Repository logo
 

Pure point spectrum for dynamical systems and mean almost periodicity

dc.contributor.authorLenz, Daniel
dc.contributor.authorSpindeler, Timo
dc.contributor.authorStrungaru, Nicolae
dc.date.accessioned2021-01-13
dc.date.accessioned2022-05-31T01:43:05Z
dc.date.available2022-05-31T01:43:05Z
dc.date.issued2020
dc.description.abstractWe consider metrizable ergodic topological dynamical systems over locally compact, σ-compact abelian groups. We study pure point spectrum via suitable notions of almost periodicity for the points of the dynamical system. More specifically, we characterize pure point spectrum via mean almost periodicity of generic points. We then go on and show how Besicovitch almost periodic points determine both eigenfunctions and the measure in this case. After this, we characterize those systems arising from Weyl almost periodic points and use this to characterize weak and Bohr almost periodic systems. Finally, we consider applications to aperiodic order.
dc.format.extent465.79KB
dc.format.mimetypePDF
dc.identifier.citationLenz, D., Spindeler, T., & Strungaru, N. (2020). Pure point spectrum for dynamical systems and mean almost periodicity. arXiv:2006.10825v1. https://arxiv.org/abs/2006.10825
dc.identifier.urihttps://hdl.handle.net/20.500.14078/2130
dc.languageEnglish
dc.language.isoen
dc.rightsAll Rights Reserved
dc.subjectpure point spectrum
dc.subjectaperiodic order
dc.titlePure point spectrum for dynamical systems and mean almost periodicityen
dc.typeArticle Post-Print
dspace.entity.type

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Pure_point_spectrum_for_dynamical_systems_and-_2020_roam.pdf
Size:
465.79 KB
Format:
Adobe Portable Document Format