Browsing by Author "Rotevatn, Atle"
Now showing 1 - 7 of 7
Results Per Page
Sort Options
Item Controls on the formation of stratabound dolostone bodies, Hammam Faraun Fault block, Gulf of Suez(2018) Hirani, Jesal; Bastesen, Eivind; Boyce, Adrian; Corlett, Hilary; Gawthorpe, Rob; Hollis, Cathy; Cédric, John M.; Robertson, Hamish; Rotevatn, Atle; Whitaker, FionaDolomitization is commonly associated with crustal-scale faults, but tectonic rejuvenation, diagenetic overprinting and a fluid and Mg mass-imbalance often makes it difficult to determine the dolomitization mechanism. This study considers differential dolomitization of the Eocene Thebes Formation on the Hammam Faraun Fault block, Gulf of Suez, which has undergone a simple history of burial and exhumation as a result of rifting. Stratabound dolostone bodies occur selectively within remobilized sediments (debrites and turbidites) in the lower Thebes Formation and extend into the footwall of, and for up to 2 km away from, the Hammam Faraun Fault. They are offset by the north-south trending Gebel fault, which was active during the earliest phases of rifting, suggesting that dolomitization occurred between rift initiation (26 Ma) and rift climax (15 Ma). Geochemical data suggest that dolomitization occurred from evaporated (ca 1.43 concentration) seawater at less than ca 80 degrees C. Geothermal convection is interpreted to have occurred as seawater was drawn down surface-breaching faults into the Nubian sandstone aquifer, convected and discharged into the lower Thebes Formation via the Hammam Faraun Fault. Assuming a ca 10 Myr window for dolomitization, a horizontal velocity of ca 0.7 m year (super -1) into the Thebes Formation is calculated, with fluid flux and reactivity likely to have been facilitated by fracturing. Although fluids were at least marginally hydrothermal, stratabound dolostone bodies do not contain saddle dolomite and there is no evidence of hydrobrecciation. This highlights how misleading dolostone textures can be as a proxy for the genesis and spatial distribution of such bodies in the subsurface. Overall, this study provides an excellent example of how fluid flux may occur during the earliest phases of rifting, and the importance of crustal-scale faults on fluid flow from the onset of their growth. Furthermore, this article presents a mechanism for dolomitization from seawater that has none of the inherent mass balance problems of classical, conceptual models of hydrothermal dolomitization.Item The effects of dolomitization on petrophysical properties and fracture distribution within rift-related carbonates (Hammam Faraun fault block, Suez Rift, Egypt)(2018) Korneva, Irina; Bastesen, Eivind; Corlett, Hilary; Eker, Anja; Hirani, Jesal; Hollis, Cathy; Gawthorpe, Rob; Rotevatn, Atle; Taylor, Rochelle; Laubach, Stephen E.; Lamarche, Juliette; Gauthier, Bertrand D. M.; Dunne, William M.Petrographic and petrophysical data from different limestone lithofacies (skeletal packstones, matrix-supported conglomerates and foraminiferal grainstones) and their dolomitized equivalents within a slope carbonate succession (Eocene Thebes Formation) of Hammam Faraun Fault Block (Suez Rift, Egypt) have been analyzed in order to link fracture distribution with mechanical and textural properties of these rocks. Two phases of dolomitization resulted in facies-selective stratabound dolostones extending up to two and a half kilometers from the Hammam Faraun Fault, and massive dolostones in the vicinity of the fault (100 metres). Stratabound dolostones are characterized by up to 8 times lower porosity and 6 times higher frequency of fractures compared to the host limestones. Precursor lithofacies type has no significant effect on fracture frequency in the stratabound dolostones. At a distance of 100 metres from the fault, massive dolostones are present which have 0.5 times porosity of precursor limestones, and lithofacies type exerts a stronger control on fracture frequency than the presence of dolomitization (undolomitized vs. dolomitized). Massive dolomitization corresponds to increased fracture intensity in conglomerates and grainstones but decreased fracture intensity in packstones. This corresponds to a decrease of grain/crystal size in conglomerates and grainstones and its increase in packstones after massive dolomitization.Since fractures may contribute significantly to the flow properties of a carbonate rock, the work presented herein has significant applicability to hydrocarbon exploration and production from limestone and dolostone reservoirs, particularly where matrix porosities are low.Item Fault-controlled dolomitization in a rift basin(2017) Hollis, Cathy; Bastesen, Eivind; Boyce, Adrian; Corlett, Hilary; Gawthorpe, Rob; Hirani, Jesal; Rotevatn, Atle; Whitaker, FionaThere are numerous examples of fault-controlled, so-called hydrothermal dolomite (HTD), many of which host economic mineral deposits or hydrocarbons, but there remains a lack of consensus as to how they form. In particular, multiple phases of diagenetic overprinting can obscure geochemical fingerprints. Study of a Cenozoic succession with a relatively simple burial history here