was equally well known for the clarity of his lectures (in several languages), his knowledge of the classics, his warm personality and his talents for friendship, and his love for music.” [2] The oscillator describes the nonlinear oscillations for systems like a triode circuit, which produce selfsustained oscillations known as relaxation oscillations. Extensive studies have been done on the oscillator, for understanding it and for using it as an applied model for the heartbeat, for example. In this thesis, we will explain the nature of the oscillator from an original point of view, in the low-friction regime. First, we will give an intuitive physical explanation of the first order averaging method, a perturbation theory method, applied onto the oscillator. We will follow with an analytical approach of the first order averaging method, and we will show the mathematical complexity of it. We will conclude with the application of the first order averaging method to the Van der Pol oscillator, confirming the findings from the intuitive approach.Item Van der Pol oscillator – analysis of a non-conservative system(2020) Reeves, Adam; Bica, IonThe Van der Pol oscillator was introduced by Balthasar van der Pol, who was ”a famous scholar, a famous scientist, a famous administrator at the international level, he was equally well known for the clarity of his lectures (in several languages), his knowledge of the classics, his warm personality and his talents for friendship, and his love for music.” The oscillator describes the nonlinear oscillations for systems like a triode circuit, which produce self-sustained oscillations known as relaxation oscillations. Extensive studies have been done on the oscillator, for understanding it and for using it as an applied model for the heartbeat, for example. In this thesis, we will explain the nature of the oscillator from an original point of view, in the low-friction regime. First, we will give an intuitive physical explanation of the first order averaging method, a perturbation theory method, applied onto the oscillator. We will follow with an analytical approach of the first order averaging method, and we will show the mathematical complexity of it. We will conclude with the application of the first order averaging method to the Van der Pol oscillator,confirming the findings from the intuitive approach.