Department of Psychology
Permanent link for this collection
Browse
Browsing Department of Psychology by Subject "acoustics"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- ItemNote types and coding in parid vocalizations: the chick-a-dee call of the boreal chickadee (Poecile hudsonicus)(2011) Moscicki, Michele; Hoeschele, Marisa; Bloomfield, Laurie L.; Modanu, Maria; Charrier, Isabelle; Sturdy, Christopher B.An important first step in characterizing a vocalization is to classify, describe, and measure the elements of that vocalization. Here, this methodology is employed to study the chick-a-dee call of the boreal chickadee (Poecile hudsonicus). The note types (A, B, C, D, and Dh) in a sample of boreal chickadee calls are identified and described, spectral and temporal features of each note type are analyzed, and production phenomena in each note type are identified and quantified. Acoustic variability is compared across note types and individuals to determine potential features used for note-type and individual discrimination. Frequency measures appear to be the most useful features for identifying note types and individuals, though total duration may also be useful. Call syntax reveals that boreal chick-a-dee calls follow a general rule of note-type order, namely A-B-C-Dh-D, and that any note type in this sequence may be repeated or omitted. This work provides a thorough description of the boreal chickadee chick-a-dee call and will serve as a foundation for future studies aimed at elucidating this call’s functional significance within this species, as well as for studies comparing chick-a-dee calls across Poecile species.
- ItemNote types and coding in parid vocalizations: the chick-a-dee call of the chestnut-backed chickadee (Poecile Rufuscens)(2009) Hoeschele, Marisa; Gammon, David E.; Moscicki, Michele; Sturdy, Christopher B.A first step to understanding how a species communicates acoustically is to identify, categorize, and quantify the acoustic parameters of the elements that make up their vocalizations. The "chick-a-dee" call notes of the chestnut-backed chickadee (Poecile rufescens) were sorted into four call note categories, A, C, D, and Dh notes, based on their acoustic structure as observed in sound spectrograms, and evaluated based on the syntactical ordering of the note types within calls. The notes were then analyzed using quantitative measures and it was determined which features have the potential to convey information to discriminate note type, individual, and the geographic origin of the producer. The findings were comparable to previous research of congeners in that chestnut-backed chickadee calls were produced with a relatively fixed syntax and contained similarly structured note types across all geographic regions. Overall this information will form a base for future research on chestnut-backed chickadee vocalizations and will strengthen the foundation for future comparative evolutionary studies.
- ItemZebrafish aversion to infrasound in an open field test(2023) Scatterty, Kale R.; Pitman, Taylor; Eckersley, Tristan; Schmaltz, Rodney; Hamilton, TrevorAquatic species are capable of detecting infrasound (sub-20 Hz frequencies) which may be a source of anthropogenic pollution and have a detrimental impact on the environmental fitness of fish. Infrasound is generated by infrastructure, producing acoustic frequency peaks that are not discernible by humans. The presence of these frequencies may therefore impact the environmental wellbeing of aquatic laboratory animals, which are often housed in spaces adjacent to facilities producing infrasound. To investigate the potential impact of infrasound, we used wild-type zebrafish (Danio rerio) and exposed them to short periods of infrasound at either 5, 10, 15, or 20 Hz, or 0 Hz as a control group. A motion-tracking software system was used to monitor fish movement in an open field test and arena location, distance moved, and immobility were quantified. There was a significant effect of 15 Hz which caused the fish to spend more time away from the infrasound source. The 20 Hz group also spent significantly less time in the zone closest to the speaker. There were no differences in distance moved or immobility between infrasound and control groups. These findings demonstrate that 15 Hz infrasound has aversive effects on zebrafish, causing them to move away from the sound source. To enhance environmental enrichment and wellbeing of aquatic laboratory animals, sources of infrasound pollution should be investigated and mitigated.