provides new insights into the development of differentially dolomitized beds. The Hammam Faraun fault (HFF) block within the Suez Rift, Egypt, hosts both massive and stratabound dolostone bodies. Non-fabric-selective massive dolostone is limited to the damage zone of the fault, while fabric-selective stratabound dolostone bodies penetrate nearly 2 km into the footwall. Oligo-Miocene seawater is interpreted to have been drawn down discrete faults into a deep aquifer and convected upwards along the HFF. Escape of fluids from the incipient HFF into the lower Thebes Formation led to differential, stratabound dolomitization. Once the HFF breached the surface, fluid circulation focused along the fault plane to form younger, massive dolostone bodies. This study provides a snapshot of dolomitization during the earliest phases of extension, unobscured by subsequent recrystallization and geochemical modification. Contrary to many models, stratabound dolomitization preceded non-stratabound dolomitization. Fluids were hydrothermal, but with little evidence for rapid cooling and brecciation common to many HTD bodies. These results suggest that many of the features used to interpret and predict the geometry of HTD in the subsurface form during later phases of structural deformation, perhaps overprinting less structurally complex dolomite bodies.Item A geocellular modelling workflow for partially dolomitized remobilized carbonates: an example from the Hammam Faraun Fault block, Gulf of Suez, Egypt(2021) Corlett, Hilary; Hodgetts, David; Hirani, Jesal; Rotevatn, Atle; Taylor, Rochelle; Hollis, CathyConstructing geocellular models of carbonate rocks using standard software is challenging since most of modelling packages are designed, first and foremost, to represent siliciclastic depositional systems, where rock properties are strongly facies-controlled. The distribution and components of carbonate depositional facies vary drastically across the geological timescale as a result of paleoclimate and its effects on carbonate-producing biota. Furthermore, reservoir architecture is less strongly controlled by depositional environment than in clastic settings, and rock physical properties, including fracture networks, are controlled by both primary components and their subsequent diagenetic alteration. This means that rock property distribution is less predictable than in siliciclastic systems, and less well represented by geocellular models that are designed to represent sedimentary architecture. In other words, in carbonate systems, the depositional and diagenetic history needs to be reconstructed in order to successfully model reservoir properties. In this study a geocellular model was created by using a well-characterised outcrop analogue obtained from the Hammam Faraun Fault (HFF) Block, located on the eastern coast of the Gulf of Suez in Sinai, Egypt. This model integrates sedimentological, petrophysical, diagenetic, and structural information into a single database. The workflow utilizes the regional tectonic history, upscaled lithological logs, and two-stage facies modelling (reflecting in and ex situ depositional facies) and resulted in the creation a realistic model of remobilized carbonates that were deposited on the slope of a carbonate platform during a period of tectonic instability. Diagenetic overprinting was achieved using probability functions to reflect the history of burial, rifting, and the spatial relationship of stratabound and non-stratabound dolostone bodies. The study demonstrates a workflow for modelling mass-transport carbonate facies and multistage fault-related diagenesis so that flow controlling facies and diagenetically altered poroperm and fracture networks are accurately represented using commercially available modelling software, and in particular demonstrates how diagenetically controlled geobodies can be captured using simple algorithms.Item Origin, dimensions, and distribution of remobilized carbonate deposits in a tectonically active zone, Eocene Thebes Formation, Sinai, Egypt(2018) Corlett, Hilary; Bastesen, Eivind; Gawthorpe, Rob; Hirani, Jesal; Hodgetts, David; Hollis, Cathy; Rotevatn, AtleDetermination of the distribution and mechanism for carbonate-dominated mass transport sediments is often compromised by the scale and access to exposures. Consequently, many studies lack the resolution to capture the heterogeneity and dimensions of mass transport deposits. This study documents the size, shape, and stratal assemblage of remobilized carbonates in the Eocene Thebes Formation in the Hammam Faraun Fault Block (HFFB) of western Sinai, revealing the complexities of carbonate mass transport deposits at sub-seismic scale. Present day pseudo three-dimensional exposure of the Thebes Formation in a large fault block, formed during the opening of the Gulf of Suez, allowed for lateral and down-dip measurement of slope and basinal facies in the field and from photos. Remobilized facies were digitized in the photos and evaluated using image analysis software, a technique with a wide range of applications to outcrop studies of sedimentary architecture. Debris flow deposits in the lower section of the Thebes Formation comprises clasts with differing fossil assemblages. A relative sea level rise at the start of upper Thebes Formation deposition resulted in basinal sediments comprising periodic incursions of high-density turbidite grainstones encased within a background of planktonic foraminiferal wackestones. Foraminiferal assemblages of remobilized facies imply multiple sources on the carbonate platform, demonstrating the effect of short-lived tectonism on slope instability and deposition of mass transport deposits. The results of the study confirm that tectonism associated with the Syrian Arc Fold Belt, which altered the style of basin sedimentation between Egypt and Syria, persisted into the Eocene at least as far south as Wadi Araba in the western desert and Hammam Faraun in Sinai. In addition, the shape, size, and extent of the two dominant remobilized facies, debris flows and grainstone turbidites are influenced by their mud-rich versus grainy compositions.Item Quantification of depositional and diagenetic geobody geometries for reservoir modelling, Hammam Fauran Fault Block, Sinai Peninsula, Egypt(2013) Hollis, Cathy; Corlett, Hilary; Hirani, Jesal; Hodgetts, David; Gawthorpe, Rob; Rotevatn, Atle; Bastesen, EivindOutcrop data has traditionally been used to constrain conceptual models during subsurface reservoir characterisation and geocellular modeling, but published data of depositional and diagenetic geobodies in carbonate systems is lacking. Furthermore, few studies address how these diagenetic bodies, which often cross-cut sedimentary bedding, can be captured in reservoir models, even though diagenetic modification is likely to impart a significant influence on flow behaviour. This paper presents a case study from the differentially dolomitised pre-rift Eocene Thebes Formation on the Sinai Peninsula. It documents the size of depositional and diagenetic geobodies and demonstrates how these data have been incorporated into a 3D geocellular model. The results can be used as input parameters or templates for reservoirs in which fault/fracture controlled dolomite bodies have been described, whilst the workflow could have broader applications to other carbonate reservoirs.Item Structural controls on non fabric‐selective dolomitization within rift‐related basin‐bounding normal fault systems: Insights from the Hammam Faraun Fault, Gulf of Suez, Egypt(2018) Hirani, Jesal; Bastesen, Eivind; Boyce, Adrian; Corlett, Hilary; Eker, Anja; Gawthorpe, Rob; Hollis, Cathy; Korneva, Irina; Rotevatn, AtleFault‐controlled dolostone bodies have been described as potential hydrocarbon‐bearing reservoirs. Numerous case studies have described the shape and size of these often non fabric selective dolostone bodies within the vicinity of crustal‐scale lineaments, usually from Palaeozoic or Mesozoic carbonate platforms, which have undergone one or more phases of burial and exhumation. There has been little attention paid, however, to fault‐strike variability in dolostone distribution or the preferential localization of these bodies on particular faults. This study focuses on dolostone bodies adjacent to the Hammam Faraun Fault (HFF), Gulf of Suez. This crustal‐scale normal fault was activated in the Late Oligocene, coincident with the onset of extension within the Suez Rift. Dolomitization in the prerift Eocene Thebes Formation occurred in the immediate footwall of the HFF forming two massive, non facies selective dolostone bodies, ca. 500 m wide. Facies‐controlled tongues of dolostone on the margins of the massive dolostone bodies extend for up to 100 m. The geochemical signature of the dolostone bodies is consistent with replacement by Miocene seawater, contemporaneous with the rift climax and localization of strain along the HFF. A conceptual model of dolomitization from seawater that circulated within the HFF during the rift climax is presented. Seawater was either directly drawn down the HFF or circulated from the hanging wall basin via a permeable aquifer towards the HFF. The lateral extent of the massive dolostone bodies was controlled by pre‐existing HFF‐parallel fracture corridors on the outer margins of the damage zone of the fault. The behaviour of these fracture corridors alternated between acting as barriers to fluid flow before rupture and acting as flow conduits during or after rupture. Multiple phases of dolomitization and recrystallization during the ca. 10 Ma period in which dolomitization occurred led to mottled petrographical textures and wide‐ranging isotopic signatures. The localization of dolomitization on the HFF is interpreted to reflect its proximity to a rift accommodation zone which facilitated vertical fluid flow due to perturbed and enhanced stresses during fault interaction. It is possible that the presence of jogs along the strike of the fault further focused fluid flux. As such, it is suggested that the massive dolostones described in this study provide a window into the earliest stages of formation of fault‐controlled hydrothermal dolostone bodies, which could have occurred in other areas and subsequently been overprinted by more complex diagenetic and structural fabrics.